
2022-4800-IND  

1 

Selection of Standard Parts under the Influence of Deep 1 

Learning2 

3 
Despite the automation trend, manual assembly still represents an essential 4 
manufacturing step, which is associated with high time and cost 5 
expenditure. To meet these challenges, various optimization approaches for 6 
manual assembly are investigated. New potentials exist through the 7 
integration of object detection algorithms. Object detection is a subfield of 8 
computer vision and is concerned with determining the content and position 9 
of objects based on image properties (features). Deep learning applies when 10 
these features are extracted from diverse data by deep neural networks. 11 
These networks are trained on images containing all relevant information 12 
about the object to be recognized. In this way, images of all components and 13 
typical assembly defects can be integrated into an object detection model to 14 
monitor the assembly process. Overall, the application of Deep Learning 15 
holds great optimization potential for manual assembly. However, the 16 
question arises whether current products are appropriately designed for the 17 
use of such systems. Only if object detection algorithms can identify 18 
assembly components, their use in manual assembly is reasonable. Existing 19 
design guidelines do not consider this aspect yet. This research project 20 
investigates which properties standard parts should have, to enhance the 21 
accuracy of object detection algorithms. 22 

23 
Keywords: Deep Learning, Object Detection, Computer Vision, Product 24 
Engineering, Design Guidelines 25 

26 
27 

Introduction 28 

29 
Despite the ongoing trend towards automation, most companies still 30 

assemble manually, resulting in high time and cost expenditure. In addition to 31 

the high labor costs in the European region, the growing diversity of variants 32 

presents companies with major challenges. Employees have to adapt more and 33 

more flexibly and quickly to new products and variants. The situation is further 34 

exacerbated by the increasing shortage of skilled workers.  35 

To ensure that European companies can continue to hold their own in 36 

global competition, they must constantly optimize their processes. To support 37 

them in this, potential optimization approaches for manual assembly are being 38 

investigated in numerous ongoing research projects. One possibility to 39 

optimize manual assembly lies in the use of object detection algorithms. By 40 

capturing the assembly process using a camera and subsequent object 41 

detection, it is possible to determine the position, location, and type of 42 

components so that information about work steps, assembly errors, or the 43 

current state of the product can be derived. 44 

Object detection is a subfield of computer vision and is concerned with 45 

identifying the content and position of various objects based on certain image 46 

properties (features). Deep learning takes place when these features are 47 
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extracted from data by deep neural networks (Khan et al., 2018). Convolutional 1 

neural networks (CNNs) can be used for this purpose. For object detection, a 2 

CNN is trained with training images, on which the position and class of the 3 

objects of interest are marked. It is trained for a certain number of iterations 4 

and validated over a validation dataset until the detection quality is optimal. In 5 

this way, images of all components and typical assembly defects can be 6 

integrated into the object detection model. 7 

For datasets such as COCO, CIFAR or ImageNet, the performance of deep 8 

learning models has been widely evaluated (Bochkovskiy et al., 2020). These 9 

datasets include various object classes relevant to everyday life (e.g., animals, 10 

buildings, flowers, or furnishings). However, objects from industrial assembly 11 

have different characteristics. While cats, for example, can take on countless 12 

shapes, objects in an industrial context are usually clearly defined. In order to 13 

recognize them reliably, it may be necessary to optimize the architecture of the 14 

neural network or to modify the shape of the objects. In the following, the 15 

second approach will be investigated. This approach has rarely been considered 16 

in the literature because the shape of animals, plants or buildings cannot be 17 

modified. In contrast, industrial products are easier to revise. Design guidelines, 18 

for example, could be used to provide guidance on how to design products in a 19 

way that is appropriate for object detection.  20 

Overall, the use of object detection algorithms based on Deep Learning in 21 

manual assembly holds great potential for optimization. Assembly times could 22 

be reduced, employees could be relieved and assembly errors could be avoided. 23 

However, to ensure that the use of object detection algorithms in manual 24 

assembly is sensible, industrial products and all associated components should 25 

be recognized with reliability. To achieve this, a high level of detectability by 26 

object detection systems should already be considered during product design. 27 

At the moment, there are numerous design guidelines for an assembly-28 

compatible design, but these do not address the aspect of integrating object 29 

detection. 30 

In order to fully exploit the potential of object detection algorithms based 31 

on deep learning in manual assembly, product design should be focused on this 32 

use case. For this reason, the research project investigates which design 33 

properties products and their components must have in order to enable optimal 34 

object detection. Since standard parts (especially screws) are installed in most 35 

industrial products, the research concentrates on this group of products.  36 

 37 

 38 

  39 
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Assembly-oriented product design 1 

 2 
The Product Design Process 3 

 4 

Assembly-oriented product design is an important part of the product 5 

creation process. This is part of the technical product life cycle and can be 6 

divided into the three phases of product planning, product design and 7 

implementation/production (VDI 2221 Part 1, 2019), see Figure 1. While 8 

product planning aims at the general design of the company's offering, product 9 

design is an interdisciplinary company process for the development of a 10 

marketable product, based on a definition of initial goals and requirements for 11 

the product, which are continuously developed and iteratively adapted during 12 

the process.  13 

 14 

Figure 1. Technical Product Lifecycle 15 

 16 
Source: VDI Richtlinie 2221 – Blatt 1, 2019 17 
 18 

In order to increase the comprehensibility of the extensive and complex 19 

product development process, efforts have been made since the end of the 20 

nineteenth century to systematize this process. Reuleaux made the first 21 

considerations at the end of the nineteenth century by developing a model 22 

procedure for kinematic synthesis (Reuleaux, 1875). Further efforts to 23 

systematically structure the product development process were made by 24 

Wögerbauer (1942), Kesselring (1954), Hansen (1965), Hubka (1976), Koller 25 

(1976), Pahl et al. (1977), Roth (1982) and Rodenacker (1991). The aim of all 26 

these considerations was to provide design engineers with tools to develop 27 

products more efficiently. In order to establish a German standard and 28 

harmonize scientific findings, the first edition of VDI 2221 was published in 29 

1986 (VDI 2221, 1986), which was last revised in 2019 due to new findings 30 

(VDI 2221 – Part 1, 2019). In addition to the primary guideline VDI 2221, the 31 

authors refer to additional guidelines such as VDI 2222 Part 1 (1997), VDI 32 

2222 Part 2 (1982), VDI 2223 (2004) and VDI/VDE 2206 (2021), which 33 
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specify special aspects and details of methodical product development and 1 

solution finding.  2 

For example, VDI 2223 recommends the use of design guidelines, also 3 

known as design rules. These give designers concrete indications of potential 4 

design weaknesses and suggest suitable improvements. They can serve as a 5 

checklist for reviewing designs before they are released for elaboration. In 6 

literature, design rules are usually documented as collections of solutions or in 7 

design catalogs. Design guidelines can refer to a wide range of aspects. For 8 

example, there are rules for stress-appropriate, cost-appropriate, welding-9 

appropriate or production-appropriate design. However, for manual assembly, 10 

the information on product design for assembly is particularly relevant.  11 

 12 

Approaches for an assembly-oriented product design 13 

 14 

Product design has a decisive influence on the future assembly process. 15 

For example, the product design influences the structure of the assembly 16 

systems, the future joining processes and the options for feeding, storing and 17 

separating components. For this reason, the assembly processes that will be 18 

required later should already be considered during the design phase. In 19 

literature, different approaches can be found to realize an assembly-oriented 20 

product design, see Figure 2. 21 

 22 

Figure 2. Approaches for achieving an assembly-oriented product design 23 

 24 
Source: Own illustration based on Ehrlenspiel, 1995 25 

 26 

On the one hand, concrete design guidelines for assembly-oriented design 27 

are provided in form of collections of examples and design guidelines. The 28 

authors recommend that assembly problems should already be taken into 29 

account during the synthesis steps in the product development process. Well-30 

known collections of examples can be found in Pahl et al. (2007), Andreasen et 31 

al. (1983), Hesse (1995), Bäßler (1988) and Gairola (1981).  32 

Another approach is the analysis of assembly-relevant product properties. 33 

Here, a systematic product analysis is used to assess the suitability for 34 
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assembly and to identify weak points. Concrete methods can be found in Hesse 1 

(1995), Bäßler (1988), Gairola (1981) and Bothroyd et al. (1983). 2 

The third approach concerns the integration of design, planning and 3 

assembly. Organizational measures can improve cooperation between these 4 

various departments so that the flow of information is optimized. An integrated 5 

process should improve planning quality, reduce development time and 6 

minimize costs. The discussed approaches are not comparable, but they are 7 

highly complementary. Ideally, all three approaches are combined (Ehrlenspiel, 8 

1995). 9 

In the context of the paper, the first approach will be pursued. The aim is 10 

to derive concrete design guidelines from practical tests. These shall serve 11 

designers as a tool to design products in a way that they are reliably recognized 12 

by object detection algorithms based on Deep Learning. 13 

 14 

 15 

Deep Learning based Object Detection 16 
 17 

Object detection has attracted increasing attention in recent years due to its 18 

wide range of applications and recent technological breakthroughs. This task is 19 

being intensively studied both in academia and in practice, e.g. in security 20 

surveillance, autonomous driving, traffic monitoring, drone scene analysis and 21 

robot vision. Among the many factors and efforts that have led to the rapid 22 

development of object detection techniques, notable contributions should be 23 

attributed to the development of deep convolutional neural networks and the 24 

computational power of GPUs. Currently, the deep learning models are widely 25 

used throughout the computer vision field, including general object detection 26 

and domain-specific object detection. Most state-of-the-art object detectors use 27 

deep learning networks as a backbone and recognition network to extract, 28 

classify or localize features from input data.  29 

The task of identifying and localizing objects on RGB-image data is 30 

crucial for many applications in the industrial environment. Typically, deep 31 

learning-based methods achieve this goal by using features extracted by 32 

convolutional neural networks (CNNs) (Lecun et al., 1998). CNNs are built by 33 

alternately stacking convolutional and pooling operations with learnable 34 

weights. Convolutional layers convolve one or more parameterized kernel with 35 

the respective input data and thus create feature maps. These contain low-level 36 

features like edges and textures in the networks first layers and high-level 37 

features like object information in the deeper layers.  38 

To reduce the number of parameters in the networks, the spatial feature 39 

map size is scaled down using pooling operations such as max pooling or 40 

average pooling. The pooling operation is typically performed over a 3 x 3 41 

sliding window of the input data (Wu, 2017). This is one of many applied 42 

feature-space dimensionality reduction methods that lead to a more stable 43 

training and better generalization of the trained model.  44 

Typically, the output of each networks layer is applied to an activation 45 

function to introduce the necessary non-linearity of a neural network. The most-46 
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widespread activation function is the rectified linear unit (ReLU) f(x)=max(0, x) 1 

(Nair et al., 2010). 2 

By stacking pooling and convolutional layers, a network can be built that 3 

enables a hierarchical and evolutionary development of pixel data towards 4 

meaningful feature representations. These can be used for the mentioned 5 

downstream tasks such as classification and localization of objects. Many of the 6 

downstream applications use Residual Networks (He et al., 2016) as backbone, 7 

whereas other types of neural networks like Transformers (Dosovitskiy et al., 8 

2021) have shown large success as feature extractors.  9 

Object detection methods can mainly be divided in two-shot methods, where 10 

object regions are predicted first and classified in a separate neural pathway 11 

(Girshick et al., 2014) and one-shot methods where location and class of objects 12 

are derived from the same features (Redmon et al., 2016). In the present work, a 13 

region proposal-based method (Ren et al., 2016) coupled with a feature pyramid 14 

network (Lin et al., 2017) is used. Two-shot approaches typically show a higher 15 

object detection accuracy at a higher computational cost than single-shot-detectors.  16 

Faster-RCNN introduces the concept of a region proposal network (RPN) to 17 

determine regions of interest (RoI) that will be classified. The RPN is a fully 18 

convolutional network to predict object bounds and objectness scores at each 19 

image position. The RPN slides of selected feature maps of the backbone CNN, 20 

obtaining a low-dimensional vector at each position. This vector is fed into a 21 

classifier and regressor to classify if there is an object and regress its position. 22 

Each region then is parameterized relative to a reference anchor box. The 23 

distance between the predicted box and the ground truth position is measured 24 

to only output the offset between the predicted box and the anchor.  25 

Feature pyramids built upon image pyramids have been widely applied in 26 

many object detection systems to improve scale invariance. The FPN consists 27 

of a bottom-up pathway and a top-down pathway of differently sized featured 28 

maps from the backbone CNN. It so combines low-resolution and semantically 29 

strong features with high-resolution and semantically weak features.  30 

Due to its architecture, a vanilla Faster-RCNN network will output multiple, 31 

slightly shifted bounding boxes for each object. These must be filtered for 32 

duplicates to achieve useful prediction results. NMS (non-maximum suppression) 33 

is a heuristic method which selects only the object of the highest classification 34 

score, otherwise the object will be ignored. This method is commonly used in 35 

almost all object detection architectures, despite there is active research toward 36 

NMS-free methods (Hosang et al., 2017). 37 

The resulting network can be trained end-to-end using bounding-box 38 

annotated image data. Typically, this is done using stochastic gradient descent on a 39 

combined loss function to both minimize the bounding-box position error and the 40 

logistic classification error. Typically, the network is trained on a large dataset 41 

such as Microsoft Common Objects in Context (Lin et al., 2014). COCO contains 42 

80 objects classes and 328K images. The pre-trained network is then finetuned for 43 

a specific task such as detection of screws or other relevant objects.  44 

Current research in the field of unsupervised object classification and 45 

detection shows the general viability of training networks without annotated 46 
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data. These approaches allow to use much larger amounts of training data (and 1 

thus more accurate networks) and use models in even more application field, 2 

where data annotation is inefficient. Especially methods such as contrastive 3 

learning (Chen et al., 2020) have gained latest attention as standard CNNs trained 4 

under this unsupervised method achieve similar accuracy compared to supervised 5 

training procedures.  6 

The broad variety of deep learning methods led to a large number of different 7 

methods for localizing and classifying objects. Faster-RCNNs have been around 8 

for many years and thus are well understood in both their technical details and 9 

real-world behavior. Newer methods such as shifting window transformers (Liu et 10 

al., 2021) or the YOLO family with YOLOR (Wang et al., 2021) as state-of-the-11 

art method might outperform Faster-RCNN in terms prediction performance. The 12 

research objective in this work however is a real-world problem, where not latest 13 

research trends are deployed but well understood methods. 14 

 15 

 16 

Materials and Methods 17 
 18 

Null hypotheses and alternative hypotheses 19 

 20 

In order to develop design guidelines, the first step was to formulate theses 21 

concerning an optimal selection of standard parts. The basic functionality of object 22 

detection algorithms was used as the basis for the theses. The object detection 23 

algorithms available on the research stage are based on CNNs, which consist of 24 

several layers arranged one after the other. The receptive field of the individual 25 

layers increases the deeper they are in the network. During the training process, the 26 

first layers learn to recognize simple image features such as corners and edges. 27 

Deeper layers respond to more complex contours and higher dimensional features. 28 

If image features are assigned to an incorrect object class due to their high 29 

similarity, the object detection algorithms can no longer reliably identify the 30 

objects to be detected. On this basis, the hypotheses listed in Table 1 were 31 

formulated.   32 

Since a hypothesis cannot be statistically proven, but only disproven, null and 33 

alternative hypotheses were formulated. If a null hypothesis can be refuted by the 34 

experiments described below, the respective alternative hypothesis can be 35 

accepted. (Siebertz et al., 2017) 36 

 37 

Table 1. Null hypotheses and alternative hypotheses 38 

No. Null hypothesis Alternative hypothesis 

1 

Screws of the same type are detected 

even if their nominal size differs by 

only one size increment. 

mAP > 75 

Screws of the same type are confused 

if their nominal size differs by only 

one size increment. 

mAP ≤ 75 

2 

Screws with similar screw heads will 

be detected reliably. 

mAP > 75 

Screws with similar screw heads will 

be confused. 

mAP ≤ 75 

 39 
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The Mean Average Precision (mAP) is a quantitative specification for the 1 

recognition accuracy of an object detection model and will serve as an 2 

indicator in the experiments. Due to the high complexity and individuality in 3 

applications of object detection algorithms, no concrete minimum value for the 4 

mAP is defined in the literature. Depending on the use case, a higher or lower 5 

mAP may be sufficient for reliable object detection. In the context of this 6 

paper, a mAP higher than 75% is assumed to be sufficient. 7 

 8 

Dependent variables and independent variables 9 

 10 

The hypotheses were tested by experiments. The basis of the experimental 11 

design was the determination of independent and dependent variables. As 12 

described before, the mAP was used as the dependent variable. The definition 13 

of mAP used in this work is analogous to the metric mAP@[50%:95%] used in 14 

the COCO dataset. It describes the average of the variant Average Precision 15 

values under the assumption that a positive detection is evaluated at 50%, 55%, 16 

..., to 95% agreement between prediction and actual position of the object. The 17 

Average Precision is obtained from the area under the Precision (Recall) 18 

function, where Recall is defined as the correct positive rate (sensitivity) and 19 

Precision is defined as the positive prediction value (accuracy) (Henderson et 20 

al., 2017). 21 

In this way, the mAP evaluates both the quality of classification (Are the 22 

correct objects detected?) and of position determination (Is the position of the 23 

objects on the images detected correctly?) by the prediction model. With regard 24 

to the theses under investigation, it seems appropriate to provide a meaningful 25 

value on detection accuracy. (Henderson et al., 2017) 26 

Regarding the independent variables, a distinction must be made between 27 

influencing variables which are intended to be varied deliberately (factors) and 28 

influencing variables which are kept constant (control variables). Since the 29 

optimal standard part selection for high detectability is supposed to be 30 

investigated by object detection algorithms, the screw diameter as well as the 31 

head shape of the screws were defined as factors to be varied.  32 

Object detection models are usually trained and validated on a database 33 

consisting of images of the objects to be detected. Since these are essential for 34 

the recognition accuracy, all variables that influence the image characteristics 35 

have to be defined as independent variables and kept constant during the tests. 36 

This ensures that only the influence of the standard part selection on the mAP 37 

is measured. Besides the illumination intensity, image background, image 38 

quality, image perspective as well as the number of training and validation 39 

images used have to be kept constant. Finally, there are a variety of different 40 

object detection algorithms that can be used for object detection. Since the type 41 

of model used also has an impact on mAP, one algorithm must be selected and 42 

applied for the experiments. 43 

  44 
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Experimental Setup 1 

 2 

After defining the independent and dependent variables, an experimental 3 

setup was planned which allows the control variables to be kept constant while 4 

the screws characteristics are varied.  5 

The principle procedure of the investigation is shown in Figure 3. First, 6 

screws with different diameters and screw heads were selected.  In addition to 7 

grub screws, cylindrical head, countersunk head and lens head screws were 8 

procured in nominal sizes M3 to M10. Since screws in assemblies usually 9 

occur in a bolted state, elements were designed to house the screws. These 10 

were simple aluminum cubes which were provided with threaded holes. In 11 

order to investigate the previously established hypotheses, similar screw 12 

diameters and screw heads were selected in each case and illuminated whether 13 

they could be distinguished by an object detection algorithm. The selected 14 

screw pairs can be taken from Table 2.  15 

 16 

Figure 3. Experimental Setup 17 

 18 
 19 

Table 2. Selected Screw Types - The object detection models are each trained 20 

with images of both types and are designed to differ between the two types. 21 

Hypothesis Screw type 1 Screw type 2 

1 

Cylinder head screw M3 Cylinder head screw M4 

Cylinder head screw M5 Cylinder head screw M6 

Cylinder head screw M8 Cylinder head screw M10 

Lens head screw M3 Lens head screw M4 

Lens head screw M5 Lens head screw M6 

Lens head screw M8 Lens head screw M10 

Countersunk screw M3 Countersunk screw M4 

Countersunk screw M5 Countersunk screw M6 

Countersunk screw M8 Countersunk screw M10 

Grub screw M3 Grub screw M4 

Grub screw M5 Grub screw M6 

Grub screw M8 Grub screw M10 

2 Cylinder head screw M3 Lens head screw M3 
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Countersunk screw M3 Grub screw M3 

Cylinder head screw M6 Lens head screw M6 

Countersunk screw M6 Grub screw M6 

Cylinder head screw M10 Lens head screw M10 

Countersunk screw M10 Grub screw M10 

 1 

Figure 4. Example of a pairing - Cylinder head M3 and grub screw M3 2 

 3 
 4 

Afterwards, images of the inserted screws were created. Figure 1 shows 5 

an example of a pair consisting of a cylinder head M3 and a grub screw M3 6 

(hypothesis 2), which should be distinguished. In order to keep the illuminance 7 

constant, these images were recorded in a room illuminated exclusively with 8 

artificial light, and the illuminance was continuously monitored using a 9 

calibrated lux meter. The objects were placed on an electric turntable, which 10 

has a rotation speed of 60 seconds per revolution and a white surface, at the 11 

same position each time. In addition, a camera (Sony Alpha 6300 with 12 

SELP1650 lens) was focused on the objects of interest. To capture images of 13 

the screws, the turntable was set in rotation and, starting at a defined start 14 

mark, an image was recorded every second. The settings as well as the position 15 

of the camera to the object were kept constant during the recording of each test 16 

object.  17 

After all objects had been recorded from one perspective, the camera 18 

changed position in order to record all objects from another perspective and 19 

thus generate a larger number of images. In total, images were recorded from 20 

ten different perspectives. The described procedure ensured that the object 21 

images differed only in their visual appearance.  22 

For each screw type, a total of 360 images were recorded and divided into 23 

training and validation images. Every fifth image was defined as a validation 24 

image, while the remaining images were used as training images. 25 

Subsequently, both the training and validation images were labeled. For this 26 
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purpose, it was manually marked on the images which screw is contained and 1 

at which position it is located. Afterwards, the model was trained.  2 

For this purpose, a Faster-R CNN model with ResNet-50 backbone and a 3 

feature pyramid network head was used, which represents a good compromise 4 

between detection accuracy, training time, inference time, and model size at the 5 

time of the study. The model architecture, as well as a model pre-trained over 6 

~37 epochs on the COCO dataset, were taken from the PyTorch framework 7 

detectron2 developed by FAIR. (Wu et al., 2021; Ren et al., 2016). Each model 8 

contained two object instances, for which in each case 240 images were used 9 

for training and 60 images for validation. 10 

The detectron2 framework enables a low development effort for object 11 

detection methods, offers a variety of different model architectures, and is 12 

more performant in terms of training and inference time than a pure PyTorch 13 

implementation. Using a pre-trained model is common practice because it 14 

eliminates learning simple contours of the first network layers. This has a 15 

positive effect on the training time and the number of frames needed for 16 

training. 17 

On the pre-trained model, the training images were trained locally for 18 

40,000 iterations and validated using the validation dataset. The obtained 19 

results are explained in the following section. 20 

 21 

 22 

Results 23 

 24 
The results indicate that all screws considered can be identified by the 25 

object detection with high reliability. For all models, the mAP is significantly 26 

higher than the value of 75 described in Materials and Methods.  27 

In order to obtain statistically valid results, the experiment was repeated three 28 

times and the one-sided one-sample t-test was performed. For this purpose, the 29 

t-value for each model was calculated according to Equation 1 and compared 30 

with the critical t-value for α = 0.05 (t = 2.920) according to Graf et al. (1998). 31 

If the calculated t-value is higher than the critical t-value, the difference 32 

between  ̅ and    is significant (Schneider, 2020).   33 
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Table 3 shows that for all models, T > t.   1 

       2 

  
 ̅    
 

√  Equation 1 

 ̅ Mean average of test results (=    ̅̅ ̅̅ ̅̅ ) 

   Value tested against (= 75) 

  Standard deviation 

  Size of sample (= 3) 

 3 

  4 
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Table 3. Experimental Results 1 

Hypothesis Model    ̅̅ ̅̅ ̅̅ ̅   

1 

Cylinder head M3 + Cylinder head M4 98.14 49.2 

Cylinder head M5 + Cylinder head M6 98.92 39.4 

Cylinder head M8 + Cylinder head M10 98.89 34.8 

Lens head M3 + Lens head M4 97.65 93.4 

Lens head M5 + Lens head M6 99.55 123.4 

Lens head M8 + Lens head M10 99.52 266.2 

Countersunk M3 + Countersunk M4 91.68 10.9 

Countersunk M5 + Countersunk M6 91.62 4.8 

Countersunk M8 + Countersunk M10 93.40 7.0 

Grub screw M3 + Grub screw M4 81.64 5.5 

Grub screw M5 + Grub screw M6 84.16 6.0 

Grub screw M8 + Grub screw M10 85.77 3.1 

2 

Cylinder head M3 + Lens head M3 96.18 26.4 

Countersunk M3 + Grub screw M3 85.56 5.6 

Cylinder head M6 + Lens head M6 98.69 42.1 

Countersunk M6 + Grub screw M6 88.55 7.0 

Cylinder head M10 + Lens head M10 99.40 40.7 

Countersunk M10 + Grub screw M10 89.45 9.4 

 2 

Despite the very high overall detection accuracies, some models detect 3 

screws more accurately if they have larger nominal diameters. For example, 4 

grub screws are better distinguished from one another the larger their diameter 5 

(81.64 < 84.16 < 85.77). Considering the models with countersunk screws and 6 

grub screws, it becomes clear that screws achieve higher mAP when their 7 

absolute size increases (85.56 < 88.55 < 89.45). These results lead to the 8 

assumption that some screws are better detected the wider their absolute 9 

diameter tends to be. 10 

In addition, the test results show that the models containing grub screws 11 

and countersunk screws have slightly lower recognition accuracies compared 12 

to the other models. Unlike lens head and cylinder head screws, these two 13 

types of screws are fully sunken into the component. This leads to the 14 

assumption that screws are better detected if their head does not entirely sink 15 

into the component. 16 

However, even the model with the lowest mAP (81.64) achieves a very 17 

high recognition accuracy and is able to identify the contained objects with 18 
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high reliability.  Therefore, the present investigation does not result in any 1 

design restrictions with regard to the selection of standard parts. 2 

 3 

 4 

Conclusions 5 
 6 

No restrictions for designers with regard to the selection of standard parts 7 

can be derived from the results of the investigation. All screws considered in 8 

the investigation were detected reliably by the algorithm used. This shows that 9 

a conventional Faster-R-CNN model has no problems recognizing screws with 10 

very similar optical properties. Thus, neither an optimization of the architecture 11 

of the model nor of the selection of standard parts is necessary.  12 

However, in addition to the theses considered, there are a number of other 13 

product features which are not addressed in the present study. For example, it 14 

is necessary to examine the influence of certain assembly characteristics on 15 

recognition accuracy and the extent to which similar design elements (e.g. 16 

grooves, bores, etc.) can be distinguished. Since the screws in the present 17 

investigation were deliberately tested in simple aluminum cubes in order to 18 

minimize interference, it is also necessary to determine whether the results can 19 

be transferred to standard parts in real products. The product environment - e.g. 20 

the assembly workplace, tools or body parts of assembly workers - represents a 21 

significant optical interference influence and could affect the detection 22 

capability of the object detection algorithms. Experience shows that 23 

environmental conditions have a great influence on the quality of object 24 

detection algorithms, so that different results can be expected here with high 25 

probability.  For this reason, further tests must be carried out in a real product 26 

environment to verify the results.  27 

Overall, the research project represents a first step towards deriving design 28 

guidelines for the use of object detection algorithms in manual assembly, 29 

which must be followed by further investigations. Only after a comprehensive 30 

examination of the topic a statement can be made whether the use of object 31 

detection algorithms in manual assembly results in restrictions with regard to 32 

the product design. 33 

 34 
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