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1 

Code Metrics Based Bug Classification using H2O 1 

AutoML 2 

 3 

Context: Classifying the priority of software bugs is an important activity in 4 

software maintenance. Manually screening error reports and determining the 5 

priority of each bug is a time-consuming process that requires resources and 6 

expertise. In many cases, assigning priorities manually causes errors, and 7 

prevents developers from completing tasks, fixing errors, and improving quality 8 

Objective: The purpose of this study is to summarize, analyze and evaluate the 9 

proposed software bug prediction techniques using ma-chine learning (ML). In 10 

addition to provide and evaluate the experimental evidence gained from the 11 

past studies regarding ML techniques and bug prediction models. Also, it aims 12 

to predict bugs in systems by code metrics using ML and priorities them. 13 

Method: Given a UNIFIED dataset of bugs from an open-source soft-ware 14 

project, this study uses H2O AUTOML to detect and categories code bugs. The 15 

process of assigning the category for code bugs consists of multi phases, which 16 

involves data collection, formatting priority of the bugs, features’ selection, 17 

dataset training, applying H2O algorithm, and finally the evaluation process. 18 

The proposed structure involves using H2O AUTOML to determine the best 19 

model that matches the bugs unified dataset. Results: The results showed that 20 

the best model is “GBM 2 AutoML 20210415 132614" from the Gradient 21 

Boosting Machine family with an accuracy of 73% and mean per class error of 22 

46%. Conclusion: This research provides a framework that can automatically 23 

assign appropriate classes to code bugs, thereby avoiding time-consuming and 24 

resource-limited software testing. The proposed structure involves using the 25 

library H2O AUTOML to determine the best model that matches the bugs 26 

unified dataset. The ability to use H2O AutoML to classify bugs in Unified 27 

dataset has been demonstrated, H2O exceeds expectations in terms of ease of 28 

use and scalability, active customer base, and open-source machine learning 29 

community. 30 

 31 

Keywords: Bug Prediction, AutoML, Code Metrics, Classification, H2O. 32 

 33 

 34 

Introduction 35 

 36 

Software bug prediction is a popular research area in the field of software 37 

engineering today. Bug or defect prediction is a process by which researchers try 38 

to learn from mistakes committed in the past and build a prediction model to 39 

leverage the location and number of future bugs. 40 

 Finding and eliminating bugs in software systems has always been one of the 41 

most important issues in software engineering. If the bugs are detected earlier 42 

through prediction, the quality of software can be improved. [2] When bugs are 43 

found before the release of the software, they can be removed before the 44 

deployment of the software. 45 

 46 

The goals of software bug prediction, especially when being applied to the 47 

early stage, are to increase the value of the software and lessen the cost, which 48 
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eventually offers well-planned software management. There has been impressive 1 

development and premium in modern uses of AI (ML) as of late. ML engineers, as 2 

a result, are sought after across the business, yet improving the proficiency of ML 3 

engineers stays a central test. 4 

Mechanized AI (AutoML) has arisen as an approach to save time and 5 

exertion on dull assignments in ML pipelines, for example, information handling, 6 

include designing, model determination, hyperparameter streamlining, and 7 

forecast result examination. H2O AutoML is a robotized AI remembered for the 8 

H2O structure. That is easy to utilize and delivers top-notch models that are 9 

appropriate for arrangement in an undertaking climate. 10 

H2O AutoML upholds administered preparing of relapse, double order, and 11 

multi-class grouping models on plain datasets. One of the advantages of H2O 12 

models is the quick scoring abilities – numerous H2O models can produce 13 

expectations in sub millisecond scoring times. H2O AutoML offers APIs in a few 14 

dialects (R, Python, Java, Scala) which implies it tends to be utilized flawlessly 15 

inside an assorted group of information researchers and specialists [1]. 16 

 17 

 18 

Literature Review 19 

 20 

This article focuses on related works and studies that are mainly related to 21 

machine learning (ML) and the techniques were applied to software bugs 22 

classification. This section introduces recent studies and literature that are related 23 

to bugs‟ classification. 24 

Malhotra [2] focused on the objective of programming bug expectation to 25 

distinguish the product modules that will have the probability to get bugs, by 26 

utilizing some key undertaking assets before the genuine testing begins. Because 27 

of significant expense in revising the recognized bugs. They conducted a survey of 28 

past writing on programming bug forecast and AI to understand the suitable way 29 

toward building the expectation model. Not just they need to see the AI 30 

procedures that previous analysts utilized, they likewise survey the datasets, 31 

measurements and execution estimates that are utilized during the improvement of 32 

the models. In this investigation, they have limited to 31 fundamental 33 

examinations and six kinds of AI procedures have been recognized. 34 

Two public datasets are discovered to be much of the time utilized and 35 

object-arranged measurements are the exceptionally picked measurements for the 36 

forecast model. Concerning the presentation measure, both graphical and 37 

mathematical measures are regularly used to assess the exhibition of the models. 38 

From the out-comes, they presume that the AI procedure can foresee the bug, 39 

however there are relatively few applications in this space that exist these days. 40 

Tóth Zoltán [3] examined two principal themes, these being the development 41 

of new bug datasets with their assessment in bug forecast, and a philosophy for 42 

estimating practicality in heritage frameworks written in the RPG programming 43 

language. In the event of bug datsets, they gathered existing public bug datasets 44 

that utilization static programming item measurements to describe the bugs. These 45 

datasets assembled from different sources, like Source-Forge, Jira, Bugzilla, CVS, 46 
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and SVN. GitHub, being a pattern for facilitating open-source projects, was a 1 

decent contender to accumulate new ventures from.  2 

They developed another dataset to beat these inadequacies and to propose 3 

another dataset with exceptional bug information. Also, they introduced a 4 

technique for binding together open bug datasets, in this way they share normal 5 

measurements as descriptors. They showed how heterogeneous distinctive datasets 6 

can be by contrasting their metric suites. They likewise introduced the capacities 7 

of assembled bug expectation models on account of the recently made GitHub 8 

Bug Dataset and on account of the Unified Bug Dataset also. They recommend 9 

that specialists should initially take a stab at utilizing existing bug datasets, and 10 

just if none of them adjusts to their necessities, build another redid dataset for their 11 

very explicit prerequisites  [3]. 12 

Abozeed et al. [1] demonstrated that the expense of fixing mistakes raises as 13 

task travels through its life cycle in an outstanding style. Recognizing carriage 14 

classes, when they are focused on the Form Control System, would essentially 15 

affect decreasing such expense. In this paper, tests are done to consider the impact 16 

of highlight determination on the presentation of bug forecast models furthermore, 17 

to check if better outcomes can be gotten by utilizing the promising Deep 18 

Learning procedures. Results show that applying include choice, utilizing a basic 19 

channel approach, for example, choosing the exceptionally positioned 9 and 5 20 

highlights out of the 17 highlights, did not improve the exhibition measures as a 21 

rule. On the other hand, results show that Deep Learning model (DL) 22 

accomplishes better measures than choosing a set of base classifiers for little and 23 

adjusted datasets. 24 

Perera [4] introduced SBST methods, replacing costly assignment of 25 

physically composing experiments. SBST strategies are viable at producing tests 26 

with high code inclusion. They argue that SBST should be engaged to look for 27 

experiments in imperfect zones maybe in non-flawed spaces of the code to boost 28 

the probability of finding the bugs. Imperfection forecast calculations give 29 

valuable data about the bug inclined regions in programming. Subsequently, they 30 

aimed to improve the bug discovery ability of SBST by joining deformity 31 

expectation data. They devise two examination targets, i.e., 1) Develop a novel 32 

methodology SBST that dispenses time spending plan to classes dependent on the 33 

probability of classes being deficient, and 2) Foster a novel technique SBST to 34 

manage the hidden pursuit calculation (i.e., hereditary calculation) towards the 35 

flawed territories in a class. Through exact assessment on 434 genuine revealed 36 

bugs in the Defects4J dataset, they exhibit that the novel methodology, SBST, is 37 

altogether more effective than the best-in-class SBST at the point when they are 38 

given a tight time spending plan in an asset compelled situation. 39 

Other researchers [5] utilized bug datasets to construct and approve novel bug 40 

expectation models. They focused on gathering existing public source code 41 

metric-based bug datasets and bind together their substance. Moreover, they wish 42 

to evaluate the plenty of gathered measurements and the abilities of the brought 43 

together bug datasets in bug forecast. They considered 5 public datasets and 44 

downloaded the relating source code for every framework in the datasets and 45 

performed source code investigation to get a typical arrangement of source code 46 
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measurements. Along these lines, they delivered a bound together bug dataset at 1 

class and document level also. They examined the redirection of metric definitions 2 

and upsides of the diverse bug datasets. At last, they utilized a choice tree 3 

calculation to show the capacities of the dataset in bug forecast. They combined all 4 

classes (and documents) into one dataset which comprises of 47,618 components 5 

(43,744 for records) and assessed the bug prediction model expand on this dataset 6 

also. At last, they additionally examined cross-project abilities of the bug 7 

prediction models and datasets.  8 

Ferenc et al. [6] investigate growing dependence on programming items and 9 

how to discover bugs as ahead of schedule and as effectively as expected. They 10 

propose to restore static source code measurements and use them with deep 11 

learning – among the most encouraging and generalizable prediction techniques – 12 

to find suspicious code fragments at the class level. They show a point-by-point 13 

philosophy of how they adjusted deep neural networks, applied them to a bug 14 

dataset (containing 8780 messed with and 38,838 not messed with Java classes), 15 

and compared them using different metrics. They show that deep learning with 16 

static measurements can undoubtedly support prediction correctness‟s. The best 17 

model has a F-score of 53.59%, which increments to 55.27% for the best group 18 

model containing a profound learning segment.  19 

Kaen et al. [7] investigate the evolution and development in the field of man-20 

made brainpower and its different branches, for example, Machine Learning (ML) 21 

and Deep Learning in different imperative fields like advanced mechanics, smart 22 

vehicles, urban communities, medical services, computer programming and 23 

numerous different fields. They propose to use the Chi-Square feature selection 24 

method to find features importance. They also propose to build ML models by 25 

using both of 1) top ten important features and 2) top five important features, 26 

based on the three ML classifications algorithms, Support Vector Machine (SVM), 27 

Naïve Bayes (NB), and Linear Discriminant Analysis (LDA). Results showed that 28 

the proposed approach against baseline achieved an improvements as average 29 

accuracy reaching up to 5.12%, 4.15% and 1% on the NB, SVM and LDA 30 

classifiers respectively.  31 

Khan and others [8] introduced programming bug prediction (SBP) models to 32 

improve the product quality assurance (SQA) measures by predicting buggy 33 

components. The bug prediction models use ML classifiers to predict bugs in 34 

software parts in some software metrics. Numerous strategies have been proposed 35 

by specialists to predict the imperfect segments, yet these classifiers sometimes do 36 

not perform well when default settings are utilized for AI classifiers. They use ML 37 

classifiers related to the Artificial Immune Network (AIN) to improve bug 38 

prediction accuracy through its hyper-boundary streamlining. For this reason, 39 

seven classifiers, for example, support vector machine Radial base capacity 40 

(SVM-RBF), K-closest neighbor (KNN) (Minkowski metric), KNN (Euclidean 41 

measurement), Naive Bayes (NB), Decision Tree (DT), Linear segregate 42 

investigation (LDA), Random woods (RF) and versa-tile boosting (AdaBoost), 43 

were utilized. The results showed that hyper-boundary improvement of ML 44 

classifiers, utilizing AIN and its applications for programming bug prediction, 45 

performed better compared to when classifiers with their default hyper-boundaries 46 
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were utilized. 1 

Wahono [9] introduced a systematic literature review that aims to identify 2 

and analyze the techniques, methods, frameworks, and datasets which are used in 3 

software defect prediction. Results showed that researchers proposed many 4 

techniques for improving the accuracy of ML classifiers for software defect 5 

prediction using different methods, different algorithms, and using different 6 

optimization methods for some classifiers.  7 

Pandey et al. [10] propose a simple grouping-based system Bug Prediction 8 

utilizing Deep portrayal and Ensemble learning (BPDET) methods for SBP. The 9 

product measurements which are utilized for SBP are generally traditional. 10 

Marked denoising auto-encoder (SDA) is utilized for the deep portrayal of 11 

programming measurements, which is a strong element learning strategy. The 12 

proposed model is primarily separated into two phases: deep learning stage and 13 

two layers of EL stage (TEL). The analysis was performed using 12 datasets 14 

extracted from NASA, to uncover the effectiveness of DR, SDA, and TEL. 15 

Different metrics have been used such as: Mathews Correlation Coefficient 16 

(MCC), the Area Under Curve (AUC), Precision-Recall Curve (PRC), F-measure, 17 

and Time. Out of 12 dataset MCC values over more than 11 datasets, ROC values 18 

over than 6 datasets, PRC values over 12 datasets and F-measure more than 8 19 

datasets which outperform the existing studies. 20 

Brumfield [12] focus is to improve the prediction of programming bugs using 21 

miniature examples with deep learning techniques. Software bug prediction at a 22 

better granularity level will allow designers to restrict code to test and troubleshoot 23 

during the development process. Existing research demonstrates that these 24 

methods help designers in distinguishing programming that has possible 25 

deformities during development. The major goal is to restrict the product bugs to 26 

guarantee that only the affected documents are addressed to test and troubleshoot. 27 

Researchers have discovered relationships amongst measurements and 28 

programming absconds in programming undertakings to construct perceptive 29 

models utilizing static examination and AI procedures. 30 

Bilgin and others [13] aim to develop a ML model for vulnerability 31 

prediction based on the AST representation of source code, and transfer as much 32 

information as possible from AST to numeric array representation. According to 33 

the experimental analysis, this process reduces training time by about 68%. The 34 

authors first proposed a source code representation method that is capable of 35 

characterizing source code into a proper format for further processes in ML 36 

algorithms. The authors conducted many experiments under different settings with 37 

the objective of predicting five different predetermined vulnerability types and 38 

achieved promising and encouraging results compared to state-of-art methods. 39 

Felix [14] demonstrated how certain optimal variables can be applied both in 40 

data preprocessing, and in predicting the possible number of defects in a future 41 

version of a software product, using information available from the current version 42 

at the method level of the software. Also, Trautsch and others [15] combined a 43 

state-of-the art just-in-time defect prediction approach with additional static source 44 

code metrics from OpenStaticAnalyzer and static analysis warnings from a well-45 

known Java static analysis tool (PMD). 46 
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Also, others [16] proposed research that aims to automatically recognize 1 

relevant functions, which later should be revised manually by programmers; that is 2 

the authors were interested in achieving high recall and trading precision for recall 3 

if needed. Machine learning methods were applied to a software engineering 4 

problem of fault prediction. 5 

Lee et al. [17] proposed 56 micro interaction metrics (MIMs). They proposed 6 

defect prediction models using the MIMs, traditional metrics, and their 7 

combinations. To evaluate the proposed model, they used a 10-fold cross 8 

validation, and repeated the process 100 times for each prediction model on each 9 

different time split to validate the prediction performance of MIMs. Results 10 

showed that they altogether improve defect classification and regression accuracy. 11 

Ramay et al. [18] propose a deep neural network-based automatic approach 12 

that aims to predict the severity of bug reports. The proposed approach involves : 13 

1) applying NLP techniques for text preprocessing of bug reports, 2) computing 14 

and assigning the emotion score for each of the processed bug report, 3) creating a 15 

vector for each preprocessed bug report, and finally 4) passing the vectors and the 16 

emotion scores to the deep neural network for severity prediction. We also 17 

evaluate the proposed approach on the history-data of bug reports. The evaluation 18 

process showed that the proposed approach outperforms the previous approaches 19 

by improving the f-measure by 7.90%. 20 

Fan and others [19] proposed a deep learning-based strategy called DP-21 

ARNN, as a guide to programming testing and code analysis, to predict potential 22 

code defects in programming. DP-ARNN used RNN to naturally create syntactic 23 

and semantic highlights from source code. The authors applied the proposed 24 

system to catch significant features that help to predict defects accurately. They 25 

used seven open-source projects to validate their method. Results showed that DP-26 

ARNN outperforms the previous approaches and improves the F1-measure by 27 

14% and AUC by 7%. 28 

Mani and others [20] propose a bug report representation using a deep 29 

bidirectional RNN called DBRNN-A that discovers the syntactic and semantic 30 

features from long word sequences in an unsupervised manner. They use unfixed 31 

bug reports for training (about 70% of bugs from a open-source bug tracking 32 

system) which were ignored in previous studies. The other major contribution of 33 

this work is the delivery of a public dataset of bug reports from three open-source 34 

bug tracking systems (Google Chromium, Mozilla Core, and Mozilla Firefox). 35 

Results showed that DBRNN-A provides a higher rank-10 average accuracy 36 

compared to that other approached. 37 

Bani-Salameh et al. [21] present a model that focuses on predicting priority 38 

level for each bug report. This work use a dataset built using bug reports that are 39 

taken from closed-source projects stored in the JIRA bug tracking system, which 40 

are used then to train and test the model. Also, they built a tool to help assign a 41 

priority level for the bug report automatically. Expermints involved applying 42 

RNN-LSTM neural network and comparing the results with other neural networks 43 

(SVM and KNN). Results found that the proposed model is 90% accurate in 44 

comparison with KNN (74%) and SVM (87%), and that RNN-LSTM improves 45 

the F-measure by 3% compared to SVM and 15.2% compared to KNN. Also, it 46 
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showed that LSTM reported the best performance results based on all performance 1 

measures (Accuracy = 0.908, AUC = 0.95, F-measure = 0.892). 2 

 3 

 4 

Proposed Approach 5 

 6 

Given a UNIFIED dataset of bugs from open-source software projects, this 7 

study uses H2O AUTOML [11] to detect and categorize code bugs. The process 8 

of assigning the category for code bugs consists of multi phases. Involves data 9 

collection, formatting priority of the bugs, feature selection, dataset training, 10 

applying H2O algorithm, and finally evaluation process (see Figure 1). 11 

 12 

Figure 1. Proposed framework flow 13 

 14 
. 15 

 16 

Data Collection 17 

 18 

The “unified bug dataset" had been used. This dataset produced from the 19 

Department of Software Engineering, the University of Szeged on December 20, 20 

2019, and includes java classes with there are metrics and code Bugs extracted 21 

from 5 public bug datasets (PROMIS, Eclipse Bug, Bug Prediction, Bug catchers 22 

Bug, and GitHub Bug). The corresponding source code for each system in the 23 

datasets has been downloaded and then source code analysis has been performed 24 

using (OpenStaticAnalyzer-1.0-Metrics) to obtain a common set of source code 25 

metrics, then the result has been merged into one large dataset that consists of 26 

47,618 elements with 72 feature. Therefore, this dataset is a good source of data 27 

for bug prediction models. 28 

 29 

Labeling Bugs Categories 30 

 31 

The bug category was labeled using the pd.cut function from the PANDAS 32 

library. The dataset was grouped into four classes (No, Low, Medium, Haigh) 33 

according to the number of bugs in each class, and the problem was converted to a 34 

classification problem. 35 

 36 

37 
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Feature Selection 1 

 2 

The dataset contains a large set of features that are still difficult to be 3 

processed us-ing the proposed algorithms. Thus, we choose a set of relevant 4 

features as an input for the proposed model. The unnecessary columns such as 5 

(„ID‟,„Type‟,„Name‟,„LongName‟,„Parent‟, „Component‟, „Path‟, „Line‟, 6 

„Column‟, „EndLine‟, „EndColumn‟) were dropped, while the features‟ selection 7 

process has been done automatically by H2O AUTOML. 8 

  9 

 10 

Evaluation Metrics 11 

  12 

The performance and efficiency of the classification algorithms were assessed 13 

using known metrics such as MSE, RMSE, LOGLOSS, and MEAN PER CLASS 14 

ERROR. Below is a description of the metrics used. 15 

 16 

 MES: the MSE metric measures the root mean square of error or deviation. 17 

MSE squares the distance from the point to the regression line (these distances 18 

are called "errors") to eliminate the negative sign. The lower the MSE, the best 19 

model performance (see Equation 1). 20 

 21 

 22 
 23 

 RMSE (Root Mean Squared Error): the RMSE metric evaluates how properly 24 

a version can are expecting a continuous value. The RMSE devices are like the 25 

anticipated target, that‟s beneficial for information if the dimension of the 26 

mistake is of challenge or not. The smaller the RMSE, the higher the model‟s 27 

performance. 28 

 29 

 Logloss: the log loss rate can be used to evaluate the performance of binomial 30 

or polynomial classifiers. Different from the classification effect of the “Area 31 

Under Curve” test model on binary targets, the log loss estimates the closeness 32 

between the predicted value of the model and the actual target value. 33 

 34 

 35 

H2O AUTOML Algorithms 36 

 37 

H2O AutoML was used, which is a machine-learning algorithm for tabular 38 

data, which is part of the H2O machine-learning platform. H2O is easy to use and 39 

extensible and has a very active and participating user base in the open-source 40 

machine learning community. H2O AutoML can deal with lost or classified data, 41 

including a comprehensive modeling strategy for powerful functional combination 42 

components and the ability to easily deploy and use H2O models in enterprise 43 

production environments. Use Python to implement H2O AUTOML in a unified 44 

data set. 45 
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 1 

 Input Variables: Considering many factors (indicators), input variables were 2 

selected to predict category. Operators are columns reserved after features 3 

selection in the data set, except for the "bug" category. 4 

 Output variables: In this paper, Bug class is the output variable used in the 5 

ML algorithms to be predicted. 6 

 7 

 8 

Experiment and Results 9 

 10 

The modified unified data set was divided into three parts (train, validation, 11 

test), the train part was used to train the models, and the verification part was used 12 

to set the hyperparameters and choose the best model for the problem, and the test 13 

part was used to verify Model performance in non-visual data. 14 

Figure 2 shows the distribution of classes in the dataset during the data 15 

exploring process, which showed imbalanced classes, a problem in which the 16 

distribution of examples be-tween known classes is biased or skewed. The 17 

distribution range can range from slight offset to severe imbalance, with one 18 

example in the minority class for hundreds, thousands in the majority class or 19 

classes. 20 

 21 

Figure 2. The Distribution of the Classes during the Data exploring Process 22 

 23 
 24 

Therefore, the train part of data had been sampled using “SMOTE" 25 

(Synthetic Minority Oversampling Technology), an oversampling technology that 26 

uses the k algorithm to generate synthetic data for the nearest neighbors. SMOTE 27 

first selects random data from the minority class and then determines the k nearest 28 

neighbors of the data. Then the data placed between the random data and the 29 

randomly selected nearest neighbor k. the process Repeated until the minority 30 

category has the same proportion as the majority category. [22] 31 

After that, the dataset had been trained into google Colab by the H2O Autml 32 

library. The H2O AutoML interface is designed to contain as few parameters as 33 
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possible. Customers only need to refer to their data set, define a response column, 1 

and optionally specify a time limit or the total number of trained models. Some of 2 

parameter that could be changed such as Max models, Nfolds, Max run-time secs, 3 

Balance classes, Stopping metric, Stopping rounds, Stopping tolerance, and Keep 4 

cross validation models [11]. Then, the model had been trained into the 5 

oversampled dataset, and the problem determined automatically by H20 as a 6 

multiclass. 7 

After completing the training process, the result showed that 19 models 8 

belong to 6 families had been built during training (XGBoost, GLM , DRF , GBM 9 

, DeepLearning, DRF) A classification table is created every time AutoML is 10 

started. According to the nature of the problem, use standard metrics (the second 11 

column in the classification table) to classify the model. AUC is a metric used for 12 

binary classification problems, and the average error of each category is used for 13 

classification problems involving multiple categories. The standard ranking 14 

indicator for regression problems is variance. The user can choose to change the 15 

default ranking index of the ranking table. The result shows that the best 10 16 

models for our dataset as presented in Table 1. 17 

In addition, the result showed that the best model that solves the problem is 18 

“GBM 2 AutoML 20210415 132614", from the Gradient Boosting Machine 19 

family. which is a forward learning ensemble method that sequentially builds 20 

regression trees on all the features of the dataset in a fully distributed way each 21 

tree is built in parallel. This family is used for both Regression and Classification 22 

problems. The H2o suggests adapting the model settings as in Table 2 to give the 23 

best result in the unified dataset. 24 

 25 

Table 1. Best 10 models fitted dataset 26 

Model_Id MPCR LogLoss RMSE MSE Algorithm 

GBM_1_AutoML_20210524_001830 0.457483 0.941693 0.599223 0.359069 GBM 

GBM_2_AutoML_20210524_001830 0.474377 0.921466 0.591464 0.34983 GBM 

XGBoost_3_AutoML_20210524_001830 0.474787 0.727399 0.5075 0.257556 XGBoost 

GBM_3_AutoML_20210524_001830 0.477752 0.981109 0.616594 0.380189 GBM 

GBM_4_AutoML_20210524_001830 0.479495 1.00402 0.62688 0.392978 GBM 

GBM_grid__1_AutoML_20210524_001830_model_2 0.486995 0.868863 0.566413 0.320824 GBM 

GBM_grid__1_AutoML_20210524_001830_model_1 0.513725 0.573223 0.43698 0.190951 GBM 

GBM_5_AutoML_20210524_001830 0.525829 0.992099 0.622708 0.387766 GBM 

XGBoost_1_AutoML_20210524_001830 0.528332 0.776078 0.529233 0.280087 XGBoost 

GBM_grid__1_AutoML_20210524_001830_model_3 0.545588 1.21901 0.702968 0.494164 GBM 

 27 

Table 2. Models’ parameter summary 28 

id parameter value 

1 number_of_trees 7 

2 number_of_internal_trees 28 

3 model_size_in_bytes 23704.0 

4 min_depth 6 

5 max_depth 6 

6 mean_depth 6 

7 min_leaves 54 
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8 max_leaves 64 

9 mean_leaves 62.857143 

 1 

The METRICS of the best model into train, validate, and test parts of unified 2 

dataset are mentioned in Table 3. Figure 3 shows a summary of the cross-3 

validation metrics for the best model. 4 

 5 

Table 3. The metrics of the best model 6 

Metric train_data cross_validation trest_data 

MSE 0.37648429685384704 0.3775879368430466 0.35906867464119113 

RMSE 0.6135831621335832 0.614481844193176 0.5992233929355488 

LogLoss 0.9703039488095602 0.9732992146307755 0.9416925324811019 

Mean 

Per-

Class 

Error 

0.29158092018227255 0.2918014111421432 0.4574829531658866 

 7 

Figure 3. A summary of the cross-validation metrics 8 

 9 
 10 

Moreover, the result showed that the most 20 importance features that effect 11 

classification for the best model were as mentioned in Figure 4.  12 

 13 

14 
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Figure 4. The most 20 important features 1 

 2 
 3 

The statistical significance of each variable in the data in terms of its effect on 4 

the model was represented by variable importance. The variables were listed in 5 

descending order of importance. The percentage values represent the proportion of 6 

importance across all variables, scaled to 100%. The algorithm determines how to 7 

compute the importance of each variable (see Figure 5). 8 

 9 

Figure 5. The importance of each variable 10 

 11 
 12 

 13 

14 
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Conclusion and Future Works 1 

 2 

All in all, this research provides a framework that can automatically assign 3 

appropriate classes to code bugs, thereby avoiding time-consuming and resource-4 

limited software testing. The proposed structure involves using the library H2O 5 

AUTOML to determine the best model that matches the bugs unified dataset .the 6 

results showed that the best model is “GBM 2 AutoML 20210415 132614" from 7 

the Gradient Boosting Machine family with an accuracy of 73% and mean per 8 

class error of 46%. In addition, Features that most affect bug classification have 9 

been identified. 10 

The ability to use H2O AutoML to classify bugs in Unified dataset has been 11 

demonstrated, H2O exceeds expectations in terms of ease of use and scalability, 12 

active customer base, and open-source machine learning community. 13 

In future work, we plan to perform the following operations: perform the same 14 

experiment on new datasets, metrics, and other types of bugs. Use different types 15 

of AutoML libraries such as AutoKeras and Autogloun to train new models and 16 

compare the results between them. development of a new tool based on the best 17 

model that fits the data set for automatic bug classification and correction. 18 

 19 
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