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Geometric Knowledge: Learning To Think Complexly The 1 

Notion Of ‘Riemann Curvature Tensor’ 2 

 3 

 4 
Teaching and learning in mathematics as well as research and construction of 5 
mathematical knowledge, has been the object of interest not only by educators and 6 
mathematicians but also, and especially, for philosophers. The present work is an 7 
investigation of the geometric notion of 'Riemann curvature tensor' analyzed from the 8 
theoretical-philosophical perspective of the Paradigm of Complexity, which offers us 9 
relevant epistemological principles that support our hypothesis that this notion should 10 
be conceived as a complex system and that its learning is achieved when you 11 
understand how it is generated and how it is built. This implies, in turn, that the 12 
teaching-learning processes must aim to learn to think complexly contextualizing 13 
knowledge. We will place emphasis on the transformative practical dimension of 14 
teaching that arises as a result of reflections on the teaching task itself in teacher 15 
training. We will begin with the presentation of some of the central notions of 16 
Complexity that will help us think about mathematical problems from this approach, a 17 
task that we will combine with an in-depth study of the Riemann curvature tensor; 18 
finally, we will culminate with a proposal whose objective is to adapt the ideas 19 
addressed to the field of teaching and learning geometry. 20 
 21 
Keywords: geometric knowledge - complex system - curvature tensor. 22 
 23 

 24 
Introduction 25 

 26 
The Paradigm of Complexity or Complex Thought (CT) can be 27 

characterized as a theoretical-philosophical-epistemological approach 28 

committed to a vision of the world supported by the principles or macro-ideas 29 
that tries to overcome fragmentation between disciplines, generated by 30 
mechanistic conceptions and Positivists present in the tradition of Western 31 

thought. Its main representatives - which we will address in this text - are the 32 
French philosopher Edgar Morin, the Nobel Prize for Belgian nationalized 33 

Russian chemistry Ilya Prigogine and the Argentine epistemologist and 34 
meteorologist Rolando García (among other leading scientists and 35 
philosophers). 36 

From the etymological point of view the word complexity is of Latin 37 

origin, it comes from complectere whose plectere root means 'braid, link'; and 38 
so, complexus is ‘what is woven together’. This implies conceiving the 39 
phenomena to be studied as complex entities, that is, formed by multiple and 40 
heterogeneous aspects - the threads of the tissue - related to each other. For 41 

example, if we analyze the human being in any of his behaviors, the hybridity 42 
of the aspects will be that he is a being constituted by physical, social, cultural, 43 
biological nature, etc., that is, its plot includes all the dimensions that defines it. 44 

These phenomena are technically called 'complex systems' (CS) and are 45 
considered as a complete organization of heterogeneous elements (natural, 46 
social, chemical, cultural, etc.) linked to each other by some relationship that 47 
defines the problem or object of study. . In this dynamic process structure, its 48 
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elements interact with each other and also with the elements that surround the 1 

problem-system, they are constituted as "open" systems, that is, permeable to 2 
changes in their environment. This emphasis placed on the link - and not on the 3 
elements - leads us to conceive that the rupture of this link is interpreted as 4 

mutilation, producing blindness in knowledge, as the main cause of the 5 
misunderstanding of phenomena. As García affirms “A CS is a representation 6 
of a cut of that reality, conceptualized as a complete organization, in which the 7 
elements are not 'separable' and, therefore, cannot be studied in isolation” 8 
(2006, p.21) 9 

As we said, the CT includes several logical principles that are also 10 
principles of knowledge, of which, in the present analysis, we will be limited to 11 
two general and fundamental ideas to later incorporate other concepts implied 12 
by them since they will be necessary in our approach of the tensor of curvature. 13 

The first of these ideas can be synthesized as "the unity of the natural and 14 

the cultural." According to this approach there is a need for an articulation 15 
between knowledge and concepts that historically were separated and that now 16 
it is urgent to put them in dialogue, such as: science and philosophy, nature and 17 

spirit, reason and myth, necessity and chance, order and disorder, theory and 18 
practice, etc. Both in physical nature and in human beings, these aspects are 19 
linked in a fruitful bond. There is unity in diversity. 20 

The resistance to these dichotomous separations is explained by another 21 
fundamental idea where it is clearly appreciated that the antagonistic is not 22 
exclusive but complementary, where it is also appreciated that opposites are 23 

needed in that incessant game typical of both natural and social or cultural 24 
processes. That second inclusive idea is the notion of ‘self-organization’. It is 25 

the recursive process that is represented very well with the image of a 26 
whirlwind which is formed with the contest of opposite flows and where each 27 

moment of the whirlwind is product and producer, is effect and cause (as for 28 
example the process of human reproduction) in a continuous process 29 

becoming. 30 
Open complex systems are constantly exchanging energy, matter or 31 

information with the external environment; This exchange impacts its internal 32 
structure, which is sensitive to the environment, but does not lose its autonomy. 33 

While there is internal variability, as a whole it maintains a certain order, that 34 
is, that fluctuation and stability coexist. An example of such a system is the 35 
human body that as a structured totality is formed by cells, tissues, organs and 36 
systems, which interact with each other and at the same time absorb and 37 
dissipate the energy and matter of the context, which keep it alive to perform 38 

its functions. Both the external environment and the internal fluctuation behave 39 
with each other as antagonistic forces tending to generate ruptures so that if 40 

any disturbance extends the threshold of fluctuation then the system is 41 
unstructured and a new internal organization of its elements is generated with 42 
new relationships between they. These two processes of destructuring and 43 
restructuring - both synthesized in the notion of self-organization - show the 44 
non-linear evolution of certain structures. Rolando García points out in this 45 

regard that 46 
 47 
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The evolution of such [complex] systems is not carried out through processes that 1 
are modified gradually and continuously, but proceeds by a succession of 2 
imbalances and reorganizations. Each restructuring leads to a period of relative 3 
dynamic equilibrium during which the system maintains its previous structures 4 
with fluctuations within certain limits (2000, p.77). 5 

 6 
These restructuring are the result of transformations where chance and 7 

necessity are the two elements that cooperatively intervene - not exclusively - 8 

and which, in turn, make it possible to introduce the notion of probability. It 9 
was Prigogine who demonstrated that in natural systems "instability can only 10 
be incorporated at a statistical level" (1995); therefore, the evolution towards a 11 
new structure in complex systems does not occur either deterministically or 12 
randomly since there are always various possibilities as candidate structures to 13 

adapt to their environment, their environment, their context. There may be 14 

many structures adaptable to the environment, and this shows that flexibility is 15 
associated with novelty and the creation of new configurations. Given the 16 

possibilities present in the fluctuations, in the bifurcations, there is also the 17 
possibility of choice, the emergence of the novelty, of a new structure; novelty 18 
is possible in conditions of instability and conflict of forces. And this 19 
movement of self-organization is present in natural phenomena - like the 20 

classic phenomenon of thermal convection of ‘instability of Bénard '- and in 21 
social and cultural ones - like the process of knowledge construction. 22 

We are now able to think about our object of study, the Riemann curvature 23 
tensor, as a complex system. 24 
 25 

The Complex Construction of the Curvature Tensor 26 
 27 

The idea of curvature contains in itself the multiplicity and diversity that 28 
knowledge presents at its different levels, and the tensor is a clear example of a 29 

complex system that has been constructed with successive structuring at its 30 
levels since its most remote beginnings in Euclid's time until today where this 31 

system acquires its most abstract formulation. In this sense, the notions of 32 
curvature and metrics are intertwined to produce a conception that transcends 33 

the precursor ideas but which in turn are contained in this emergent (the 34 
tensor). 35 

In the historical evolution, the concept of curvature is presented explicitly 36 

with the theory of curves and surfaces, whose development is largely due to 37 
Monge and Gauss. It is Riemann who defines in an abstract way curvature 38 

tensor based on Gauss's geometric work. The curvature is already tacitly 39 
present in Euclid's fifth postulate. This postulate was a cornerstone for the 40 

further development of geometry, so towards the end of the eighteenth century, 41 
it was believed that the fifth postulate could be deduced from the previous four, 42 
perhaps adding some additional condition. The search for such a 43 
demonstration, at the beginning of the nineteenth century, generated the 44 
appearance of works such as those of Lobachevsky and Bolyai who, 45 

independently, develop the hyperbolic geometry. Gauss argued that other 46 
geometries could exist satisfying the first four postulates, but not the fifth, 47 
although he published nothing about it. 48 
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The concept of curvature, as we shall see, projects light on the question of 1 

the existence of non-Euclidean geometries. In the second half of the nineteenth 2 
century, the development of multilinear algebra made it possible to understand 3 
and formalize the curvature tensor. The curvature is present in the Riemann 4 

varieties, in the theory of relativity and in geometric structures such as 5 
symmetric and homogeneous spaces. To obtain a reasonable modeling of the 6 
world in which we live, it is not enough with linear models, it is necessary to 7 
introduce objects formed with higher order terms. The concept of curvature is 8 
precisely a second order entity, which arises naturally in the study of curves, 9 

surfaces and their generalizations. 10 
Curvature also plays a fundamental role, both in physics and in other 11 

experimental sciences. For example, the magnitude of the force required to 12 
move an object at constant speed is, according to Newton's laws, a constant 13 
multiple of the curvature of the trajectory; or the movement of a body in a 14 

gravitational field is determined, according to Einstein, by the curvature of 15 
spacetime. Morin's great contribution is to have managed to synthesize various 16 
trends in current science at a higher level of integration while respecting the 17 

specificity and achievements of each of them. In this sense we think that the 18 
concept of curvature tensor given by Riemann in his research plan “On the 19 
Hypotheses which lie at the Bases of Geometry” of 1854, meets this 20 

expectation. 21 
The CT explains this interdisciplinary integration in terms of the 22 

interactions that the CS - the tensor - has with its environment, overcoming the 23 

hyperspecialization that leads to the fragmentation and division of knowledge 24 
in watertight compartments, and thereby achieving a goal point of view that 25 

promotes communication, dialogue, the round trip of the productive circle 26 
between inside and outside the frontiers of science. We will make an analysis 27 

in the sense of demonstrating the hypothesis stated above, about Riemann's 28 
research plan. According to Morin, a reform of thought is necessary whose task 29 

is not to accumulate knowledge in terms of systems and totality, as has been 30 
done, but in terms of organization and articulation, which leads not so much to 31 
fix the totality of knowledge in each discipline, but in crucial knowledge, 32 
strategic points, communication nodes, organizational articulations between 33 

disjoint orbits (1993, p.19). 34 
Taking into account this premise, which reaffirms the dialogic 35 

communication and the fruitful and solidary exchange of concepts, we think 36 
that Riemann's research plan is an enlightening example in this regard because, 37 
as we will see there is, on the one hand, organizational articulation between 38 

disjointed orbits when in The Application to Space section of his research plan 39 
anticipates the bases of the theory of general relativity. In addition, he detected 40 

that discrete quantities would be required for the domain of small distances, 41 
that is, the need for quantum mechanics. This last observation that derives from 42 
Riemannian geometry puts us in the presence of crucial knowledge, a strategic 43 
inflection point, and a knot of communication between different disciplines 44 
such as mathematics and theoretical physics. 45 

 46 
 47 
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The Concepts of Metric and Curvature 1 
 2 

This section is a preamble to the analysis of Riemann's work “On the 3 
Hypotheses which lie at the Bases of Geometry”. It is intended to provide the 4 

reader not familiar with the concepts of differential geometry of the elements 5 
that allow understanding the analysis of the work cited. The concepts of metric, 6 
curvature and curvature tensor of Riemann are approached intuitively and we 7 
minimizing technicalities. 8 
 9 

The Curvature in Curves and Surfaces 10 
 11 

If the movement of a particle (material point) in the plane or in the three-12 
dimensional space is considered and the position of said point is observed for 13 
each moment of time, a plane or space curve is obtained. The curves are one-14 

dimensional entities (manifols). The velocity of this point is the instantaneous 15 
variation rate with respect to the time of the position and it is described by a 16 
vector that is tangent to the curve. The curvature (which it is denoted by κ) at a 17 

given point measures the deviation experienced by the curve with respect to its 18 
tangent vector. This curvature is measured by a function that depends on the 19 
point namely  the norm of acceleration (second order entity), can be positive or 20 

zero. The curvature is a geometric invariant of the curve, that is, it will be the 21 
same for corresponding points of congruent curves. Congruent curves are 22 
obtained by performing rigid movements (isometries) in the plane or space. 23 

 24 
Figure 1: Curvature for a curve

1
 25 

 26 
   27 

A surface is a two-dimensional object such as a sheet of metal (of course, 28 

this has a thickness, for our study we will assume that this thickness is null). If 29 

we consider the unfolded sheet, we are in the presence of a portion of the 30 
Euclidean plane, but when we submit it to non-reversible deformations appear 31 

a distortion that is measured precisely by the curvature. Now the curvature of 32 
the given point surface is the product of two numbers called principal 33 

                                                           
1
The graphics included in this work are taken from Do Carmo M. (2010). Differential 

Geometry of Curves and Surfaces. 
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curvatures, this product is called Gaussian curvature and is designated by . 1 

From an intuitive point of view, it can be said that the curvature of a surface at 2 
one point it measures its deviation from the plane tangent to the surface at that 3 
point. 4 
 5 

Figure 2: Curvature on a surface 6 

 7 
 8 

The theory of surfaces of the Euclidean space has developed 9 
fundamentally throughout the eighteenth, nineteenth and first half of the 10 
twentieth centuries. It is noteworthy the contributions due to Euler, Monge and 11 
Dupin. Johann Carl Friedrich Gauss's article Disquisitiones generales circa 12 

superficies curvas appeared in 1827, was fundamental to lay the concept of 13 
space on a solid basis. It also introduces the notion of curvature of a surface at 14 

a point, which is an intrinsic concept. In this treatise the famous Gaussian 15 
Theorem (Egregium Theorem) appears that states: At one point on the surface, 16 
the curvature of Gauss is an isometric invariant. Informally, the theorem says 17 

that the Gaussian curvature of a surface can be determined entirely by 18 
measuring angles and distances on the surface itself, without referring to the 19 

particular way in which it curves within the three-dimensional Euclidean space. 20 
The theorem can be used to see that two surfaces are not isometric. For 21 

example there can be no isometry between the plane and the sphere, not even a 22 
portion of it. It is known that the Gaussian curvature of the sphere of radius r is, 23 

  while for the plane it is , if an isometry exists, 24 

the Gaussian curvature should be preserved. This says that any flat 25 
representation of the earth is necessarily distorted. 26 
 27 

Riemann Geometry 28 
 29 

In 1854 George Friedrich Bernhard Riemann generalizes Gauss's ideas to 30 
spaces of a dimension greater than three in the famous report “On the 31 

Hypotheses which lie at the Bases of Geometry” published posthumously. In 32 
this dissertation Riemann presents the concept of differentiable manifold as an 33 
n-dimensional set on which the calculations of the ordinary analysis can be 34 
performed; In this context, curves and surfaces are one-dimensional and two-35 

dimensional varieties respectively. For Riemann, to give a geometry over a 36 
variety is to define a positive definite quadratic form in each of the tangent 37 
spaces. This definition of Riemann makes it possible to extend Gauss's work to 38 
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a good extent. Being a generalization, the Riemann spaces of variable 1 

curvature comprise as particular cases the constant curvature spaces, which are 2 
those that historically gave rise to non-Euclidean geometries and Euclidean 3 
geometry. The properties of the curvature tensor are quite complicated; 4 

however, his main ideas are original and subtle. Riemann presents a broad 5 
generalization of all known geometries, both Euclidean and non-Euclidean, in 6 
natural language and without  technicalities. This field is known today as 7 
Rimannian Geometry, and apart from its importance in pure mathematics, it 8 
proved to be the appropriate mathematical scaffolding for Einstein's theory of 9 

general relativity. The generalization given by Riemann, highlights two nuclear 10 
concepts that are the metric and the curvature of a manifold. 11 

Metric: Let's see how the concept of metric given by Gauss generalizes. It 12 
is known that a surface that is in three-dimensional space can be expressed 13 
parametrically by three functions that depend on certain parameters u and v. A 14 

point on the surface is determined by three functions (called coordinate 15 

functions) ,  and  the  and  parameters 16 

can be interpreted as coordinates of the surface points. The distance 17 

between two near points  and  along the surface, is 18 

given by a quadratic differential form, namely: 19 

 20 
Where , , and  are certain functions of  and . This differential form 21 

allows calculating the length of curves on surfaces, finding the geodesic curves 22 
(the shortest ones) and calculating the Gaussian curvature of the surface at any 23 

point, all without reference to the ambient space. Riemann, generalized this by 24 
discarding the notion of ambient space and introducing the notion of 25 

continuous n - dimensional variety of points . A distance or 26 

metric ds between close points  and 27 

 is a quadratic differential formula: 28 

     (1) 29 

Where the  are appropriate functions of Different systems of 30 

  define different Riemannian geometries on the manifold. The metric thus 31 

defined makes it possible to measure the length between two points of a curve 32 

that rests on the manifold, the angle between curves and other geometric 33 
entities. In other words, the metric is what allows us to make geometry. 34 
Curvature: Another concept analyzed by Riemann is the curvature for these 35 

manifolds and he investigated the special case of constant curvature. He 36 
introduced the concept of curvature tensor, which is reduced to Gaussian 37 

curvature for  and whose annulment proved necessary and sufficient for 38 

the given quadric metric to be equivalent to the Euclidean. From this point of 39 

view, the curvature tensor measures the deviation of the Riemannian geometry 40 
defined by the formula (1) with respect to the Euclidean geometry. The concept 41 
of Gaussian curvature of a surface extends to Riemann manifolds of a 42 
dimension greater than two in a natural way, since it is possible to consider the 43 
germ of the totally geodetic surface tangent at a point of manifold to the 44 
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subspace of dimension two. The Gaussian curvature of said surface is defined 1 

as the sectional curvature of the plane at said point. In general, the curvature 2 
tensor of a Riemannian manifold depends on four arguments, while the 3 
sectional curvature only two. This result may seem strange, although it is now 4 

well known that in a Riemannian manifold the knowledge of sectional 5 
curvature at one point determines that of the curvature tensor. 6 
 7 

Non-Euclidean Geometries 8 
 9 

The historical development of the curvature was influenced by the fifth 10 
postulate of the Elements of Euclid whose statement is: 11 

 12 
"In a plane, given a line and a point not on it, at most one line parallel to the 13 
given line can be drawn through the point." 14 

 15 
Line segments in Euclidean geometry have the property of making the 16 

minimum distance between two given points. 17 
If the case of a sphere is considered, it is known that the shortest distance 18 

between two points on the sphere is the meridian arcs, which can be considered 19 
straight in the sphere. When considering a line on the sphere and a point 20 
outside it, there is no other that passes through that point and does not cut to 21 
the first. That is to say that in this case, the fifth postulate is not verified. In the 22 

spheres the sum of the internal angles of a triangle is greater than two right 23 
angles (unlike a flat triangle whose sum of interior angles is two right), the 24 

excess is due to its curvature. 25 
 26 
Figure 3: Angles in the sphere 27 

 28 
 29 

It is possible to define Hyperbolic Geometry as one that satisfies all 30 
trigonometric formulas of a spherical geometry in which the radius is pure 31 

imaginary. Minding discovered the pseudosphere (surface of revolution of the 32 
tractrix) that, locally, has the properties of the hyperbolic plane. In the case of 33 
the pseudosphere the sum of the internal angles of a triangle is less than two 34 
right angles. Riemann proves how the sphere can be assigned a quadratic form 35 
with coefficients that are functions of the coordinates and with positive 36 
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curvature. He explicitly states that the geometry that everyone had sought, 1 

hyperbolic geometry, is defined by the same quadratic shape with negative 2 
curvature. The interpretation could hardly be simpler. In the case of Euclidean 3 
geometry, as already said, the curvature is zero.  4 

 5 
Figure 4: Angles in the pseudosphere 6 

 7 
 8 

On the Hypotheses which lie at the Bases of Geometry 9 
 10 

Uber die Hypothesen, welche der Geometrie zu Grunde liegen (On the 11 
Hypotheses which lie at the Bases of Geometry) is the title of the habilitation 12 

dissertation presented to the Faculty of Philosophy of the University of 13 
Göttingen published after the death of its author in 1854. In this conference 14 

(Riemann) despite not having a detailed definition of n-dimensional manifold  15 

(in the sense that we know it today), he introduced the concept of Riemannian 16 

metric, explains the curvature tensor, sectional curvature, and offers some 17 
relations between the metric and the curvature. In his presentation, he gives his 18 

research plan, which consists of the following sections: 19 
 20 

I) Notion of an n-ply extended magnitude. 21 

II) Measure-relations of which a manifoldness of n dimensions is capable 22 
on the assumption that lines have a length independent of position, and 23 

consequently that every line may be measured by every other. 24 
III) Application to Space. 25 

 26 

In the section Notion of an n-ply extended magnitude of his work, 27 
Riemann introduces the concept he calls extended n-dimensional manifold. 28 

According to the above, an n-dimensional manifold is a set in which, every 29 
point is completely determined by n numbers, this notion is local, that is, it 30 

is valid in the neighborhoodof the point in question. The following 31 
paragraphs are from the section cited and in which the definition of the 32 
concept of variety is addressed. 33 

 34 
If in the case of a notion whose specialisations form a continuous manifoldness, 35 
one passes from a certain specialisation in a definite way to another, the 36 
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specialisations passed over form a simply extended manifoldness, whose true 1 
character is that in it a continuous progress from a point is possible only on two 2 
sides, forwards or backwards. If one now supposes that this manifoldness in its 3 
turn passes over into another entirely different, and again in a definite way, 4 
namely so that each point passes over into a definite point of the other, then all 5 
the specialisations so obtained form a doubly extended manifoldness. In a similar 6 
manner one obtains a triply extended manifoldness, if one imagines a doubly 7 
extended one passing over in a definite way to another entirely different; and it is 8 
easy to see how this construction may be continued. If one regards the variable 9 
object instead of the determinable notion of it, this construction may be described 10 
as a composition of a variability of n + 1 dimensions out of a variability 11 
of n dimensions and a variability of one dimension. 12 
In other words, let us take a continuous function of position within the given 13 
manifoldness, which, moreover, is not constant throughout any part of that 14 
manifoldness. Every system of points where the function has a constant value, 15 
forms then a continuous manifoldness of fewer dimensions than the given one. 16 
These manifoldnesses pass over continuously into one another as the function 17 
changes; we may therefore assume that out of one of them the others proceed, and 18 
speaking generally this may occur in such a way that each point passes over into a 19 
definite point of the other; the cases of exception (the study of which is 20 
important) may here be left unconsidered. Hereby the determination of position in 21 
the given manifoldness is reduced to a determination of quantity and to a 22 
determination of position in a manifoldness of less dimensions. It is now easy to 23 
show that this manifoldness has n - 1 dimensions when the given manifold is n-24 
ply extended. By repeating then this operation n times, the determination of 25 
position in an n-ply extended manifoldness is reduced to n determinations of 26 
quantity, and therefore the determination of position in a given manifoldness is 27 
reduced to a finite number of determinations of quantity when this is possible.

2
 28 

 29 

In these paragraphs, Riemann's concern for defining the concept of 30 

manifold is perceived, this is motivated by the fact that he wanted to define an 31 
appropriate model for the universe. In Riemann's conception the universe is not 32 

contained within another ambient space. It is noted that with the notion of 33 
extended n- manifold the concepts of lines and surfaces are generalized, these 34 
entities under the new look are 1 and 2 - dimensional manifolds respectively. 35 
Let us observe that the effort to conceive an idea of space that allows us to 36 

have a more delimited conception of our universe is the pulsor that puts the 37 
holgrammatic operator in synergy because, in the generalization that Riemann 38 
calls extended n- manifold, it is clear that not only the parts are within the 39 
whole, but the whole is within the parts. Each extended n- manifold can be 40 
considered as a whole that contains smaller n- manifolds. The hologrammatic 41 

principle, which explains the relationships between varieties, is one of the most 42 

fundamental ideas of the CT because it is closely linked to the idea of 43 

organization. The hologram being a physical image of an object “each point of 44 
the hologram object is memorized throughout the hologram, and each point of 45 
the hologram contains the presence of the object in its entirety, or almost” 46 

                                                           
2
All citations in this section are the English traslation that appear in: W. K. Clifford, “On the 

Hypotheses lie at the Bases of Geometry.  Nature. 8 (183 – 184), 14 – 17, 36, 37, unless 

otherwise specified. 
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(Morin, 2010, p.112). An interesting aspect that shows this principle is the 1 

ability of the parties to regenerate the whole, which is more clearly visualized 2 
in the organization of living beings whose cells, being controlled by the whole 3 
organism, in turn contain the information of the whole be the one they are able 4 

to produce again. 5 
 6 

The Definition of Metric 7 
 8 

Having defined the concept of extended n- manifold, Riemann considers 9 

the problem of establishing a metric on the manifold. In section two of his 10 
work he presents the definition of metric. Although it did not have the notion 11 
of space tangent to the manifold as we know it today; Riemann makes the basic 12 
and crucial observation that to find the length of a curve on a variety, it is 13 
enough to know how to calculate the norm of the velocity vectors at each point 14 

of the curve. Therefore, if a norm is defined (and therefore an internal product), 15 
in each tangent space, the length of any curve can be calculated. Riemann 16 
assumes that this norm varies continuously with respect to points in the 17 

manifold, and also assumes that this norm comes from an internal product as 18 
the following paragraphs in section two: 19 
 20 

The hypothesis which first presents itself, and which I shall here develop, is that 21 
according to which the length of lines is independent of their position, and 22 
consequently every line is measurable by means of every other. Position-fixing 23 
being reduced to quantity-fixings, and the position of a point in the n-24 
dimensioned manifoldness being consequently expressed by means 25 
of n variables , the determination of a line comes to the giving 26 

of these quantities as functions of one variable. The problem consists then in 27 
establishing a mathematical expression for the length of a line, and to this end we 28 
must consider the quantities  as expressible in terms of certain units. I shall treat 29 

this problem only under certain restrictions, and I shall confine myself in the first 30 
place to lines in which the ratios of the increments  of the respective variables 31 

vary continuously. We may then conceive these lines broken up into elements, 32 
within which the ratios of the quantities  may be regarded as constant; and the 33 

problem is then reduced to establishing for each point a general expression for the 34 
linear element starting from that point, an expression which will thus contain 35 

the quantities  and the quantities . I shall suppose, secondly, that the length of 36 

the linear element, to the first order, is unaltered when all the points of this 37 
element undergo the same infinitesimal displacement, which implies at the same 38 
time that if all the quantities are increased in the same ratio, the linear element 39 

will vary also in the same ratio. On these suppositions, the linear element may be 40 
any homogeneous function of the first degree of the quantities  which is 41 

unchanged when we change the signs of all the  and in which the arbitrary 42 

constants are continuous functions of the quantities  43 

This differential expression, of the second order remains constant 44 
when ds remains constant, and increases in the duplicate ratio when the dx, and 45 
therefore also ds, increase in the same ratio; it must therefore be ds

2
 multiplied by 46 

a constant, and consequently  is the square root of an always positive integral 47 
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homogeneous function of the second order of the quantities , in which the 1 

coefficients are continuous functions of the quantities . For Space, when the 2 

position of points is expressed by rectilinear co-ordinates,  Space is 3 

therefore included in this simplest case. 4 
I restrict myself, therefore, to those manifoldnesses in which the line element is 5 
expressed as the square root of a quadric differential expression. 6 
Manifoldnesses in which, as in the Plane and in Space, the line-element may be 7 

reduced to the form , are therefore only a particular case of the 8 

manifoldnesses to be here investigated; they require a special name, and therefore 9 
these manifoldnesses in which the square of the line-element may be expressed as 10 
the sum of the squares of complete differentials I will call flat.  11 

 12 
In the last paragraph Riemann makes us observe that the degree of 13 

generality of the metrics with which the Riemannian manifold can be 14 

provided. The concept of curvature also appears implicitly in this paragraph 15 
because as we will see the fl at spaces are those with zero curvature. The 16 
dual interplay of metric and nodal point curvature in Riemann's theory 17 

makes its appearance. The author realizes that in order to continue studying 18 
the properties of the metric it is necessary to limit the flexibility of the 19 
coordinate change, and take some coordinates that are constructed in a 20 
geometric way, enter the geodesic coordinates as explained in the following 21 

paragraph: 22 
 23 
For this purpose let us imagine that from any given point the system of shortest 24 
limes going out from it is constructed; the position of an arbitrary point may then 25 
be determined by the initial direction of the geodesic in which it lies, and by its 26 
distance measured along that line from the origin. 27 

 28 

The Notion of Curvature 29 
 30 

In the following paragraphs in section two, Riemann explains the notion of 31 

curvature using Gauss's Theorem Egregium. Here he exposes the geometric 32 
meaning of the curvature of a manifold. A precise definition of the curvature 33 
occurred years later, it was necessary to introduce the notion of tensor, forged 34 

mainly by Ricci. 35 
 36 

In the idea of surfaces, together with the intrinsic measure-relations in which only 37 
the length of lines on the surfaces is considered, there is always mixed up the 38 
position of points lying out of the surface. We may, however, abstract from 39 
external relations if we consider such deformations as leave unaltered the length 40 
of lines - i.e., if we regard the surface as bent in any way without stretching, and 41 
treat all surfaces so related to each other as equivalent. Thus, for example, any 42 
cylindrical or conical surface counts as equivalent to a plane, since it may be 43 
made out of one by mere bending, in which the intrinsic measure-relations 44 
remain, and all theorems about a plane - therefore the whole of planimetry - retain 45 
their validity. On the other hand they count as essentially different from the 46 
sphere, which cannot be changed into a plane without stretching. According to 47 
our previous investigation the intrinsic measure-relations of a twofold extent in 48 
which the line-element may be expressed as the square root of a quadric 49 
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differential, which is the case with surfaces, are characterised by the total 1 
curvature. Now this quantity in the case of surfaces is capable of a visible 2 
interpretation, viz., it is the product of the two curvatures of the surface, or 3 
multiplied by the area of a small geodesic triangle, it is equal to the spherical 4 
excess of the same. The first definition assumes the proposition that the product 5 
of the two radii of curvature is unaltered by mere bending; the second, that in the 6 
same place the area of a small triangle is proportional to its spherical excess. To 7 
give an intelligible meaning to the curvature of an n-fold extent at a given point 8 
and in a given surface-direction through it, we must start from the fact that a 9 
geodesic proceeding from a point is entirely determined when its initial direction 10 
is given. According to this we obtain a determinate surface if we prolong all the 11 
geodesics proceeding from the given point and lying initially in the given surface-12 
direction; this surface has at the given point a definite curvature, which is also the 13 
curvature of the n-fold continuum at the given point in the given surface-direction 14 
is given. 15 

 16 
Today the curvature that Riemann defines is known as the sectional 17 

curvature, and this one assigns to each two-dimensional subspace of the 18 
tangent space a real number. It should be noted that instead of talking about the 19 

curvature in the surface direction, we talk about the sectional curvature in a 20 
two-dimensional subspace. As we had pointed out, the curvature tensor of a 21 
Riemannian manifold depends on four arguments, while the sectional curvature 22 
only two. And we had also said that, in a Riemannian manifold, knowledge of 23 

sectional curvature at one point determines the curvature tensor. This leads us 24 
to think about how the organizational recursion operator acts on the idea of 25 

Riemann just mentioned. Here it is observed how the knowledge of the parties 26 
is related to the knowledge of the whole, how new qualities arise that did not 27 
exist in the isolated parts, that is, they are the organizational emergencies that 28 

are not deduced from the previous elements. In the process of recursive 29 
organization, the phenomena - complex systems - are explained by the 30 

tetragram proposed by Morin: order / disorder / interaction / organization, 31 
where there is no primacy of one over others but they are interdependent (2008, 32 

p.150). As we said at the beginning, each restructuring is the evolution towards 33 
a new structure that turns out to be the realization of one of the multiple 34 
probabilities that nonlinear causality offers the system. This new organization 35 
appears with original, unpublished characteristics, because changes are 36 

generated in the relations between the elements and therefore it turns out to be 37 
a novelty, an emergency, a creation. The fact that there are several possibilities 38 
shows the flexibility of the structures in the face of fluctuations and it is these 39 
bifurcations that allow a choice.  40 

This flexibility in the field of mathematical ideas has also taken the name 41 

of polysemy or ambiguity. Emily Grosholz proposes that polysemy does not 42 
generate confusion but creates the conditions for the generation of new ideas 43 

by stating that "when different representations are juxtaposed and 44 
superimposed, the result is often a productive ambiguity that expresses and 45 
generates new knowledge" (2007, p.25); That new knowledge is a new 46 
structure. W. Byers has referred to this concept as a metaphorical quality 47 
characteristic of numerous mathematical situations where antagonistic ways of 48 

approaching a topic are proposed, and for this reason they become a matrix of 49 
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deep ideas. For Byers “ambiguity is not only present in mathematics, it is 1 

essential. Ambiguity, which implies the existence of multiple, conflicting 2 
frames of reference, is the medium in which new mathematical ideas arise” 3 
(2007, p.23). 4 

 5 

Geometries and the Notion of Curvature 6 
 7 

In general, it can be said that Euclidean geometry is defined as the totality 8 
of the concepts that are conserved by rigid movements in the Euclidean space 9 

(isometries). In the following section, Riemann explains that manifols with 10 
constant sectional curvature reflect one of the essential properties of a 11 
geometry. That is, the property of the invariance of objects under isometries. 12 

 13 
Manifoldnesses whose curvature is constantly zero may be treated as a special 14 
case of those whose curvature is constant. The common character of those 15 
continua whose curvature is constant may be also expressed thus, that figures 16 
may be viewed in them without stretching. For clearly figures could not be 17 
arbitrarily shifted and turned round in them if the curvature at each point were not 18 
the same in all directions. On the other hand, however, the measure-relations of 19 
the manifoldness are entirely determined by the curvature. 20 

 21 
The non-Euclidean geometry constructed by Lobachevsky and Bolyai 22 

around 1829 (independently), held that through an outside point to a straight 23 
line passed more than one parallel. When Riemann discloses the assumptions 24 
that underlie Geometry, there was still confusion about non-Euclidean 25 

geometries and the examples of Lobachevsky and Bolyai were not fully 26 
accepted. According to Morin, confusion and uncertainty are not the last words 27 

of knowledge, but the precursor signs of complexity (1993, p.30). As we can 28 

see in the previous quotes by Grosholz and Byers, we can argue that the 29 

aforementioned confusion amounts to a productive ambiguity. Confusion and 30 
uncertainty should not be taken here as psychological states but as essential 31 

cognitive instruments of the epistemological paradigm of complexity. On the 32 
other hand, the notion of uncertainty is associated with the notion of 33 
probability and, therefore, with random phenomena. That is to say that in any 34 
process the restructuring does not take place in a deterministic way towards a 35 
single possible state, but that there is a degree of uncertainty about what the 36 

‘chosen’ structure will be among the various probable candidates; and this is 37 
valid for both natural and social phenomena and for knowledge - as in our case 38 
-. 39 

Using the notion of Riemannian geometry, Riemann gives a first concrete 40 

example for a non-Euclidean geometry, as the following paragraph in section 41 
two. 42 

 43 
The measure-relations of these manifoldnesses depend only on the value of the 44 
curvature, and in relation to the analytic expression it may be remarked that if this 45 
value is denoted by , the expression for the line-element may be written 46 

 47 
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 1 

It follows that the example constructed by Lobachevsky and Bolyai is 2 

obtained assuming  constant and negative, i.e it results a geometry according 3 

to Riemann. In the last two paragraphs we have just quoted and commented on, 4 
the very meaning of the word complex, unity in diversity is highlighted. 5 

Riemann puts us in direct contact with complex thought by capturing the 6 
diversity and plurality of unity, that is, with a thought that links and globalizes. 7 
 8 

Curvature and Interdisciplinary Complexity 9 
 10 

In the new disciplines its specialization is interdisciplinary, so that the 11 
disciplinary closure requires at the same time the opening to other disciplines. 12 
This can be observed in the Applications to space section where Riemann 13 
implicitly states that the basic purpose of the ideas created was to understand 14 

the space where we live. In this section there is an opening towards theoretical 15 
physics transcending the boundaries of Riemannian geometry and anticipating 16 
the ideas of the theory of relativity and quantum mechanics. For Riemann our 17 

universe had no zero curvature, that is, it is not a flat manifold. According to 18 
Riemann, the metric of space should be searched for in physical properties, that 19 
is, of the observation, as can be seen in the following paragraph. 20 

 21 
In the course of our previous inquiries, we first distinguished between the 22 
relations of extension or partition and the relations of measure, and found that 23 
with the same extensive properties, different measure-relations were conceivable; 24 
we then investigated the system of simple size-fixings by which the measure-25 
relations of space are completely determined, and of which all propositions about 26 
them are a necessary consequence; it remains to discuss the question how, in 27 
what degree, and to what extent these assumptions are borne out by experience. 28 

 29 

It follows that, for Riemann, the space metric had to be determined by 30 
observing nature. For him, the curvature determines the metric and the metric 31 
determines the curvature. In the General Theory of Relativity, from observation 32 

it follows what is known as the energy-momentum tensor, knowing this tensor 33 
determines the curvature of space and this knowledge of curvature determines 34 

the metric, as Riemann claimed. This shows that the substantial idea of the 35 
Theory of Relativity is present in the foundations of Riemann's geometry. For 36 

physical reasons, the General Theory of Relativity considers time as part of the 37 
manifold which implies studying a manifold of dimension four, that is, space-38 
time, rather than a three-dimensional manifold. Time as a new coordinate of 39 
the manifold does not behave like the others, since the movement in three-40 

dimensional space is reversible, but we cannot return in time. Semi-41 
Riemannian metrics have the distinction of distinguishing the time variable 42 
from the spatial ones. In a semi-Riemannian metric the condition of being a 43 

positive definite bilinear form is changed, by the condition of being a non-44 
degenerated bilinear form. 45 

Every organization gives rise to new qualities that did not exist in isolated 46 
parts, they are the organizational emergencies that are not deduced from the 47 
previous elements. This is evident in the following elucidation of Riemann, 48 
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where he speculates that it is feasible that our universe is finite, in the sense 1 

that it has a finite diameter. 2 
 3 
The unboundedness of space possesses in this way a greater empirical certainty 4 
than any external experience. But its infinite extent by no means follows from 5 
this; on the other hand if we assume independence of bodies from position, and 6 
therefore ascribe to space constant curvature, it must necessarily be finite 7 
provided this curvature has ever so small a positive value. 8 

 9 
It is remarkable that this universe model was suggested by Einstein many 10 

years later. Morin points out that "in the beginning was complexity" (1993, 11 
p.77) to highlight how the very foundation of reality is not simplicity but 12 
complexity. The concept of complexity sees the systematic and 13 

multidimensional phenomena. The following quote shows that Riemann sensed 14 

that Riemannian geometry should have its reservations when modeling the 15 
physics of small distances. 16 

 17 
The questions about the infinitely great are for the interpretation of nature useless 18 
questions. But this is not the case with the questions about the infinitely small. It 19 
is upon the exactness with which we follow phenomena into the infinitely small 20 
that our knowledge of their causal relations essentially depends. 21 
Now it seems that the empirical notions on which the metrical determinations of 22 
space are founded, the notion of a solid body and of a ray of light, cease to be 23 
valid for the infinitely small. We are therefore quite at liberty to suppose that the 24 
metric relations of space in the infinitely small do not conform to the hypotheses 25 
of geometry; and we ought in fact to suppose it, if we can thereby obtain a 26 
simpler explanation of phenomena. 27 
The question of the validity of the hypotheses of geometry in the infinitely small 28 
is bound up with the question of the ground of the metric relations of space. In 29 
this last question, which we may still regard as belonging to the doctrine of space, 30 
is found the application of the remark made above; that in a discrete 31 
manifoldness, the ground of its metric relations is given in the notion of it, while 32 
in a continuous manifoldness, this ground must come from outside. Either 33 
therefore the reality which underlies space must form a discrete manifoldness, or 34 
we must seek the gound of its metric relations outside it, in binding forces which 35 
act upon it. 36 

 37 
As evidenced in the cited paragraphs, Riemann envisioned that in the 38 

domain of the immeasurably small it was forced to consider discrete quantities. 39 
This refers us to the nodal idea of quantum mechanics where electromagnetic 40 

radiation is absorbed and emitted by matter in the form of quanta, that is, a 41 
discrete entity. 42 

 43 
 44 

Final Considerations 45 
 46 

The present work constitutes a reflection on our own pedagogical practices 47 

as teacher trainers, has motivated us and oriented to the attempt to carry out an 48 
interdisciplinary work with the objective not only of transmitting the specific 49 
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disciplinary content that we have developed here, but also, and in a way 1 

intertwined, to put into play available to students the epistemological 2 
foundations that validate that content. 3 

In this way we find ourselves in a goal that exceeds fragmentation, where 4 

we first had to establish certain ideological agreements about our conception of 5 
the world and the values committed to it, that is what Garcia calls “the 6 
epistemic framework of the interdisciplinary research” (2006, p.35). 7 

Due to the timeliness of the objective, the interdisciplinary work was made 8 
up of the areas of Philosophy, Geometry and Education, and we soon noticed 9 

the relevance of this integration since the concept of Riemman's curvature 10 
tensor is (as we argued) a complex system whose main thread-elements 11 
correspond to those disciplines, and being a notion of a high level of 12 
abstraction, their understanding requires an additional effort to contextualize it 13 
significantly. 14 

Following the educational guidelines of Morin, who in his text on 15 
education The well-placed head proposes us the challenge of teaching to state 16 
and solve problems based on organizational principles of knowledge - such as 17 

self-organization, hologram, recursive and dialogic -, and not as an 18 
accumulation of data or information, we set out to incorporate these principles 19 
by articulating them with the subject of study and opening the thought to the 20 

context showing that it is constitutive of each phenomenon, which cannot be 21 
conceived in isolation in a pure abstraction. 22 

Our task was guided by the premise that “the development of the ability to 23 

contextualize and totalize knowledge becomes an imperative of education” 24 
(Morin, 1999, p.27), and this is complex thought, which implies unite the 25 

scientific culture with the humanities. 26 
Finally, the great challenge that Complexity gives us to trainers of trainers, 27 

professors of future professors, is the search for strategies that guide the 28 
dialogue between the knowledge that appears scattered; there is no list of rules 29 

or strategies set in advance to follow and according to Morin, everyone must 30 
find and create in their own field those paths; The present work is our proposal, 31 
a possible way. 32 
 33 
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