
2021-4202-AJE – 19 APR 2021

1

Didactic Connection between Spreadsheet and Teaching 1

Programming 2

 3

When we talk about problem-solving skills, then, generally, programming 4

comes to our minds as an activity that can develop algorithmic thinking and 5

abstraction. Regarding the spreadsheet, the software application area could 6

be our first, and mathematics could be our second thought. When 7

spreadsheets and programming are mentioned together, programming of 8

macros is in focus, which is in fact programming. In this paper, we want to 9

focus on how these two areas impact each other, and we want to emphasize 10

that the spreadsheet is an efficient tool to develop algorithmic thinking. 11

Moreover, there is more “crosstalk” between these two tools. This paper 12

will show through examples that there is a two-way connection between 13

spreadsheet and programming; that is why it can be useful to build the 14

concepts of these two topics mutually on each other. 15

 16

Keywords: spreadsheet, programming, problem solving, algorithmic 17

thinking, teaching methodologies 18

 19

 20

Introduction 21

 22

Usually, spreadsheet teaching is not classified as a problem-solving tool. 23

For example, according to the Curriculum Framework of the National Core 24

Curriculum (NAT) 2012, the topic “Problem-solving with IT tools” deals with 25

only programming and algorithms (NAT, 2012). Spreadsheets are part of the 26

topic “Using application systems”, and the goal of spreadsheets is retrieving 27

information. 28

The new Curriculum Framework 2020 (NAT, 2020) adopts a different and 29

more suitable approach according to which spreadsheets are a new topic in the 30

field of “Developing problem-solving skills”. With this change of approach, 31

teaching methods developed earlier by the Faculty of Informatics of Eötvös 32

Loránd University, are followed (Zsakó, 2015a; Zsakó, 2015b). In our work, 33

we will show that the new Curriculum Framework has the right approach. 34

In our paper we will go through the key concepts of programming and we 35

will demonstrate how these concepts can be taught by spreadsheet. We will 36

focus, in particular, on how to present and teach programming theorems in 37

spreadsheets. For this reason, we will define the concept of programming 38

theorems after the literature review. 39

 40

 41

Literature Review 42

 43

The spreadsheet teaching field includes basic programming concepts (Tort, 44

2010), like data types, operations, variables, and functions. Tort also suggests 45

adding procedures, scopes of variables, data tables, sorting, etc. because a 46

spreadsheet can be considered as a program and building a spreadsheet is partly 47

2021-4202-AJE – 19 APR 2021

2

programming. If we use a model of a spreadsheet explicitly, then we can help 1

learners in the process of abstraction, which is a very important part of 2

programming. 3

According to Szalayné (2016), a table spreadsheet can be considered as a 4

program with data and pre-defined algorithms. Although students can see a 5

table/spreadsheet on their screens, they need to understand the “program”, 6

which consists of their solutions implemented by functions. 7

Csernoch and Bíró claim that spreadsheet software can be used as a 8

problem-solving tool. Their method, called Sprego, “is a deep approach 9

metacognitive problem-solving environment, which has borrowed and 10

combined proven methods from high level programming languages. The three 11

milestones of Sprego are 12

 13

 using as few and as simple general-purpose functions as possible, 14

 building multilevel formulas, 15

 building array formulas.” (Csernoch & Bíró, 2015 p. 27) 16

 17

This method can develop students’ computational thinking and algorithmic 18

skills. Teaching spreadsheet has an important role in ICT education because 19

students learn several aspects of computer science and develop skills connected 20

to this field, for example, handling data structures, database management, 21

programming principles, logical and computational thinking, and algorithmic 22

skills. Sprego also promotes schema construction through authentic problem-23

solving and algorithm construction (Csapó, Csernoch & Abari, 2020). 24

Many fundamental programming concepts have their equivalents in 25

spreadsheet. Kankuzi et al. (2017) propose that before an introductory 26

programming course, students should learn spreadsheet programming, where 27

the fundaments of programming are indirectly introduced to them through 28

problem solving by using spreadsheet. 29

According to Warren (2004), if we use spreadsheet before teaching a 30

programming language, then it takes less time to get to more complicated 31

algorithms. 32

 33

 34

Programming Theorems/Patterns of Algorithms 35

 36

Programming tasks can be categorized into groups according to their 37

types, which is useful because for each group we can create an algorithm 38

rule/schema that solves all the tasks in that specific group. These task types are 39

called programming theorems because their solutions are justifiably the correct 40

solutions. 41

Essentially, programming theorems / patterns of algorithms are abstract 42

specifications and algorithms that we want to use as schemas in order to solve a 43

programming task. The aim of specification is to give the task in a formalized 44

way (it can be an “interface” between the programmer and the customer). 45

Specification has four components: input, output, precondition and 46

2021-4202-AJE – 19 APR 2021

3

postcondition. Input is the input data of the task; precondition gives 1

information on the input (i.e., which statements should be fulfilled by the input 2

data); output is the result of the task; and postcondition is statements used to 3

get the result (how we reach the result-state from the first input-state) 4

(Harangozó et al., 1998). 5

We can recognize the suitable programming theorem from the task 6

description. Once we have done this, we can use the specific data of the general 7

task type, and in the general algorithm substitute them with the task-specific 8

data. Applying this method will lead us to the correct solution. 9

In these tasks we usually have to assign a certain result to one (or more) 10

data collection(s), which, for simplicity’s sake, we will handle as some sort of 11

sequences. In simple cases sequences can be illustrated as arrays 12

(Szlávi et al., 2019). 13

Programming theorems / patterns of algorithms are proven templates as a 14

basis on which we can build our solutions later. (This way development will be 15

quicker and safer.) We note here that our term “Patterns of algorithms” differs 16

from the usual definition (LMU). According to our wording, pattern refers to a 17

task-schema and not to a problem-solving strategy. 18

We can categorize programming theorems in three groups. We would like 19

to summarize the essence of these algorithms (Szlávi et al., 2019). 20

 21

Basic Programming Theorems 22

 23

 Sequential computing (sequence calculations): We have an input 24

sequence, and we have to calculate a single value from that. We will 25

use the same operation on every element of the sequence. 26

 Counting: We have an input sequence, and we have to count how 27

many of them have a given attribute. 28

 Decision: Let us determine if there is an item with a given attribute 29

among the elements of an input sequence. 30

 Selection (linear selection): We have an input sequence, and we have 31

to select an element which has a given attribute, assuming that at least 32

one such element exists in the input sequence. 33

 Search (linear search): We have an input sequence, and we have to 34

search for an element that has a given attribute, and we do not know 35

whether such an element exists in the sequence. (Search is the 36

construction of decision and selection.) Dijkstra calls this algorithm 37

“Linear search theorem” (1976., pp. 105). 38

 Maximum selection: We have to pick/find the greatest (or smallest) 39

value from the input sequence. 40

 41

Complex Programming Theorems 42

 43

 Copy (calculation with a function): We have an input sequence with 44

N elements, and we have to assign N other elements to these. The type 45

of assigned values can differ from the type of original values, but the 46

2021-4202-AJE – 19 APR 2021

4

count (N) remains the same, as well as the order. In other words, we 1

will use the same operation on each of the elements of the sequence, but 2

the output will be a sequence. 3

 Multiple item selection: We have to list all elements from the input 4

sequence which have a common attribute A. 5

 Partitioning: We have to list all elements from an input sequence 6

which have a common attribute A, and then also list those ones not 7

having attribute A. So, we “assign” all the elements of the input to one 8

of the output sequences. (Of course, there can be more than two 9

attributes.) 10

 Intersection: We have two sets as input (with elements of the same 11

type), and we have to list all elements that are part of both sets. (This is 12

the construction of multiple item selection and decision.) 13

 Union: We have two sets as input (with elements of the same type), and 14

we have to list all elements that are included at least in one of the sets. 15

(This is the construction of copy, multiple item selection and decision.) 16

 17

Constructed Programming Theorems 18

 19

 Conditional copy: We will calculate the same operation on each 20

element of the sequence which have the given attribute and another 21

operation on each element which does not have the given attribute. 22

(This is the construction of multiple item selection and copy.) 23

 Conditional summation: Sum of elements with a certain attribute. 24

(This is the construction of multiple item selection and summation.) 25

 Conditional maximum search: find the maximum of the elements that 26

have a certain attribute. (This is the construction of decision and 27

maximum selection.) 28

 There are at least K elements with the given attribute (This is the 29

construction of search and counting.) 30

 31

 32

Basic Programming Concepts in Spreadsheet 33

 34

Variable and Data Type 35

 36

Cells, one of the most important basic concepts of spreadsheets, are 37

comparable with variables, one of the most important basic concepts of 38

programming. Like variables, cells are named containers (they have a default 39

name, but can also be renamed) in which data can be written and from which 40

the same data can be retrieved. If the user enters the data, it corresponds to 41

reading a value from the user into a variable. If a formula enters the data, it 42

corresponds to storing the result of a calculation in a variable. However, unlike 43

variables, cell content is constantly visible, so no instruction for displaying 44

output is required. It is important to note that in spreadsheet it is not the cell 45

that has a type, but the value stored in it, as even values from different types 46

2021-4202-AJE – 19 APR 2021

5

can be written in the same cell. However, data validation can be set to a cell to 1

limit the type of data that can be entered in it, which is like declaring the type 2

of a variable. 3

An example of the specialty of spreadsheet’s variable concept is that we 4

can assign a name to separated ranges as well and we can use it as a parameter 5

(see Figure 1); we cannot do this in programming. 6

 7

Figure 1. Separated Ranges as a Single Variable and as a Parameter in 8

Spreadsheet 9

 10

 11

 12

The first column of Table 1 contains the “data types” of spreadsheet, while 13

the second one shows the construction of these types in programming from 14

primitive data types. “Data types” are enclosed in quotation marks in the first 15

case because the spreadsheet does not implement them as true data types. We 16

add that professional programming languages often include the appropriate 17

composite data types so that the programmer does not have to construct them. 18

 19

Table 1. “Data Types” in Spreadsheet and Their Construction in Programming 20

“Data Type” in Spreadsheet Construction in Programming

Number integer, real

Currency integer, real + output formatting

Accounting integer, real + output formatting

Date
integer, real + output formatting or record

type (struct)

Time
integer, real + output formatting or record

type (struct)

Percentage integer, real + output formatting

Fraction record type (struct) + output formatting

Scientific integer, real + output formatting

Text string

Logical Boolean

 21

Behind the scenes, in fact, spreadsheet deals with 4 data types: logical, 22

number, text and error (error data type is not the subject of our paper). All the 23

“data types” of spreadsheet are real numbers except text and logical. This 24

2021-4202-AJE – 19 APR 2021

6

means that all numeric “data types” of spreadsheet are representations; more 1

precisely, they are output formatting (see Table 2). 2

 3

Table 2. Representations of Spreadsheet’s Number Type 4

“Data Type” Displayed in Cell Stored Number

Number 123456,00 123456

Currency $123 456,00 123456

Accounting $ 123 456,00 123456

Date 01.03.2238 123456

Time 12:00:00 123456,5

Date and Time 01.03.2238 12:00 PM 123456,5

Percentage 75,00% 0,75

Fraction 2/3 0,66666667

Scientific 1,23E+05 123456

 5

There is a great similarity between the spreadsheet’s cell format and 6

programming languages’ formatted output (i.e., decimal places, format 7

numbers in thousands, etc.). 8

 9

Function and Data Type 10

 11

Understanding spreadsheets requires a function-like way of thinking 12

(introduction to functional programming). Using parametrizing functions and 13

nested functions in spreadsheet can support the understanding of parametrizing 14

and parameter passing in conventional programming languages. 15

In order to form the correct type-concept, spreadsheet has an important 16

role because there are specific functions that can be interpreted only on specific 17

types. For example, SUM and AVERAGE functions can be interpreted only on 18

numeric data, and each arguments of the logical functions, such as AND or 19

OR, must be logical values. Students can understand that the type is not only a 20

set but the applicable operations as well. There is a great difference between 21

digits as string and numbers (difference between “23” and 23). Constant data 22

show this difference as well. 23

 24

Array and Matrix 25

 26

Although spreadsheet has a special variable concept (Szlávi, 27

Törley & Zsakó, 2018), a deeper understanding of functions can support 28

students’ understanding of the difference between scalar and sequence and 29

what it means to travers a sequence. In spreadsheet, a sequence can be stored in 30

an array or in a matrix. The best tool for comprehending the concept of 31

indexing can be the INDEX function that executes the indexing operation on a 32

selected range. 33

A single cell is not suitable for storing complex types, such as a record, but 34

using several adjacent cells can be a solution. 35

2021-4202-AJE – 19 APR 2021

7

Record 1

 2

If we view a table in spreadsheet as a table in a database, then its rows can 3

be considered records, the fields of which are defined by the columns. That is, 4

the table can be considered an array of records, or even an array of objects, 5

which can lead to the concept of object-oriented programming. 6

 7

Conditional and Loop 8

 9

The IF function can help to understand the conditional control structure as 10

well as the logical (Boolean) type and operations (AND, OR functions). 11

Loop, as a language element, is not part of spreadsheets, but its concept 12

can be discovered on different levels. For example, if we perform the same 13

operation on all elements of a column in an adjacent column using a copied 14

formula (for example, calculating prices increased by some percentage), we are 15

processing the elements of the column just as a loop traverses an array. In 16

addition, elements of columns (or ranges) can be traversed using array 17

formulas. 18

Deeper comprehension of lookup functions can lead to the concept of 19

conditional loops because if we look for something, then we can pose a 20

question whether we need to examine all of the elements of the sequence in 21

order to give a definite answer. 22

 23

 24

Programming Theorems in Spreadsheet 25

 26

Programming theorems can be demonstrated in three different levels in 27

spreadsheet: 28

 29

1. with the appropriate built-in functions, students can become familiar 30

with the concept of programming theorems; 31

2. using spreadsheet as an algorithm visualization tool, students can 32

understand how programming theorems work; 33

3. most programming theorems can be implemented using array formulas 34

based on the postconditions of their specifications. 35

In the following, we would like to present these three levels. 36

 37

Understanding Programming Theorems Using Built-in Functions 38

 39

Problems to solve with spreadsheet and with programming are often 40

similar, so it is no surprise that the spreadsheet has the functions that 41

implement most of the programming theorems. Table 3 summarizes the 42

connections between spreadsheets and patterns of algorithms. 43

 44

 45

2021-4202-AJE – 19 APR 2021

8

Table 3. Connection between Spreadsheet and Patterns of Algorithms 1

Patterns of Algorithms Built-in Functions in Spreadsheet

sequential computing

(conditional as well)

SUM, SUMIF, SUMIFS, AVERAGE,

AVERAGEIF, AVERAGEIFS, DSUM,

DAVERAGE, CONCAT

counting
COUNTIF, COUNTIFS, DCOUNT,

DCOUNTA

decision IF(COUNTIF), IF(COUNTIFS)

selection
VLOOKUP, HLOOKUP, XLOOKUP,

INDEX(MATCH), DGET

search decision + selection

maximum selection MAX, MIN

copy (map)

there is not any special function, it can be

implemented by copying the

reference/formula (Figure 6.) or by

creating an array formula

multiple item selection filter and advanced filter

conditional maximum MAXIFS, MINIFS, DMAX

K
th
 maximum LARGE, SMALL

Sort
SORT (sorting criteria exists but we do

not know anything about the method)

 2

It should be noted that the selection programming theorem can only be 3

implemented in spreadsheet with crucial limitations. In the case of this 4

programming theorem, the attribute to be examined can be any logical 5

condition. On the contrary, lookup functions (except DGET) can only find an 6

item equal to a specified value in an arbitrary (unordered) range. Although the 7

DGET function can search using any logical condition, it only provides a 8

solution if exactly one element meets the condition. 9

We would like to highlight decision, selection and search algorithms, 10

showing how they can be implemented in spreadsheet. It can be presented that 11

VLOOKUP and MATCH functions implement only the selection algorithm 12

because they do not give any meaningful answer if the element which we 13

looked for does not exist. Decision algorithm should be rephrased: Does the 14

specific element or the element with the specific attribute exist? This way of 15

thinking is connected to the postcondition of decision algorithm. As we deduct 16

linear search algorithm from the construction of decision and selection 17

algorithms, we will use the same construction in spreadsheet. For example: 18

 19

IF(COUNTIF()>0;VLOOKUP();“None”) 20

 21

Algorithm Visualization of Programming Theorems 22

 23

As mentioned above, spreadsheet has the functions with which most of the 24

programming theorems can be implemented. However, these functions hide the 25

actual calculations from the user. Spreadsheet can also support understanding 26

2021-4202-AJE – 19 APR 2021

9

an algorithm step by step and in this way it can support understanding how an 1

algorithm, such as a programming theorem, works. In other words, spreadsheet 2

can visualize the input, the output and the state of the output variable at each 3

step of the algorithm. This means that spreadsheet can show us the whole state 4

space (i.e., input, output, local variables). As examples, we would like to 5

present a possible visualization of the following programming theorems: 6

counting, maximum selection, decision, conditional maximum search, and 7

copy. 8

 The counting programming theorem stores the current number of 9

elements having a given attribute A in an auxiliary variable. It first sets the 10

auxiliary variable to 0, then uses a For loop to traverse the sequence, and if the 11

current element has attribute A, it increments the value of the auxiliary variable 12

by 1. 13

In our example (see Figure 2), the sequence has 10 elements in an array, 14

and the attribute A is whether the element is greater than 5. Our visualization 15

shows the current value of the auxiliary variable in column Count using the 16

formula shown in the figure. 17

 18

Figure 2. Visualization of Counting Programming Theorem 19

 20

 21

Figure 3 shows how to visualize the maximum selection programming 22

theorem. This algorithm uses a For loop and checks whether the current value 23

of the sequence (in our example: the array) is higher than the local maximum. 24

If yes, then we change the value of variable MaxVal to the current value of the 25

array. In the first step, the local maximum is the first element of the array and 26

that is why we start the loop counter from 2. 27

 28

2021-4202-AJE – 19 APR 2021

10

Figure 3. Visualization of Maximum Selection Programming Theorem 1

 2

 3

The decision algorithm checks the elements of the array until attribute A 4

becomes true for the current element. In our example attribute A is that the 5

value is even. Since we do not need to always check all the elements of the 6

array, there is a while loop in the algorithm. In the while loop, we check 7

whether the current element has attribute A and then we increment variable i, 8

which means we go to the next element. If there are elements to be checked 9

and the current element did not have attribute A, we go into the loop, otherwise 10

we exit from the loop. 11

The visualization in spreadsheet in Figure 4 shows well that as soon as the 12

current element has Attribute A, the variable Exists changes from false to true 13

and after that it will not change back to false (if there is not any element with 14

attribute A then Exists will remain false). According to the algorithm, however, 15

if Exists is true then there is no need to check further. To emphasize this, we 16

can easily create a conditional formatting that darkens (or even hides) the cells 17

belonging to the skipped steps. In our example, conditional formatting was 18

applied to range D3:D12 with rule “=D2”. 19

 20

Figure 4. Visualization of Decision Programming Theorem 21

 22

 23

The conditional maximum search programming theorem searches for the 24

largest item in the series that satisfies the specified condition. Of course, it is 25

not certain that there is an element in the series that satisfies this condition, 26

which is why the output will also contain a logical value (variable Exists) that 27

will be true if and only if the condition was true for at least one element. 28

2021-4202-AJE – 19 APR 2021

11

This programming theorem is based on the maximum selection 1

programming theorem described above. Now, however, it is not certain that the 2

first element can be considered the maximum so far; instead, minus infinity 3

will be the initial value of the conditional maximum (variable CMax). 4

Furthermore, the current maximum value is substituted with a larger element 5

only if that larger element satisfies the condition. At the end, the output logical 6

value is set to true if and only if the value of the conditional maximum differs 7

from minus infinity (see Figure 5). 8

 9

Figure 5. Visualization of Conditional Maximum Search Programming Theorem 10

 11

 12

There is not any function that can directly implement the copy (map) 13

algorithm. If we execute the same operation on the elements of the input 14

sequence, the output will be a sequence. The “copying formula” (actually 15

copying reference) feature of the spreadsheet shows that during the copy 16

algorithm we “copy” the formula so we “copy” the operation as well. This way 17

we can visualize the copy programming theorem (see Figure 6). 18

 19

 20

2021-4202-AJE – 19 APR 2021

12

Figure 6. Visualization of Copy Programming Theorem 1

 2

 3

Implementation of Programming Theorems Based on Their Postconditions 4

 5

In the case of advanced spreadsheets, array formulas can map all the 6

patterns of algorithms (programming theorems), and there can be a connection 7

among array formulas and postconditions of programming theorems. 8

To understand the postcondition of some programming theorems, 9

spreadsheet can be a good support. We need to use array formulas. In many 10

cases, the implemented solution by spreadsheet is obvious: for example, 11

summation, counting, conditional summation, copy, and conditional copy. For 12

instance, the postcondition of counting looks like this: 13

 14

 ∑

 15

Where A is the attribute function, N is the size of the sequence (in this 16

case: array). This means if the given array-element has attribute A then we add 17

1 to Count. In spreadsheet, this formula can be implemented literally with the 18

array formula. The Greek letter great sigma means that we add more elements 19

to each other and the condition below that decides at which elements we should 20

add 1 to Count. The operation of great sigma will implement the SUM 21

function, and the operation of the conditional will implement the IF function. 22

That is why the following spreadsheet formula will implement the 23

postcondition of count algorithm correctly: 24

 25

{=SUM(IF(A(array);1;0} 26

 27

The SUM function will sum an array with elements 0 and 1 (the output of 28

IF function) and those elements will be 1 that has A attribute (in other words: 29

where the value of A function is true). 30

In our previous work (Szlávi, Törley & Zsakó, 2019), we have proven that 31

all the programming theorems can be deduced to the sequential computing 32

theorem. We have claimed that the decision algorithm deduced to sequential 33

computing gives the correct solution based upon a Boolean array where the i
th

 34

2021-4202-AJE – 19 APR 2021

13

element of the array is true if the i
th

 element of the input array has A attribute. 1

Decision algorithms have two variants: the first one checks if there is an 2

element in the input array that has attribute A, while the second one checks if 3

every element in the input array has attribute A. It can be proven easily that the 4

following array formulas implement the decision algorithm: 5

 6

 existing element with A attribute: {=OR(A(array_element))} 7

 every element with A attribute: {=AND(A(array_element))} 8

 9

We note here that we could implement this theorem with “normal” (i.e. not 10

array) formulas (for example COUNTIF, COUNTIFS functions) but this way 11

of thinking would not lead us to an efficient algorithm and we could not 12

connect it to the postcondition. 13

Array formulas could help to understand the combination/construction of 14

programming theorems. A good example of this is the conditional maximum 15

search algorithm that is the construction of decision and maximum search. We 16

will combine the postcondition of these algorithms, which means if an element 17

exists that has attribute A in the array then we calculate the maximum of these 18

elements: 19

 20

{=IF(OR(A(array_element)); 21

MAX(IF(A(array_element);array_element; “”));“NONE”)} 22

 23

The connection between algorithm patterns’ postconditions and array 24

formulas can be seen in Table 4. 25

2021-4202-AJE – 19 APR 2021

14

Table 4. The Connection of Algorithm Patterns’ Postcondition and Array 1

Formulas 2

Pattern of Algorithm and Postcondition Array Formula Implementation

Summation (sequential computing)

∑

{=SUM(array)}

Counting

∑

 {=SUM(IF(A(array);1;0))}

Decision (exists)

exist := $iÎ[1..N]: A(Arrayi)
{=OR(A(array)}

Decision (all)

all := "iÎ[1..N]: A(Arrayi)
{=AND(A(array))}

Conditional sum

∑

 {=SUM(IF(A(array); array;0))}

Conditional maximum

exist := $iÎ[1..N]: A(Arrayi) and exist à MaxVal

=

{=IF(OR(A(array));

MAX(IF(A(array); array;

“”));“NONE”)}

Copy

"iÎ[1..N]: F(Arrayi)
{=F(array)}

Conditional copy

"iÎ[1..N]: A(Arrayi) is true: F(Arrayi) else Arrayi
{=IF(A(array);F(array); array)}

Multiple item selection

 ∑

and

 []

{=IF(A(array); array; “”}

 3

We can see a connection between the formulas of postconditions and the 4

formulas of spreadsheet. This can be seen on Table 5. 5

 6

Table 5. The Connection between Formulas in Postcondition and Formulas in 7

Spreadsheet 8

2021-4202-AJE – 19 APR 2021

15

Formula in Postcondition Formula in Spreadsheet

∑

 SUM(array)

 MAX(array)

F(Arrayi) F(array)

A(Arrayi) IF(A(array);array; “”)

$iÎ[1..N]: A(Arrayi) OR(A(array)

"iÎ[1..N]: A(Arrayi) AND(A(array)

 1

Table 5 shows that we have “building blocks” and by combining these 2

“blocks” a more complex postcondition can be built. This combination shows 3

how programming theorems can be constructed. 4

We should take a note on maximum selection and multiple item selection 5

programming theorems. Maximum selection cannot be implemented with an 6

array formula because we cannot compare and refer to the elements of the 7

array in the memory (like we showed in Figure 3). CMax can be implemented 8

with an array formula because IF function can select those array elements for 9

MAX function which have A attribute. 10

The result of multiple item selection is an array (which is Y in the 11

postcondition). Count will be the number of those elements which have A 12

attribute (like at count programming theorem) and it will be the number of 13

elements of the output array in Figure 8. In spreadsheet, we do not need to 14

output the number of the output array. 15

The implementation of some programming theorems with scalar output 16

using array formulas, based on the postconditions of their specifications can be 17

seen in Figure 7. 18

 19

Figure 7. Implementation of Summation, Counting, Decision (in two variants), 20

Conditional Summation and Conditional Maximum Search Programming 21

theorems 22

 23

 24

Similarly, Figure 8 shows the implementation of some programming 25

theorems with array output. Due to the particularity of spreadsheet, the 26

continuance of array cannot be kept at multiple item selection algorithm. 27

 28

2021-4202-AJE – 19 APR 2021

16

Figure 8. Implementation of Copy, Conditional Copy, and Multiple Item 1

Selection Programming Theorems 2

 3

 4

 5

Summary of the Three Levels through an Example 6

 7

As stated earlier, programming theorems can be demonstrated at three 8

different levels in spreadsheet. The first one is about the comprehension and 9

usage of programming theorems using the proper built-in functions. The 10

second one visualizes the algorithms of the programming theorems using only 11

basic operators and functions. In the third level we can implement most of the 12

programming theorems using array formulas, according to their specifications, 13

or more precisely, postconditions. Consequently, all levels can help learning 14

programming theorems from a different aspect. 15

For comparison, Figure 9 shows the appearance of the counting 16

programming theorem at the mentioned three levels. 17

 18

2021-4202-AJE – 19 APR 2021

17

Figure 9. Appearance of the Counting Programming Theorem at the Three 1

Levels (The Solution Has a Thick Outside Border in Each Level). 2

 3

 4

 5

Conclusions 6

 7

Our paper showed why the spreadsheet (except table formatting and 8

graphs) is part of computational thinking (together with algorithm and 9

programming) rather than digital literacy. Spreadsheets and algorithms both 10

involve problem-solving (skills). 11

We can find a great similarity between the topics (data, patterns and 12

algorithms) of the two areas and that is why they can support each other when 13

teaching students to learn and understand key concepts. 14

In the classical order of IT education, students learn spreadsheet before 15

programming. That is why programming knowledge could be built upon 16

spreadsheet (NAT, 2012; NAT, 2020; Szalayné, 2016). In Hungary, array 17

formulas are taught only in talent development in secondary schools (Molnár, 18

2014), that is why they will not be the part of the regular teaching order); 19

nevertheless our article intended to show that they could be essential tools in 20

programming education. 21

 22

 23

 24

2021-4202-AJE – 19 APR 2021

18

References 1

 2

Csapó G, Csernoch M, Abari K (2020) Sprego: case study on the effectiveness of 3

teaching spreadsheet management with schema construction. Educ Inf Technol 4

25, 1585–1605. https://doi.org/10.1007/s10639-019-10024-2 5

Csernoch M, Biró P (2015) Sprego programming. Sprego Programming, Spreadsheets 6

in Education (eJSiE): Vol. 8: Iss. 1, Article 4. https://sie.scholasticahq.com/artic 7

le/4638-sprego-programming (Retrieved: 29.01.2021.) 8

Dijkstra E W (1976) A discipline of programming. Prentice-Hall, Inc., Englewood 9

Cliffs, New Jersey 10

Harangozó É, Szlávi P, Zsakó L (1996) Joining Programming Theorems a Practical 11

Approach to Program Building, Annales Universitatis Scientiarum Budapestinensis. 12

Sectio Computatorica, Budapest, Hungary 13

Kankuzi B, Isong B, Letlonkane L (2017) Using the Spreadsheet Paradigm to 14

Introduce Fundamental Concepts of Programming to Novices, In Proceedings of 15

SACLA’17, July 3–5, 2017, Magaliesburg, South Africa 16

Loyola Marymount University (LMU): Definition of “Algorithmic patterns” 17

https://cs.lmu.edu/~ray/notes/algpatterns/ (retrieved: 15.03.2021.) 18

Molnár K (2014) Tehetésggondozás az informatikában – Táblázatkezelés [Talent 19

development in informatics – Spreadsheet] ELTE Faculty of Informatics, http:// 20

tehetseg.inf.elte.hu/tananyagok/tablazatkez/index.html (in Hungarian) (retrieved: 21

22.01.2021.) 22

NAT (2012) National Core Curriculum Framework for informatics in Hungary 2012. 23

https://kerettanterv.oh.gov.hu/05_melleklet_5-12/5.2.21_informat_5-10.doc 24

(retrieved: 22.01.2021.) (in Hungarian) 25

NAT (2020) National Core Curriculum Framework in Hungary 2020. https://www.okta 26

tas.hu/kozneveles/kerettantervek/2020_nat (retrieved: 22.01.2021.) (in Hungarian) 27

Szalayné Tahy Zs (2016) How To Teach Programming Indirectly – Using Spreadsheet 28

Application. Acta Didactica Napocensia 9 (1), 15-22, ISSN 2065-1430 29

Szlávi P, Zsakó L, Törley G (2019). Programming Theorems Have the Same Origin. 30

Central-European Journal of New Technologies in Research, Education and 31

Practice, 1(1), 1-12. https://doi.org/10.36427/CEJNTREP.1.1.380 32

Szlávi P, Törley G, Zsakó L (2018) The most difficult notion of programming: The 33

variable, In E. Sałata, A. Buda (eds.) Education - Technology - Computer Science 34

in Building better future, Radom, Poland, Wydawnictwo Uniwersytetu 35

Technologiczno-Humanistycznego w Radomiu, 108-118 36

Tort F (2010) Teaching Spreadsheets: Curriculum Design Principles. ArXiv, abs/1009. 37

2787. https://arxiv.org/ftp/arxiv/papers/1009/1009.2787.pdf (Retrieved: 29.01. 2021) 38

Warren P (2004) Learning to program: spreadsheets, scripting and HCI, In 39

Proceedings of the Sixth Australasian Conference on Computing Education – vol. 40

30, Darlinghurst, Australia, 327–333. 41

Zsakó L (2015a) Informatika Nemzeti Alaptanterv 2020. [National Core Curriculum 42

in informatics 2020.] In P. Szlávi, L. Zsakó (eds.) INFODIDACT 2015. (Zamárdi, 43

Magyarország, 11.26.2015.-11.27.2015.) Budapest: Webdidaktika Alapítvány, 44

Paper 1. (ISBN: 978-963-12-3892-1) (in Hungarian) 45

Zsakó L (2015b) Informatikai tantervelmélet? Diszciplínák tanítása – a tanítás 46

diszciplínái 1. Tanulmányok a tudós tanár-képzés műhelyeiből [Curriculum 47

theory in informatics? Teaching of disciplines – disciplines of teaching vol. 1. 48

Essays from the workshop of scientific teacher training], ELTE Eötvös Kiadó, 49

Budapest, Hungary 92-111. (ISBN 978-963-284-611-8) (In Hungarian) 50

