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1 

Autonomous Vehicle Sensors, Control Research and 1 

Development for Application in Industrial and 2 

Commercial Vehicles 3 

 4 
This paper presents work on the conversion of a regular vehicle into an 5 
autonomous one, utilizing the latest communication technologies and 6 
architectures. The proposed design focuses on the sensory and control field, 7 
by exploring the feasibility of utilizing a deep learning model of UNET 8 
architecture with a Residual Network (ResNet) encoder to enhance the 9 
vision capability of lane detection. An investigation to reduce the cross-track 10 
error of the vehicle with an extended variation of the Pure Pursuit controller 11 
and Stanley controller was simulated. The design applied computer vision 12 
techniques to acquire lane imagery from the camera sensor and trained a 13 
deep learning model to perform semantic segmentation, which will detect 14 
and distinguish between left and right boundaries. The performance of the 15 
model is captured through the observation of a dice loss plot and feeding in 16 
unseen lane images to test the lane boundary predictions and the application 17 
of inverse perspective mapping. Simulations are conducted on the CARLA 18 
simulator to test the design standard and performance of autonomous 19 
vehicles which is intended to examine the cross-track error of the vehicle, 20 
under several environmental conditions and system restrictions which from 21 
the results indicated lower cross-track error measurements. 22 
 23 
Keywords: machine learning, deep learning, autonomous vehicle, computer 24 
vision, vehicle control  25 

 26 

 27 

Introduction 28 
 29 

The race for developing a fully autonomous vehicle has seen several 30 

companies competing, to be the first to deliver into the market, however, the 31 

industry is a long way from reaching a stage where no human interaction will 32 

be involved in an unpredictable road environment. Currently, technology is 33 

advancing to a state where the cost associated with implementation increases 34 

beyond what any average consumer will be willing to pay. Since most 35 

autonomous technologies are already incorporated with the vehicle, and to be 36 

sold as a whole unit which increases the cost of production, it provides an 37 

opportunity to create the technology that transforms any regular vehicle with a 38 

set of preliminary requirements into a self-driving vehicle, achieving the same 39 

results without comprising safety. Autonomous vehicles are classified into 40 

levels, ranging from no automation (Level 0) to full automation (Level 5) 41 

(SAE, 2018). Each stage classifies the benchmarks that the vehicle should be 42 

able to achieve.  43 

Over 90% of accidents on the road are caused by some type of human 44 

error (Moujahid, et al., 2018). This statistic alone can be justification for 45 

allowing artificial intelligence to assist or completely take control of dangerous 46 

scenarios. Although the technology is greatly advancing, there exist other 47 
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challenges facing the field which include the public perception, safety, and 1 

legal issues that contribute a significant factor towards the success of the 2 

technology. The survey results from (Schoettle & Sivak, 2014) and 3 

(Kyriakidis, et al., 2015), clearly highlight the potential of autonomous vehicles 4 

regarding their attractiveness to users however the standards of safety measures 5 

need to be more stringent to convince the skeptics. A potential remedy would 6 

be to introduce conversion technology to transform a regular vehicle into an 7 

autonomous vehicle whilst ensuring safety is not compromised. 8 

 9 

 10 

Literature Review 11 
 12 

Computer Vision 13 

 14 

Vision in autonomous vehicles is one of the primary channels to extract 15 

critical information from the real world and utilizing image processing, its 16 

capabilities allow it to produce more appropriate actions when navigating in an 17 

unpredictable road environment. 18 

By incorporating computer vision, provides the ability to track criteria 19 

such as road lanes, recognize road signs, object detection, and classification 20 

whilst navigating the world in real-time (Campbell, et al., 2018). This function 21 

allows scanning of the environment almost instantaneously and plays a vital 22 

part in the role of the vehicle to make the appropriate action. The concepts 23 

below provide mathematical formulae and principles that are necessary for how 24 

to interpret and extract information in a 3-Dimensional space. 25 

 26 

Pinhole Camera Model 27 

The pinhole camera model provides the mathematical relationship for how 28 

a point in 3-dimension space can be represented onto a 2-dimensional plane or 29 

the image plane. 30 

 31 

Figure 1. Pinhole Camera Model 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 
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The above figure showcases how a 3-dimensional point in space 𝑃, having 1 

coordinates 𝑋𝑐, 𝑌𝑐, 𝑍𝑐  respectively in the camera reference frame that can be 2 

represented as a 2-dimensional point p having coordinates 𝑥, 𝑦 in the image 3 

plane. 4 

 5 

Figure 2. Pinhole Camera Model 2D representation 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

Applying similar triangles  17 

 
𝑥

𝑓
=

𝑋𝑐

𝑍𝑐
 

 

which yields   

 𝑥 = 𝑓
𝑋𝑐

𝑍𝑐
 

 

and similarly,   

 𝑦 = 𝑓
𝑋𝑐

𝑍𝑐
 

 

 18 

To acquire the pixel coordinates 𝑢 and 𝑣 that is located at 𝑥 and 𝑦, it is 19 

needed to first denote the principal point as 𝑢0 and 𝑣0 which is the centre of the 20 

image plane. Therefore, given an image with height 𝐻 and width 𝑊, the 21 

principal point can be described as 𝑢0 =
𝑊

2
 and 𝑣0 =

𝐻

2
. The image plane 22 

consists of sensor pixels with its own width and height properties, hence if the 23 

pixel width is denoted as 𝑘𝑢 and pixel height as 𝑘𝑣 , the projection of the point 24 

𝑃 in 3-dimensional space carried out by the camera will correspond to pixel 25 

coordinates of: 26 

 27 

 
𝑢 = 𝑢0 +

1

𝑘𝑢
𝑥 = 𝑢0 +

𝑓

𝑘𝑢

𝑋𝑐

𝑍𝑐
 

 

 
𝑣 = 𝑣0 +

1

𝑘𝑣
𝑥 = 𝑣0 +

𝑓

𝑘𝑣

𝑌𝑐

𝑍𝑐
 

 

Denoting 
𝑓

𝑘𝑢
 and 

𝑓

𝑘𝑣
 as 𝛼𝑢 and 𝛼𝑣 respectively yields the matrix neglecting the 28 

skew parameter 29 
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(

𝑢
𝑣
1

)

=
1

𝑍𝐶
(

𝛼𝑢 0 𝑢0

0 𝛼𝑣 𝑣0

0 0 1
) (

𝑋𝑐

𝑌𝑐

𝑍𝑐

) 

 

 
(

𝑢
𝑣
1

)

=
1

𝑍𝐶
(

𝛼𝑢 0 𝑢0

0 𝛼𝑣 𝑣0

0 0 1
) (

𝑋𝑐

𝑌𝑐

𝑍𝑐

) 

 

 1 

Homogenous coordinates provide a means to represent an N-dimensional 2 

coordinates with N+1 numbers. This is achieved by simply adding an 3 

additional coordinate of 1. Considering the above equation is homogeneous, it 4 

can simply be represented as: 5 

 6 

 
𝜆 (

𝑢
𝑣
1

)

= (
𝛼𝑢 0 𝑢0

0 𝛼𝑣 𝑣0

0 0 1
) (

𝑋𝑐

𝑌𝑐

𝑍𝑐

) 

 

simplified to   

 

𝜆 (
𝑢
𝑣
1

) = 𝐾 (
𝑋𝑐

𝑌𝑐

𝑍𝑐

) (1) 

where 𝜆 represents a non-zero scalar value. The matrix denoted by K is known 7 

as the Intrinsic matrix of the camera describes the properties of the camera and 8 

what happens inside (Sturm, n.d.). 9 

Equation (1) showcases that regardless of whether coordinates P is 10 

multiplied by a non-zero value, it will represent the same pixel value on the 11 

image plane.  12 

 13 

Camera Projection 14 

In practical applications, the point of interest is usually in another 15 

coordinate reference frame such as the world reference frame. Therefore, it is 16 

necessary to transform the world coordinates into camera coordinates (Theers 17 

& Singh, 2020). 18 

Euclidean transformations from world coordinate system to camera 19 

coordinate system can be expressed by rotation with a 3x3 rotation matrix 20 

denoted by R and translation denoted by the vector t: 21 

 22 

 

(
𝑋𝑐

𝑌𝑐

𝑍𝑐

) = 𝑅 ((
𝑋𝑤

𝑌𝑤

𝑍𝑤

) − 𝑡) = 𝑅 (
𝑋𝑤

𝑌𝑤

𝑍𝑤

) − 𝑅𝑡  



2022-4608-AJTE  

 

5 

and expressed as homogeneous coordinates as: 

 

 

(

𝑋𝑐

𝑌𝑐

𝑍𝑐

1

) = (𝑅𝑇 0
0 1

) (
𝐼 −𝑡
0 1

) (

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

)  

 

The complete model from world coordinates to pixel coordinates in the camera 

reference frame 

 

 
𝜆 (

𝑢
𝑣
1

)

= (
𝛼𝑢 0 𝑢0 0

0 𝛼𝑣 𝑣0 0

0 0  1  0

) (𝑅𝑇 0
0 1

) (
𝐼 −𝑡
0 1

) (

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

) 

 

 

simplified to 

 

𝜆 (
𝑢
𝑣
1

) = 𝐾(𝑅|𝑡) (

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

) (2) 

 1 
Inverse Perspective Mapping 2 

Through camera projection, 3-Dimensional coordinates can be mapped 3 

onto a 2-Dimensional image plane. However, there exist perspective effects on 4 

the image in which the information acquired from an image would not be 5 

useful when determining distances. To negate the perspective effects, inverse 6 

perspective mapping is utilized to acquire a bird’s eye view of the image (Lee, 7 

2010). 8 

To perform the reverse operation, whereby a 2-Dimensional image is 9 

mapped to its respective 3-Dimensional coordinates, although impossible 10 

without the depth parameter, but by making few assumptions, the 11 

corresponding coordinates can be attained. Looking at equation (1) again: 12 

 13 

 

𝜆 (
𝑢
𝑣
1

) = 𝐾 (
𝑋𝑐

𝑌𝑐

𝑍𝑐

)  

To acquire the camera coordinates, the intrinsic matrix is simply inversed 14 

and multiplied by our scalar value 𝜆 and our pixel coordinates. 15 

 16 

 

(
𝑋𝑐

𝑌𝑐

𝑍𝑐

) = 𝐾−1𝜆 (
𝑢
𝑣
1

) (3) 
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The value of 𝜆 is typically unknown, as the case when looking at a 2-1 

Dimesional image, it is possible to know where the light ray came from but it 2 

can never be known how long the light ray has travelled to reach the camera. 3 

However, by assuming that the coordinates of interest lie on the same plane or 4 

ground plane and knowing the location of the camera with respect to set 5 

ground plane, it becomes a geometry problem which yields the distance or 6 

depth of each pixel. Equation (3) describes the vector at which our point lies on 7 

ground plane. By defining the normal to camera reference frame 𝑛𝑐 as a vector 8 

𝑅𝑐(0,1,0)𝑇where 𝑅𝑐 is the rotation of the camera with respect the ground. 9 

 10 
Figure 3. Planar Surface Representation 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

The equation for a planar surface is described below (Dawkins, n.d.). From 28 

Figure 3, since (𝑟 − 𝑟0) lie on the same plane, the equation of a planar surface 29 

is given by the dot product of the vector on the ground plane and an orthogonal 30 

vector to the ground plane. 31 

 32 

 𝑛𝑐⃑⃑⃑⃑⃑ • (𝑟−𝑟0) = 0 (4) 

 33 

Therefore, if 𝑟0 chosen to be 𝑛𝑐⃑⃑⃑⃑⃑ℎ, equation (4) becomes as follows: 34 

 35 

 𝑛𝑐⃑⃑⃑⃑⃑ • 𝑟 − 𝑛𝑐⃑⃑⃑⃑⃑ • 𝑟0 = 0  

 𝑛𝑐⃑⃑⃑⃑⃑ • 𝑟 − 𝑛𝑐⃑⃑⃑⃑⃑ • 𝑛𝑐⃑⃑⃑⃑⃑ℎ = 0  

 ℎ = 𝑛𝑐⃑⃑⃑⃑⃑ • 𝑟  

 36 

Plugging in the equation of 𝑟 = 𝐾−1𝜆 (
𝑢
𝑣
1

) brings about final equation (5) 37 

which describes camera coordinates derived from pixel coordinates (Theers & 38 

Singh, 2020): 39 
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(
𝑋𝑐

𝑌𝑐

𝑍𝑐

) =
ℎ

𝑛𝑐
𝑇𝐾−1(𝑢, 𝑣, 1)𝑇

𝐾−1 (
𝑢
𝑣
1

) (5) 

 1 

Figure 4. Inverse Perspective Mapping  2 
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 22 

Deep Learning 23 

 24 

Deep learning is sub branch of machine learning in which the model 25 

consists of multi-layered neural networks capable of learning high level 26 

complexity from data. Unlike machine learning, deep learning is useful in 27 

extracting features, identifying and classifying data all on its own. 28 

Deep learning neural networks also known as deep neural networks are 29 

modeled essentially on how the human brain works. Each layer of the network 30 

allows deep learning algorithms to progressively learn and make predictions 31 

with the accuracy increasing over time. The solution of deep learning is meant 32 

for complex tasks that cannot be solved through classical approaches in 33 

programming and software. Research into the deep learning field aims to create 34 

models that can learn representations of large unlabeled and unstructured data. 35 

Some of the concepts of deep learning are closely inspired from neuroscience 36 

in mimicking how the brain operates and functions through stimuli which falls 37 

under information processing and communication patterns  (Vishnukumar, et 38 

al., 2017). 39 

 40 

Convolutional Neural Network 41 

A convolution neural network or convnet is a deep neural network which 42 

aims to mimic the working principles of how the visual cortex of the brain 43 
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processes and perceives images. This image recognition process can be 1 

regarded as essentially a classification task in which the aim is classifying what 2 

class images fall under. Before convnet were established, feature extractors 3 

were designed which yielded significant cost and time for a high-performance 4 

system. These feature extractors were completely independent from the field of 5 

machine learning however with the development of convnets, the feature 6 

extractor ability is included in the process rather than designing it due to the 7 

kind of neural networks being utilized (Kim, 2017). 8 

 9 
 Figure 5. Convolution Neural Network Methodology 10 

 11 

As with most neural networks, the more hidden layers in convnet, the 12 

higher the performance of the system in dealing with complex tasks which 13 

certainly comes with the additional difficulties of cost and time taken in the 14 

training process. A typical architecture of a convnet consists of the convolution 15 

layer, pooling layer, flattening and full connection. 16 

Convolution layer like the name implies, takes the input image and applies 17 

the convolution operation to create feature maps. Unlike standard neural 18 

networks that make uses of weights and biases, the convolution layer utilizes 19 

filters that makes these conversions. Filter are usually two-dimensional 20 

matrices that detect features and are placed over the input image covering all 21 

areas to create set feature map  22 

 23 
Figure 6. Convolutional Process 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 
Source: (Google, 2021) 40 
 41 

Training Data (Input, Correct 
Output) 

Convnet (Feature Extractor + 
Classifier) 

Predicted Output 
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Pooling layer aims to reduce the size of the image by combining 1 

neighboring pixel values of a single area into a single representative value. 2 

Applying this layer, allows the network to have spatial variance which provides 3 

the ability of the network to detect same object images that is spatially different 4 

or slight modifications. The reduction of size also helps minimizing the 5 

computational load and prevent overfitting scenarios. Some types of pooling 6 

operations include max pooling and average pooling where max pooling takes 7 

the maximum value in an area as the representative value whereas average 8 

pooling will take the average pixel values in an area (Yu, et al., 2014). 9 

 10 

Figure 7. Max Pooling Operation 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
Source: (Google, 2021) 21 
 22 

Activation applies non-linearity in the output of the convolutional layer 23 

which is a combination of the convolutional operation and pooling operation. 24 

Usually, a Rectified Linear Unit or ReLu function is utilized in a convolutional 25 

layer and the most the widely used activation function in neural networks. It 26 

will output the input directly if it is positive allowing it to not activate all the 27 

neurons at the same time making it computationally efficient (Agarap, 2019). 28 

 29 
Figure 8. ReLU Function 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 
Source: (Agarap, 2019) 41 

 42 

Flattening is relatively a simple process in which, after having acquired a 43 

feature map, it is a matter of essentially just flattening the pooled feature map 44 

into a column to create a single vector of data. This process allows the network 45 

to handle the data much more efficiently than passing through a matrix of data. 46 

These small steps of adjustments, however simplistic the step maybe, provides 47 
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a big difference when dealing with the computational load of the system and 1 

the complexity of the system. 2 

Full connection layer is the same as the hidden layer in a neural network in 3 

which the data is taken and makes the network more capable of classifying 4 

images through combining features and other attributes. The error function is 5 

also calculated in this process which is the same as the loss function previously 6 

in neural networks.   7 

 8 
Figure 9. Convolutional Neural Network Detailed Process 9 

 10 

Image Segmentation 11 

The process of classifying each pixel in an image is known as image 12 

segmentation. The aim is to assign certain objects to its own class. This 13 

approach is utilized in the computer vision applications where the need to 14 

detect objects or classify images. Image segmentation can be separated into 15 

two different categories, namely semantic segmentation and instance 16 

segmentation. In semantic segmentation, each pixel is associated with a class 17 

or label and in instance segmentation similarly it classifies each pixel but it is 18 

able to distinguish instances of the same class or label (Jordan, 2018). 19 

 20 
Figure 10. Image Segmentation (0-no arrow) (1-arrow) 21 
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0 0 0 0 0 0 0 0 0 0 0 
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 22 

 23 

 24 

The figure below showcases a UNET implementation for the purposes of 25 

semantic segmentation (Fei-Fei, et al., 2017). An image of shape (3xHxW) 26 

goes through the downsampling or encoding part by means of a series of 27 

convolutions and pooling operations to detect the features of the image. As the 28 

Input Convolution 
Max-

Pooling 
Activation 

Full 
Connection 

Output 
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network gets deeper by more convolutional layers, the network is able to detect 1 

more complex features. The upsampling or decoder represents the operations to 2 

return the features back into the original location usually by transpose 3 

convolutions. During the decoder part, the depth or channels of the network get 4 

reduced whilst the image increases in resolution.  5 

 6 
Figure 11. UNET Implementation 7 

 8 
Source: (Fei-Fei, et al., 2017) 9 
 10 

Vehicle Control Methods 11 

 12 

Ackerman Steering Angle 13 

The Ackerman steering condition occurs when the axes of all the wheels 14 

intersect at a single turning point. In order for a vehicle to turn a corner, the 15 

front wheels of the vehicle would have to swivel at an angle. Turning both 16 

front wheels at the same angle would the concept of parallel steering however, 17 

it introduces slip onto the tires. The Ackerman condition is where the inner 18 

wheel and outer wheel are at different angles allowing for the vehicle to turn 19 

slip-free (Jazar, n.d.) 20 

 21 

Kinematic Bicycle Model 22 

The kinematic bicycle model is a popular control orientated approach 23 

when representing vehicles. The approach is formed by combining the two 24 

front wheel and rear wheels into a two-wheeled system. This allows the dealing 25 

with two wheels and one steering angle. The approach for the model also 26 

involves the concept of the Ackerman steering geometry which describes how 27 

an inside wheel must travel at a greater arc radius than the outer wheel 28 

allowing for the vehicle to turn. The assumptions made when using the 29 

kinematic bicycle models is that all slip angles are zero. The kinematic model 30 

is more computationally efficient when compared to a dynamic vehicle model 31 

and shown to have comparable performance (Law, et al., 2018). 32 

  33 
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Figure 12. Kinematic Bicycle Model 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 
 9 

 10 

 11 

 12 

Figure 12 illustrates the kinematic bicycle model of a vehicle moving in a 13 

2D X-Y plane with forward velocity 𝑣, steering wheel angle δ, wheelbase 14 

distance L, heading error 𝛳 and an instantaneous centre of rotation radius R. 15 

With a no slip condition, the formation of the equation of motions for the 16 

model is as follows:  17 

 18 

 
tan (δ) =

𝐿

𝑅
 (6) 

 19 

Subbing in 𝑣 = 𝜔𝑅 , where 𝜔 is the angular velocity of the vehicle 20 

 21 

 
δ = tan−1(

𝐿𝜔

𝑣
) 

 

Let (x, y) be a reference point on the rear axle of the vehicle. Since the rate of 22 

change of the heading error angle is equal to the rate of change of the  23 

 24 

 �̇� = 𝜔  

 25 

The equation of motion of the model becomes. 26 

 27 

 �̇� = 𝑣cos(𝛳)  

 �̇� = 𝑣sin(𝛳)  

 
�̇� =

𝑣tan (δ)

𝐿
 

 

 28 
Pure Pursuit 29 

The pure pursuit method is a lateral control method used for controlling 30 

the steering wheel angle to reach a target point on the desired trajectorial path 31 

(Ding, 2020).  32 

 33 
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Figure 13. Pure Pursuit Controller 1 

 2 

  3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
 𝑙𝑑

sin (2𝛼)
=

𝑅

sin (90 − 𝛼)
 

 

 𝑙𝑑

sin(𝛼) 𝑐𝑜𝑠(𝛼)
=

𝑅

cos (𝛼)
 

 

 
𝑅 =

𝑙𝑑

2sin (𝛼)
 

 

 19 

From the kinematic bicycle model: 20 

 21 

 
tan (δ) =

𝐿

𝑅
 

 

 22 

Using the steering angle equation from the kinematic bicycle model, the 23 

desired steering angle becomes: 24 

 25 

 
δ = tan−1(

2𝐿sin (𝛼)

𝑙𝑑
) 

 

 26 

To improve the performance of the controller, the lookahead distance 𝑙𝑑 is 27 

varies with the speed of the vehicle. 28 

 29 

 𝑙𝑑 = 𝐾𝑑𝑑𝑣  

 30 

where 𝐾𝑑𝑑 is a tuning constant. The steering angle for the pure pursuit 31 

controller becomes: 32 

 
δ = tan−1(

2𝐿sin (𝛼)

𝐾𝑑𝑑𝑣
) (7) 
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The cross-track error 𝑒 is represents how far the vehicle is off-track from the 1 

trajectory. With a rear axle reference point, the cross-track error is calculated 2 

as: 3 

 4 

 𝑒 = 𝑙𝑑sin (𝛼) (8) 

 5 
Stanley Controller 6 

The Stanley controller was an approach used by Standford University’s 7 

Grand Challenge team (Thrun, et al., 2006). It is a geometric path-tracking 8 

algorithm which, unlike the pure pursuit, looks at the cross-track error when 9 

controlling the steering wheel angle. The front axle of the vehicle is used as the 10 

reference point rather than the rear axle.  11 

 12 
Figure 14. Stanley Controller 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
 24 

 25 

 26 

 27 

 28 

 29 

The Stanley controller involves three laws to be applied the steering angle. 30 

The first is to eliminate the heading error 𝛳. 31 

 
δ(t) =  𝛳(𝑡) 

 

The next is to eliminate the cross-track error 32 

 
δ(t) = tan−1(

𝑘𝑒(𝑡)

v(t)
) 

 

and last involves ensuring that the steering angle is within the minimum and 33 

maximum bounds. 34 

 
δ(t)𝜖 [δ𝑚𝑖𝑛, δ𝑚𝑎𝑥] 

 

The final equation for Stanley method becomes (Ding, 2020): 35 

 36 

 
δ(t) = 𝛳(𝑡) + tan−1 (

𝑘𝑒(𝑡)

v(t)
),   δ(t)𝜖 [δ𝑚𝑖𝑛, δ𝑚𝑎𝑥] (9) 
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PID Controller 1 

PID is an acronym for Proportional Integral Derivative. As the name 2 

suggests, these terms describe three basic mathematical functions applied to the 3 

error. It is a feedback mechanism that is widely used in the industry for control 4 

systems. The error 𝑒(𝑡) is defined as the difference between a desired target 5 

value and the measurement variable (Desborough, 2000) 6 

 7 

 
𝑒(𝑡) = 𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 

 

 8 

Proportional 9 

 10 

The error value calculation, is simply applied to the output. This is known 11 

as proportional control and it is often necessary to scale the error value before 12 

adding it to the output by using the proportional gain 𝐾𝑝. By proving a too 13 

large gain or if the error is very large, the output may overshoot from the set 14 

value. Hence the change in output may turn out to be unpredictable and 15 

oscillating. 16 

 𝑃 = 𝐾𝑝 e(t) (10) 

 17 

 18 

Design Methodology 19 
 20 

It is apparent that autonomous vehicles bring together fields from different 21 

aspects of engineering and still provide opportunities to improve and test 22 

different methods of integrating. After researching current technological trends 23 

in autonomous vehicles, a proposed design can be presented which highlights 24 

different approaches to different aspects of the autonomous vehicle. The 25 

section below will highlight the proposed structure of the autonomous vehicle. 26 

Table 1, describes the specification details for the autonomous vehicle. An 27 

automatic transmission is a pre-requisite for the vehicle due to the feasibility of 28 

not having another modular system to assist in changing gears and can be a 29 

cumbersome process to determine ideal gear changes with different vehicles. 30 

Therefore, an automatic transmission provides an efficient platform to 31 

approach the conversion to autonomous vehicles. The location of the camera 32 

plays a key role in acquiring environmental information most efficiently. Thus, 33 

it will allow the application of inverse perspective mapping to determine the 34 

lane boundaries in a bird’s eye perspective measured in metres. The wheelbase 35 

parameter will assist in facilitating the ideal steering wheel angle utilized in the 36 

lateral control methods.  37 

  38 
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Table 1. Autonomous Vehicle Specifications 1 

Autonomous Vehicle specifications 

Transmission Automatic 

Chassis Front Wheel Drive (FWD) 

Wheelbase  2.8m 

Camera height  1.3m 

Camera Pitch  5° 

 2 

Figure 15. Autonomous Vehicle Breakdown 3 

 4 

 5 

Sensors 6 

 7 

To acquire information from the environment surroundings, the 8 

autonomous vehicle is fitted with two sensors. An RGB camera is attached to 9 

the top of the front windscreen and orientated to be facing the road ahead. The 10 

camera will provide the essential information of knowing where the vehicle is 11 

located and through the field of computer vision, the necessary features of the 12 

environment can be extracted and processed by the control unit.  13 

 14 

Lane Detection System 15 

 16 

The detection of lanes pipeline will be made possible with the creation of a 17 

segmentation model which is a deep learning model that utilizes a CNN. The 18 

model will need to be fed training data to be able to learn the features of a lane 19 

boundary but also classify the pixels to whether it belongs to either a left lane 20 

boundary or a right lane.  21 

Once the model predicts the left lane or right lane, the system will need to 22 

convert the pixel coordinates of the lanes into a polynomial by applying the 23 

principles of inverse perspective mapping. The assumption made when 24 

utilizing this method is that road is flat and lies entirely on the ground plane. 25 

 26 

Route Planning 27 

 28 

With the polynomial of the lanes being created from the lane detection 29 

system, the next step involves forming an actual path for the vehicle to 30 

navigate through. The trajectory that the vehicle will take will essentially be 31 
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the centre of the two-lane boundaries which is created from the lane boundary 1 

predictions 2 

 3 

Control 4 

 5 

A pure pursuit method provides a viable option to utilize on the vehicle 6 

however, to reduce cross-track error, a variation of two popular methods was 7 

explored in order to improve upon the performance of the lateral control by 8 

means of minimizing the cross-track error. To achieve this, the tail-following 9 

approach of the pure pursuit provided the base for the formation of the steering 10 

wheel angle, however, it does not consider the cross-track error when 11 

determining the angle. That was solved by incorporating part of the Stanley 12 

controller (Thrun, et al., 2006) into the equation. This will allow the path 13 

tracking algorithm to essentially be similar to a pure pursuit controller but take 14 

‘additional’ steering angle towards the trajectory if the vehicle cross-track error 15 

increases. 16 

 17 

Figure 16.  Pure Pursuit + Stanley Controller Adaptation  18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 
δ = tan−1 (

2𝐿 sin(𝛼)

𝐾𝑑𝑑𝑣
) ± tan−1(

𝑘𝑒

v
)  

 33 

The system will need to formulate a target point on the trajectory with a 34 

variable distance depending on the speed of the vehicle. The max speed will 35 

denote the maximum lookahead distance, and a low speed will denote the 36 

lowest lookahead distance. Once the target point is created, the applicable 37 

angles can be created depending on the methods that can be calculated to 38 

formulate the steering wheel angle that the vehicle must utilize to reach the 39 

desired point. The important metric to keep track of is the cross-track error 40 

which will indicate the performance of the control method. For this design the 41 

reference point for which will indicate the cross-track error will be the centre 42 

of the vehicle. 43 

  44 
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Figure 17. Autonomous Vehicle Design Block Diagram  1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

System Pre-Requisites 12 

 13 

Deep learning requires extensive resources to train a model thus the 14 

system requires computational resources to produce effective and efficient 15 

outputs timely in order to perform the necessary actions of the vehicle. When 16 

doing deep learning tasks with Tensorflow, it can either be done utilizing the 17 

CPU or the GPU. Using the GPU to perform tasks provides a faster approach 18 

when training models, as the time taken to complete one epoch is greatly 19 

reduced compared to when using the CPU. In order to utilize the GPU for deep 20 

learning, a Nvidia GPU is required with the installation of CUDA and CuDNN 21 

libraries which will speed up the computer-intensive applications. 22 

 23 

Table 2. PC Specifications 24 

PC specifications 

CPU Ryzen 5 3600 

GPU GeForce RTX 2060 Super 

RAM 16Gb 

 25 

Table 3. Software Specifications 26 

Software package specifications 

Operating System Windows 10 Professional 

Python 3.7.10 

Microsoft Visual Studio Text Editor 1.60.2 

Tensorflow 2.4.0 

CUDA 8.1 

CuDNN 11.0 

PyTorch 1.7.1+cu110 

 27 

CARLA Simulator 28 

 29 

CARLA (Car Learning to Act) simulator is an open-source software used 30 

for training and researching autonomous vehicles.  31 

 32 
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Figure 18. CARLA Simulator 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
Source: (CARLA, n.d.) 13 
 14 

The features of CARLA which highlighted the reason of choice for 15 

simulations of the autonomous vehicle were its flexible API, autonomous 16 

driving sensor suite, and fast simulation for planning and control. The API 17 

allows users to control almost all aspects of the CARLA environment, from 18 

sensors, vehicles, weather, and several other aspects. The Python API will 19 

allow writing python code to the CARLA server easily and be able to visualize 20 

the design and control of the vehicle (CARLA, n.d.). The software will provide 21 

the platform to add the sensors, apply the control methods discussed to observe 22 

how the vehicle responds, and analyze the feasibility of the design. 23 

 24 

Segmentation Model Creation 25 

 26 

The model aims to take images of shape (1024,512,3) and output a 27 

segmented image of shape (1024,512,3) where the value of each pixel is the 28 

probability of it being in one of the three classes (No boundary, Left Boundary, 29 

and Right Boundary).  30 

 31 

Table 4. Model Parameters for Training Process 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

The creation of the segmentation model can be broken down into 5 steps 44 

as shown below. 45 

  46 

Model parameters 
Architecture UNET 
Activation function Softmax2d 
Optimizer Adam Optimizer 
Learning rate 0.001 
Batch size 5 
Epochs 6 
Classes 3 
Loss function Dice loss 
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Figure 19. Segmentation Model Creation  1 

 2 

Training Data 3 

The fundamental requirement for any model is data, without data, a 4 

machine learning model will not have any knowledge or experience to learn 5 

from. The training data for our lane detection model is acquired from source 6 

(Theers & Singh, 2020) which collect images from the CARLA simulator 7 

providing lane images as well as label images. The training data will provide 8 

the baseline for the model and allow for it to utilize this dataset and learn how 9 

to identify the features of a boundary as well as the classifying of left lane 10 

boundary and right lane boundary. Below is an example of what the lane image 11 

and label image are being fed into the model. The label image seen below in 12 

the OpenCV environment is different from the actual label image as the actual 13 

image is not visible to the human eye however, due to the normalization feature 14 

of OpenCV, it is visible how the left lane and right lane boundaries are 15 

contrastingly different in which the system will understand to distinguish. 16 

 17 
Figure 20. Training Dataset 18 

 19 

 20 

 21 

Augmentation 22 

The more data a model has to train, the better the performance, however 23 

acquiring training data can be a tedious process when dealing with large 24 

amounts of data, however, a common practice involves when dealing these 25 

tasks involve data augmentations which is a technique to create synthetic data 26 

to increase the amount of training data available. Data augmentations involve 27 

taking the existing training datasets and applying techniques such as image 28 

rotation, flipping, blurring, or noising. These allow to multiply the size of the 29 

dataset without much effort and also allow the model to better generalize 30 

patterns and features of an image such that the model does overfit. The training 31 
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data is applied the following augmentation, with the assistance of the 1 

albumentation library which is a highly-optimized OpenCV library. 2 

 3 
Figure 21. Augmentations Applied to Training Dataset  4 

 5 

Pre-Processing 6 

Data pre-processing ensures that the training data acquired is transformed 7 

into the correct format which is understandable for training the model.  8 

PyTorch works with tensors which are essentially a multi-dimensional 9 

array that are used to encode inputs, outputs, and parameters of the model. 10 

What makes tensors specialized is their capability of running on GPU to allow 11 

for faster computing. The training data which was acquired needs to be 12 

transformed into a tensor format before feeding it to the defined model as an 13 

input. 14 

Since the PyTorch model is using a model with pre-trained weights, 15 

another aspect to consider is to prepare the training data similarly to weights 16 

pre-training which will ensure better performance and faster convergence of 17 

the model. 18 

The PyTorch model will expect input RGB images of shape (3 x H x W), 19 

loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 20 

0.406] and std = [0.229, 0.224, 0.225]. 21 

 22 

Architecture 23 

PyTorch segmentation models’ libraries allow the creation of models 24 

effortlessly with the feature of utilizing popular model architectures. The 25 

model being created is a segmentation model which is being represented by a 26 

CNN of UNET architecture. 27 

The UNET architecture is a CNN created for semantic segmentation used 28 

in the field of biomedical. A typical CNN is useful in feature extraction 29 

however when the need for localization and classifying the pixel of an image to 30 

a class it became ineffective. The structure for this architecture can be broken 31 
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into two sections, namely the encoder/downsampling and the 1 

decoder/upsampling section. The encoder applies convolutions and pooling 2 

operations which essentially learns features of the image which, depending on 3 

how deep the network is, describes how complex features it can extract. 4 

Having detected the information of an image, it has lost the sense of 5 

localization in which the decoder functions are applied to recover the 6 

localization of the detected features. The decoder involves applying transposed 7 

convolutions with regular convolutions which starts seeing the size of the 8 

image increasing with the depth decreasing. The addition of skip connections 9 

to the architecture ensures the recovery of spatial information that is lost due to 10 

the encoding path. This encoder and decoder form a symmetrical U-shape 11 

network which is the basis of the name. Due to the impressive results, it 12 

became a popular architecture of choice in the task of semantic segmentation 13 

(Ronneberger, et al., 2015).  14 

 15 

Figure 22.UNET Architecture  16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 
Source: (Ronneberger, et al., 2015) 29 
 30 

ResNet 31 

The ResNet (Residual Network) architecture can be utilized as a backbone 32 

for the UNET which essentially means it will be the encoder part of the UNET. 33 

This is beneficial due to the ability to transfer pre-trained weights into the 34 

model rather than starting from scratch which will assist in reaching 35 

convergence faster. The ResNet (He, et al., 2016) is a CNN that is made up of 36 

residual blocks with skip connections which assist in dealing with the 37 

vanishing gradient problem which arises when adding too many layers which 38 

decrease the accuracy of the model.   39 

 40 

  41 
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Figure 23. Residual Network Encoder  1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 
Source: (He, et al., 2016) 15 
 16 

Each ‘ResBlock’ has two connections coming from the input, one which 17 

goes through convolutions, batch normalization, and linear functions and the 18 

other is the skip connection known as the identity which will be added 19 

together. 20 

 21 

 22 

Simulation 23 
 24 

To test the feasibility and integrity of the information that has been 25 

gathered throughout. The design of the autonomous vehicle requires 26 

simulations to acquire insight on potential issues that can be identified and 27 

opportunities to improve on. Approaching the simulation section will adapt the 28 

process similar to an existing project (Theers & Singh, 2020). The platform 29 

provides the means to test the feasibility of the UNET architecture 30 

(Ronneberger, et al., 2015) with a ResNet encoder (He, et al., 2016) for lane 31 

detection as well as the comparing the custom lateral control method which 32 

combines strengths of the Pure Pursuit controller and the Stanley controller to 33 

reduce the cross-track error of the vehicle. The entire software development 34 

was utilized with the Python language which was coded on the Microsoft 35 

Visual Studio Code text editor. For the creation of the deep learning model, 36 

Deep learning frameworks like PyTorch and Keras are used for the 37 

development, compilation, and training of neural networks with the support of 38 

utilizing pre-trained weights from a segmentation model package 39 

(Yakubovskiy, 2019). Standard python libraries like Open-CV and Pillow are 40 

used to implement various image processing techniques used for data 41 

augmentation and reshaping of training images. The testing of the model 42 

integrated with lateral and longitudinal control methods is achieved through the 43 

CARLA simulator (CARLA, n.d.). 44 

 45 

 46 



2022-4608-AJTE  

 

24 

Segmentation Model Results 1 

 2 

Figure 24. Segmentation Model Dice Loss Plot  3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

The dice loss plot in Figure 24 seen above showcases the segmentation 18 

model attempting to minimize the error or loss function with the training 19 

dataset and the associated validation loss with the validation dataset. During 20 

the first two epochs, it can be observed the rate at which the model is learning 21 

with the dice loss reducing from around 0.7 to under 0.3. After which the 22 

learning rate begins to slow down through the Adam Optimizer (Kingma & Ba, 23 

2014) whereby the model improves slightly and eventually saturates towards 24 

the end of the 6
th

 epoch with a dice loss of just under 0.2. A clear observation 25 

when comparing the training and validation dataset is the dice loss value is 26 

higher with the validation dataset. This is a normal indication with the training 27 

model and can be highlighted that the model has trained efficiently since a 28 

higher validation loss is expected due to the model parameters not being able to 29 

adjust with the validation dataset. 30 

 31 

Figure 25. Segmentation Model Lane Predictions  32 

 33 
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Figure 25 showcases the prediction images from the simulation of the 1 

unseen lane images which shows that the segmentation model is determining 2 

the lane boundaries fairly accurately. There were however a few obscure lines 3 

that were visible during some predictions which could be due to the broken 4 

lane boundaries of the lane image. Even so, with broken lines in a number of 5 

the images as well as other lane boundaries in the associated image, the model 6 

is still able to distinguish the correct lane boundary for which the vehicle is 7 

currently driving on. Darker images due to shadowing effects also seem to 8 

provide no visible reduction in the model’s prediction ability although it is 9 

possible that during low light conditions, the model’s ability will begin to show 10 

signs of detriment which can be alleviated through including low light 11 

conditions in the training dataset. 12 

 13 

Inverse Perspective Mapping 14 

 15 

Figure 26. Applying Inverse Perspective Mapping 16 

 17 

The prediction of the lane boundaries then proceeds to the most ideal 18 

scenario for the model to test in, in which the ground plane is entirely flat 19 

allowing inverse perspective mapping techniques to be applied befittingly as 20 

shown in Figure 26.  21 

The Lane images 1 and 2 are of a simple road structure with both 22 

presenting the most ideal scenario for the model to test in, in which the ground 23 

plane is entirely flat allowing inverse perspective mapping techniques to be 24 

applied befittingly. The model result together with inverse perspective mapping 25 

produces a fairly accurate bird’s eye perspective of the road when comparing 26 

the lane boundaries to the model predictions. 27 

Lane images 3 and 4 depict a downhill and uphill scenario respectively to 28 

observe how the lane detection system will behave in the more likely situations 29 

where the ground plane is not entirely flat. Lane image 3 it can be seen the lane 30 

is accurately detected to a region of around 20m where there begins to be a 31 

drop off in accuracy due to the downhill trajectory with an error increasing to 32 

around 0.5m at the end of the 50m limit. In the last lane image where the 33 

trajectory is uphill, the system does well in detecting the lane boundaries with 34 
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minimal error, however, with a steeper slope, system may observe errors 1 

similar to the downhill trajectory as the detection distance approaches the limit. 2 

 3 

CARLA Simulation 4 

 5 

Figure 27. Autonomous Vehicle Simulated onto CARLA 6 

 7 

The vehicle was simulated in the CARLA environment with different 8 

velocity targets of 60km/h, 80km/h, and 100 km/h whilst attempting to finish 9 

the track layout. The cross-track error from both the Pure Pursuit method and 10 

the adaptation of the Pure Pursuit and Stanley controller can be seen below in 11 

Figure 27. The noticeable observation is the reduction in the cross-track error 12 

during the 3 turns. The custom controller does spike during the first seconds 13 

due to the vehicle spawning incorrectly but recovers quickly which proves to 14 

be a negligible transient.  15 

The rest of the simulation shows both lateral control method simulations 16 

performing well during straights with cross-track error increasing during the 17 

turns with minimal stability issues although the custom controller does seem to 18 

indicate signs of more instability than the Pure Pursuit method. Adjusting the 19 

lookaway distance of both controllers (Figure 28) also has been shown to 20 

reduce the error at certain velocities which showcase the need for proper 21 

calibration. Another observation was the variation of velocity which both 22 

methods show increasing cross-track error as the velocity of the vehicle 23 

increases. Thus, an improved development can therefore be achieved by 24 

varying the velocity of the vehicle during turns. 25 

 26 

Figure 28. Lateral Control Method Comparison 27 

 28 
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Figure 29. Adjusting of Lookaway Distance Comparison 1 

 2 

 3 

Conclusion 4 
 5 

Autonomous vehicles still require improvement with regards to safety and 6 

cost. With the report being aimed at how autonomous technology can be used 7 

to convert regular vehicles with pre-installed actuation, it became apparent that 8 

the platform exists to be improved upon. The results from the simulations 9 

showcase that implementing a lane detection system provides a viable option 10 

for implementation with opportunities to improve upon in autonomous 11 

vehicles. By implementing only a camera attached to the vehicle, the system is 12 

capable of detecting lane boundaries fairly accurately under constrained 13 

conditions. The CARLA simulations also highlight an improvement with the 14 

Pure Pursuit control method with the simulations demonstrating a slight 15 

reduction in the cross-track error however, it does decrease the stability of the 16 

system which can be alleviated by reducing the speed at corners. Overall, the 17 

combination of applying deep learning techniques in the field of computer 18 

vision proves to be an exciting platform in the field of autonomous vehicles, 19 

with the opportunity of converting regular vehicles into autonomous systems. 20 

This integration will also assist in reducing the cost of autonomous vehicles 21 

which will prove to improve the overall perception by the public of being 22 

exclusive to high-class individuals. 23 

 24 
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