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An Application of Finite Mixture Models in Positional 1 

Accuracy 2 

3 

Positional accuracy has always been considered a defining and essential 4 

element of the quality of any geospatial data, as it affects factors such as 5 

geometry, topology, and thematic quality; and it is directly related to the 6 

interoperability of spatial data. For its assessment, many procedures have 7 

been developed and many of them (for instance, EMAS or NMAS tests) and 8 

many of them require the underlying hypothesis of normality, which, 9 

however, is not easily found in sample data, but can be adequately adjusted 10 

by means of a finite mixture of normal distributions. In this work an 11 

application of the finite mixture model is presented for data from an 12 

Airborne Laser Scanner (ALS) campaign flight over the province of Ávila 13 

(Spain). In this case altimetric errors have been obtained on different types 14 

of terrain. These data can be adequately modelled by a gaussian finite 15 

mixture model through an adequate estimation procedure, and the 16 

subsequent parametric model is obtained. This model fits accurately the real 17 

data set and that be employed in further inferential analysis better than the 18 

assumption of normal distribution.  19 

20 

Keywords: Finite mixture models, ALS data, ML estimation, positional 21 

accuracy, parametric model 22 

23 

Introduction 24 

25 

The hypothesis of normality in the case of error measurements appears 26 

from the beginning of the normal distribution itself, since Laplace and Gauss 27 

arrived at it by analyzing measurement errors in astronomical observations. 28 

The fact that some errors or residuals are normally distributed implies that they 29 

are due to pure chance, and there are no other causes that explain them. In 30 

addition, the normality hypothesis is basic when it comes to proposing the 31 

contrasts of hypotheses on errors, both for mean values and for variances. 32 

However, in practice it is difficult to find measurement error data that are 33 

distributed according to a normal distribution.  34 

One possible reason is that, although the data is normally distributed, it 35 

comes from different normal distributions. Therefore, one way of analysis is to 36 

assume that the data come from a finite mixture of distributions. In fact, in 37 

general, finite distribution models of distributions provide a mathematical basis 38 

for the resolution of multiple random phenomena, that is, they work with a tool 39 

equivalent to what in signal analysis consists of decomposing a signal by 40 

means of a series of sine/cosine functions (Fourier transform). They also allow 41 

the approximation for very complex distributions and allow to solve situations 42 

in which a single parametric distribution cannot provide a satisfactory model 43 

for local variations in the observed data. (McLachlan-Peel, 2000). The first 44 

works date back to 1894 when Pearson worked with the mixture of two normal 45 

distributions with the same variance and it has been developed by multiple 46 

researchers (a detailed review can be seen in McLachlan-Peel, 2000; 47 
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McLachlan et al 2019, or Huang et al, 2017 and some examples of recent 1 

applications of mixtures in different fields can be seen in Pan et al, 2020; Liu et 2 

al, 2020; Sallay et al, 2021; Zhao et al 2021; Li et al, 2021; Rodríguez-Avi, 3 

2022).  4 

One field in which the normality of errors plays a very important role is in 5 

the quality of cartographic data, since most standards have normality as their 6 

underlying hypothesis (Ariza-López and Atkinson-Gordo, 2008). Specifically, 7 

in digital elevation models (DEM) quality is understood as the positional 8 

accuracy of the data in its altimetric component. DEMs are topographic data 9 

that following a model (for instance, contour lines, point clouds, meshes, 10 

triangle networks, etc.) digitally represent the elevations (elevations or 11 

altimetry) of the terrain naked. The DEMs are data of great relevance and have 12 

been included as a theme of INSPIRE and the UN. DEMs have application in 13 

numerous branches of science and engineering and are mainly used to calculate 14 

the height, slope, orientation and delimitation of basins (Ariza-López et al. 15 

2018). 16 

There are multiple procedures proposed for the evaluation of positional 17 

accuracy (Mesa-Mingorance and Ariza-López 2020), although the most usual 18 

way is to apply standardized methods (Ariza-López et al, 2018), among which 19 

the National Map Accuracy Standards, NMAS (USBB 1947)), Engineering 20 

Map Accuracy Standard, EMAS (ASCE 1983) or the National Standard for 21 

Spatial Data Accuracy, NSSDA (FGDC 1998), the ASPRS proposals (ASPRS 22 

1990, 2015) or the EuroSDR proposal based on measurements with a 23 

parametric approach (Höhle and Potuckova 2011). However, there are multiple 24 

studies that show that the normality hypothesis cannot always be accepted as 25 

true (Zandbergen 2008, 2011, Maune 2007), which has led to the development 26 

of other procedures in which this hypothesis is not necessary. (Höhle and 27 

Höhle, 2009; Ariza-López et al 2019; Cheok et al, 2008; Zandbergen, 2011).  28 

Recently, the use of finite Gaussian mixtures has been proposed as a 29 

statistical procedure to propose a parametric model in the distribution of errors 30 

in DEM (Rodríguez-Avi and Ariza-López, 2022). The underlying assumption 31 

is that these data really come from another distribution, but in many cases, it is 32 

due to the fact that the set of observations has been obtained from different 33 

normal distributions, with different means and/or variances, and the mixture of 34 

all these data in a single data set does not have to follow a single normal 35 

distribution. In these situations, the data show possible multimodality, and/or a 36 

more sharped shape than the well-known Gaussian bell and the finite mixture 37 

technique of Gaussian distributions can be applied. It consists of decomposing 38 

the data into multiple normal distributions, estimating the mean and the 39 

corresponding variance, as well as the probability in the mixture. In this way, a 40 

population model can be generated that allows a better understanding of the 41 

nature of the analyzed variable.  42 

In this work we propose the use of this procedure to model a set of 43 

altimetric errors to evaluate a lidar flight in relation to higher accuracy 44 

observations taken on the ground. Thus, the following section presents a 45 

summary of the statistical methodology used. Subsequently, the data are 46 
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presented, the best model is selected and the accuracy of the theoretical fit with 1 

the observed data is checked, ending with a discussion of the main results. 2 

 3 

 4 

Finite Mixture Models.  5 

  6 

This paper proposes an approach based on the use of Gaussian finite 7 

mixture models. In this context, the aim is to determine, through their 8 

parameters, which are the normal distributions that are mixed in the observed 9 

data set.  10 

In a theoretical point of view, it is assumed that the vector of observed 11 

errors             is a random sample that come from a mixture of 12 

    arbitrary distributions of probability. Then, the density function of each 13 

   is given by:  14 

       ∑        

 

   

            (1) 

 15 

where         (               ) is the vector of parameters in such 16 

a way that                    , and           is the vector of 17 

parameters of each mixing distribution that comes from any absolutely 18 

continuous probability distribution family,  . In our case it is considered that 19 

   {   |     } is the family of density functions                    20 

In consequence, it is needed to estimate the vector   of dimension    (eq. 2): 21 

the proportion of each density in the mixture ( , a vector of dimension  ) and 22 

the values of means and standard deviations for each distribution 23 

 24 

  (              )            (2) 

 25 

In order to estimate (2) the EM algorithm (Dempster et al, 1977, Cueva-26 

López et al, 2019) is applied, that provide an iterative solution of the calculus 27 

of Maximum Likelihood Estimators (MLE) in problems with missing values. 28 

The use of the EM algorithm is suggested not only for evidently incomplete 29 

data (missing values, truncated distributions, censored or grouped 30 

distributions), but also for statistical models where the absence of data is not so 31 

evident (McLachlan – Krishnan, 2008, McLachlan et al, 2019) as occurs with 32 

distributions obtained as mixtures. This algorithm uses, in an iterative way, the 33 

operator: 34 

 ( |     )   [        |      ] (3) 

 35 

where          is the value obtained at iteration t and the expectation refers 36 

to the distribution of     |   of c given x for the value      of the parameter. 37 

Each iteration has two steps: (i) E-step where  ( |     ) is computed and (ii) 38 

M-step where these values are used to maximize the likelihood of the mixing 39 

distribution and obtain the updated estimates         40 
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Once parameters have been estimated, and by the Bayes theorem, it 1 

proceeds to make a probabilistic grouping to assign each value of the original 2 

set (or of the whole population), to the corresponding normal distribution to 3 

which has more pertaining probability, according to the posterior 4 

probabilities  ̂   that    belongs to the group with density function   : 5 

 ̂   
 ̂       |  ̂   ̂   

∑  ̂       |  ̂   ̂   
 
   

 (4) 

 6 

where                      7 

 8 

In this way, given an observed value, it is assigned to the 9 

corresponding normal distribution where this probability is maximum.  10 

Finally, it is possible calculate densities in the mixed model, adding 11 

all probabilities for each individual in the g obtained models:   12 

       ∑ ̂  

 

   

         

    

(5) 

 13 

where  ̂   are obtained in (4).  14 

The theoretical model provides a whole description about the population 15 

and all population probabilities and parameters can be calculated. In this case, 16 

the mean and variance of the model through the mixture, can be obtained as 17 

follows: 18 

 19 

 Mean:  20 

 ̂   ∑  ̂  ̂ 

 

   

 (6) 

 Variance: 21 

 ̂ 

 ∑ ̂  ̂ 
 

 

   

 ∑ ̂   ̂   ̂  

 

   

 

(7) 

 Standard deviation 22 

 ̂  √ ̂  
 

(8) 

 23 

Results 24 

 25 

Data Description 26 

 27 
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To apply the procedure described, a set of data corresponding to altimetric 1 

errors detected between two DEM models has been selected, one considered as 2 

the Product and the other taken as a reference as it is a source of greater 3 

accuracy. (A more detailed description of the data used can be seen in Ariza et 4 

al, 2019) 5 

 6 

 Product (PROD): Elevation data obtained from a LiDAR flight 7 

campaign executed over the city of Ávila (Spain) in April 2012. A 8 

Leica ALS50_II sensor was used with a flight height of 1000 m, which 9 

resulted in an original ground spacing of about 2 points/    over 10 

urban and open land areas. Additionally, and to validate the accuracy 11 

of the sensor, several test locations were used: A stretch of paved 12 

urban road (labeled Infrastructure), a block of flats with different 13 

heights (labeled Urban) and a rugged field area with rocks, hillsides 14 

and vegetation (labeled as natural).  15 

 Reference (REF): reference data from a higher accuracy source was 16 

obtained using a mobile mapping system (MMS), Optech Lynx in May 17 

2012.  18 

 Altimetric discrepancies (Errors): In those points for which the 19 

reference data were obtained, the error in height was measured as 20 

               .  21 

 22 

Once the errors were obtained, a total of N=5870 altimetric discrepancies 23 

were obtained between both sources. A descriptive analysis is shown in Table 24 

1.  25 

 26 

Table 1. Valores descriptivos del conjunto de datos utilizado 27 

  Mean       Var        Sd       min        Q1    Median        Q3       max  

-0.09446   0.00632   0.07950  -0.57605  -0.13611  -0.08398  -0.03957   0.50742 

 28 

A graphical representation of the data appears on the histogram (Figure 1). 29 

It shows that the data shows some skewness to the left (the product data tends 30 

to underestimate the true height), as well as a sharp drop in errors greater than 31 

0, which suggests the absence of normality in the set of errors. 32 

 33 

Figure 1. Histogram of Errors34 

 35 
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An analysis of the normality of the data through different contrasts is 1 

shown in Table 2. It can be seen how in the five contrasts proposed 2 

(asymmetry, kurtosis, Shapiro-Wilks, Kolmogorov-Smirnov and Jarque-Bera) 3 

the null hypothesis of normality in the data is rejected, as well as the presence 4 

of strong asymmetry to the left. 5 

 6 

Table 2. Normality tests 7 

 Coefficient Test-statistic p-value 

Skewness -0.9846 -30.7975 0 

Curtosis 6.1308 95.9461 0 

Shapiro-Wilks  0.9277 0 

Kolmogorov-Smirnov  0.4694 0 

Jarque-Bera  10154.15 0 

  8 

Graphically, the absence of normality can also be seen in the QQ-Plot 9 

(Figure 2), where it is observed how the cloud of points moves away from the 10 

diagonal line and the corresponding confidence interval (blue area).  11 

 12 

Figure 2. QQ-Plot 13 

 14 
Model selection 15 

 16 

To obtain a fit of model (1), it is first necessary to fix the number of 17 

distributions in the mixture. To this end, its determination is proposed based on 18 

some of the usual criteria for comparing models, obtained from the value of the 19 

log-likelihood. In this case, the use of the following criteria is proposed 20 

(Anderson et al, 1998; Cameron-Trivedi, 2013; Burnham-Anderson, 2003): 21 

 22 

 Akaike Information Criterion (AIC): 23 

            (9) 

where   is the log-likelihood obtained from the estimation procedure and   is 24 

the number of parameters, which, in this case, is   , where   is the number of 25 

distributions present in the mixture. 26 

 Bayesian Information Criterion (BIC): 27 

                (10) 

 Consistent AIC (CAIC):  28 
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                     (11) 

 Hannan-Quin Criterion (HQN):  1 

                     (12) 

 2 

These measurements are related to the Kulblak Leibler distance and cannot 3 

be seen as hypothesis tests, that is, they are not valid to decide if a model is good 4 

or bad, but only serve to decide which is the best model, among several proposed 5 

ones. They consist of the log-likelihood plus a penalty term that benefits the 6 

parsimony of the model. The penalty term is related to the number of parameters 7 

so that more parameters (and therefore less parsimony), more penalty. The 8 

difference is that the AIC does not consider the size of the sample, while in the 9 

other three this value appears as a function of       to correct the tendency to 10 

overestimate that AIC presents. In any case, the best model will be the one for 11 

which the chosen criterion is minimal.  12 

Consequently, to decide on the best model, the data has been adjusted by 13 

means of mixtures of   normal distributions, (with          ) and in each 14 

case the values of the aforementioned criteria have been calculated. The results 15 

are shown in Table 3, where it can be seen how for the AIC the best model is 16 

with 5 distributions (FMM5), while the other three criteria select 3 distributions 17 

(FMM3). In this paper, all calculations have been performed using the R 18 

package mixtools (R, 2022, Benaglia et al., 2008), which provides an estimate of 19 

the parameter vector   given in equation (2). 20 

 21 

Table 3. Values of the different Information Criteria employed. In bold, the 22 

best model according to the corresponding column criterion 23 

                          

2 6937.70 -13863.40 -13823.34 -13817.34 -13849.47 

3 7006.14 -13994.28 -13934.18 -13925.18 -13973.39 

4 7011.06 -13998.12 -13917.99 -13905.99 -13970.26 

5 7016.04 -14002.08 -13901.91 -13886.91 -13967.25 

6 7017.62 -13999.24 -13879.04 -13861.04 -13957.45 

7 7017.62 -13993.25 -13853.02 -13832.02 -13944.49 

8 7021.25 -13994.50 -13834.23 -13810.23 -13938.78 

9 7020.25 -13986.50 -13806.21 -13779.21 -13923.82 

10 7020.25 -13980.50 -13780.17 -13750.17 -13910.86 

 24 

We compare both models to see the differences and be able to decide. 25 

Tables 4 and 5 show the estimated parameters in each case, where    are the 26 

means of each group,   the standard deviations and   the weight of each 27 

distribution in the mixture. In both cases, ∑   
 
     . 28 

  29 

Table 4. Set of estimated parameters,      30 

Parameter Group 1 Group 2 Group 3 

  -0.1877 -0.0955 -0.0364 

  0.1267 0.0633 0.0270 

  0.1106 0.6989 0.1905 
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Table 5. Set of estimated parameters, FMM5 1 

 Group 1 Group 2 Group 3 Group 4 Group 5 

  -0.2031 -0.1547 -0.0816 -0.0311 0.0589 

  0.1464 0.0708 0.0550 0.0244 0.0138 

  0.0598 0.1883 0.5989 0.1484 0.0046 

 2 

In consequence, according to (5) it is possible to determine the value of  3 

      for each model and also to compare this model with the empirical data. 4 

Figure 3 shows the histogram of the data together with the empirical density 5 

curve and the density curves of the models with 3 and 5 distributions in which 6 

we can see that they almost overlap and that the theoretical models adjust 7 

adequately to the observed data. Additionally, the density graph is shown if a 8 

univariate normal is assumed with the mean and standard deviation estimated 9 

from the data. 10 

 11 

Figure 3. Histogram and density curves 12 

 13 
Applying expressions (6) to (8), Table 6 shows the theorical mean (6), 14 

variance for each selected model, as well as the corresponding observed value. 15 

We observe that these parameters are perfectly well-fitted.  16 

 17 

Table 6. Mean, variance and standard deviation observed and fitted 18 

Model Mean Variance Standard dev. 

Empirical -0.09446 0.00632 0.07950 

     -0.09446 0.00632 0.07950 

     -0.09446 0.00632 0.07950 

 19 

Additionally, it is possible to calculate the theorical distribution function 20 

for the two models, and, in consequence, to obtain probabilities for any 21 

interval. Table 7 shows calculated probabilities for different intervals, and we 22 

can compare these results with those provides by the data (empirical) and 23 

probabilities based on a normal distribution with the same mean and variance 24 

of the data,                     25 

 26 

  27 
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Table 7. Comparison between distributions functions and the empirical distribution 1 

function 2 

Value DFE FMM3 FMM5 Normal 

-0.45 0.00238 0.00212 0.00274 0.00000 

-0.40 0.00511 0.00519 0.00539 0.00006 

-0.30 0.01856 0.02120 0.01899 0.00486 

-0.25 0.04003 0.03958 0.03983 0.02520 

-0.20 0.08688 0.08556 0.08894 0.09217 

-0.15 0.20306 0.20433 0.20136 0.24240 

-0.10 0.41073 0.41508 0.41344 0.47221 

-0.05 0.68739 0.68777 0.68796 0.71199 

0.00 0.93236 0.92955 0.93138 0.88260 

0.05 0.98909 0.98900 0.98865 0.96539 

0.10 0.99880 0.99801 0.99852 0.99277 

0.15 0.99948 0.99953 0.99951 0.99894 

 3 

Similarly, Table 8 shows the comparison between the quartiles of the 4 

models compared to those of the Data distribution. It can also be seen how the 5 

mixture models adequately reproduce the observed quartiles, which does not 6 

occur when the adjustment is made using a normal distribution. 7 

 8 

Table 8. Comparison of Quartiles between models and the empirical distribution 9 

function 10 

Quartil DFE FMM3 FMM5 Normal 

Q1 -0.13611 -0.13739 -0.13618 -0.14808 

Median -0.08398 -0.08306 -0.08339 -0.09446 

Q3 -0.03956 -0.03971 -0.03971 -0.04083 

 11 

 12 

Once both models are compared, it is observed that the model suggested 13 

as more adequate by the AIC criterion overestimates the number of 14 

distributions that make up the mixture, without a substantial improvement 15 

being observed with respect to the adjustment provided by the model suggested 16 

by the rest of the criteria, consisting of the mixture of three distributions, so it 17 

is the one that has been selected in this case. 18 

 19 

Group membership 20 

 21 

Since the theoretical model is obtained from several normal distributions, 22 

this process allows each of the points to be classified into a group, which 23 

corresponds to each distribution. To do this, and from expression (4), for each 24 

point it is possible to calculate the probability that it belongs to each 25 

distribution, and it is assigned to that group in which the probability is 26 

maximum. 27 

From the selected theoretical model (the one made up of three normal 28 

distributions) each point can be assigned to the group to which it most likely 29 

belongs. That is, each point    is assigned to the group where the value  ̂   is 30 
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maximum. The result is shown in Table 9, where, let us remember, the points 1 

that belong to group 1 have a mean value of -0.188 m and a standard deviation 2 

of 0.127 m (that is, larger errors), group 2, to which the largest number of 3 

observations can be ascribed has a mean of -0.096 m and a standard deviation 4 

of 0.063, while the observations belonging to Group 3 have a mean of -0.036 m 5 

and a standard deviation of 0.027 m. 6 

 7 

Table 9. Number of points by group 8 

Group 1 2 3 

Number of points 276 4886 708 
 9 

Group analysis 10 
 11 

The fact of obtaining groups without the need for additional information 12 

allows obtaining a new variable, qualitative in this case, which can be used to 13 

relate it to other variables, which may allow explaining the relationship of 14 

these groups through other additional variables, which can be both quantitative 15 

and qualitative. In this case, as has been mentioned in the description of the 16 

database, additional information is available on the type of terrain to which 17 

each point belongs. 18 

Table 10 shows the descriptive analysis of the errors according to the type 19 

of terrain to which it belongs. It can be seen how there are differences in the 20 

means and standard deviations depending on the type of terrain: 21 

 22 

Table 10. Number of points by terrain type 23 

Terrain type N Mean Standard dev. 

Abrupt 4432 -0,1084 0,0768 

Building 863 -0,0712 0,0829 

Road 575 -0,0217 0,0343 

One of the advantages of the mixture model is that it allows obtaining a 24 

grouping variable, as has been obtained previously. In this way, it is possible to 25 

study whether there is a relationship between the intrinsic grouping (provided 26 

by the model) and the extrinsic grouping (obtained from the variable "terrain 27 

type"). Since both are qualitative, one way to study it is through the 28 

Contingency Table shown in Table 11. 29 

 30 

Table 11. Contingency table between “Terrain type” and “Group” 31 

 

Group Total 

1 2 3  

Terrain type Abrupt 252 3801 379 4432 

Building 20 764 79 863 

Road 4 321 250 575 

Total 276 4886 708 5870 

 32 

Based on Table 11, the independence tests are carried out, the results of 33 

which are shown in Table 12. In both cases, it is observed how the hypothesis 34 

of independence between the grouping provided by the model and the type of 35 
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terrain can be rejected. 1 

 2 

Table 12. Independence tests 3 
 Statistics df p-value 

Pearson’s    619.253 4 .000 

likelihood ratio 454.047 4 .000 

 4 

A first analysis of the relationship between both variables is shown 5 

in Table 13, where the standardized residuals are shown. Since the way 6 

to obtain them is from the difference between the observed and expected 7 

frequencies, a positive value indicates that there are more points than 8 

there should be if there were independence, and negative the opposite.  9 

 10 

Table 13. Standardized residuals 11 

 Group 

Terrain type 1 2 3 

Abrupt 3,0 1,8 -6,7 

Building -3,2 1,7 -2,5 

Road -4,4 -7,2 21,7 

 12 

This relationship is confirmed by a Factorial Correspondence Analysis, as 13 

shown in Table 14 and Figure 4. 14 

 15 

Table 14. Summary of the Correspondence Analysis 16 

Dimension 
Singular 

value 
Inertia    Sig. 

Inertia proportion 
singular value of 

confidence 

accounted 

for 
Cumulative 

Standard 

dev. 

Correlation 

2 

1 .320 .103   .972 .972 .018 .020 

2 .054 .003   .028 1.000 .010  

Total  .105 619.253 .000 1.000 1.000   

Figure 4. Graphical representation of the Correspondence Analysis  17 

 18 
 19 

 20 

  21 
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Discussion 1 

 2 

Given a set of sample data, an important problem is to find a suitable 3 

parametric model that can describe and model the observed data, so that the 4 

extension of the results to the entire population may be possible. This is 5 

applicable to the case of errors in digital elevation models, especially when 6 

making decisions about the quality of the observations obtained, which are 7 

frequently made under the assumption that the errors are distributed according 8 

to a normal distribution. This assumption is correct from a theoretical point of 9 

view, since, if true, it implies that the observed errors are purely random and 10 

independent of each other. However, in most cases, these hypotheses of 11 

randomness and independence are not met, either for external reasons (for 12 

example, bias in the measurement instrument or errors in the data collection 13 

process) or internal reasons (for example, the fact that not all areas are 14 

homogeneous: a forest area is not the same as a desert area when it comes to 15 

accurately determining a height above sea level). These facts can mean that, 16 

when combining all the observations, the final result is not normally 17 

distributed. 18 

For this reason, this paper presents an example of the application of the 19 

finite mixtures of distributions procedure -specifically Gaussian- to obtain a 20 

parametric model that can be proposed to model the observed data. It is a more 21 

complex model, since the parameters are the means and standard deviations of 22 

each of the mixing distributions, as well as the weighting of each distribution 23 

in the mixture, but once obtained, it provides us with a theoretical way to 24 

calculate the distribution function that best fits the data. We have commented 25 

that mixtures of Gaussian distributions are proposed here, but in theory other 26 

mixture distributions can be assumed, such as log normal, Weibull or even, in 27 

the case of errors taken in absolute value, half normal or skew-normal 28 

distributions. 29 

The proposed working method consists of first determining the number of 30 

distributions that make up the mixture, g by using information criteria -in this 31 

case the BIC better than the AIC due to the principle of parsimony-, the 32 

determination of the 3g parameters, and the construction of the theoretical 33 

distribution function. In this way, we have the desired parametric model, which 34 

allows us to obtain probabilities for any event in the population. In Rodríguez-35 

Avi and Ariza-López (2022) the model is used to propose hypothesis contrasts 36 

by studying the distributions of statistics associated with sampling in such a 37 

population, which leads to a rethinking of the usual quality standards. , such as 38 

the NMAS, EMAS or NSSDA, while here it is proposed to use the information 39 

about the model to divide the errors into groups, which allows them to be 40 

related to other available variables. Given the available data, there is only 41 

information on the type of terrain to which the measured point belongs, but this 42 

analysis can be more interesting if more additional information is available, 43 

such as slope, orientation, land use, etc. These analyzes can allow a better 44 

analysis of the causes of the errors, and, where possible, suggest procedures for 45 

their improvement. 46 
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We believe that this data analysis technique, in this case altimetry errors, 1 

can be applied in many other situations in which it is necessary to circumvent 2 

the limitations of non-normality that have been pointed out in multiple studies 3 

and in different situations. 4 

 5 

 6 
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