
2022-5107-AJTE – 2 DEC 2022

1

Code Metrics Based Bug Classification using H2O 1

AutoML 2

 3

Context: Classifying the priority of software bugs is an important activity in 4

software maintenance. Manually screening error reports and determining the 5

priority of each bug is a time-consuming process that requires resources and 6

expertise. In many cases, assigning priorities manually causes errors, and 7

prevents developers from completing tasks, fixing errors, and improving quality 8

Objective: The purpose of this study is to summarize, analyze and evaluate the 9

proposed software bug prediction techniques using ma-chine learning (ML). In 10

addition to provide and evaluate the experimental evidence gained from the 11

past studies regarding ML techniques and bug prediction models. Also, it aims 12

to predict bugs in systems by code metrics using ML and priorities them. 13

Method: Given a UNIFIED dataset of bugs from an open-source soft-ware 14

project, this study uses H2O AUTOML to detect and categories code bugs. The 15

process of assigning the category for code bugs consists of multi phases, which 16

involves data collection, formatting priority of the bugs, features’ selection, 17

dataset training, applying H2O algorithm, and finally the evaluation process. 18

The proposed structure involves using H2O AUTOML to determine the best 19

model that matches the bugs unified dataset. Results: The results showed that 20

the best model is “GBM 2 AutoML 20210415 132614" from the Gradient 21

Boosting Machine family with an accuracy of 73% and mean per class error of 22

46%. Conclusion: This research provides a framework that can automatically 23

assign appropriate classes to code bugs, thereby avoiding time-consuming and 24

resource-limited software testing. The proposed structure involves using the 25

library H2O AUTOML to determine the best model that matches the bugs 26

unified dataset. The ability to use H2O AutoML to classify bugs in Unified 27

dataset has been demonstrated, H2O exceeds expectations in terms of ease of 28

use and scalability, active customer base, and open-source machine learning 29

community. 30

 31

Keywords: Bug Prediction, AutoML, Code Metrics, Classification, H2O. 32

 33

 34

Introduction 35

 36

Software bug prediction is a popular research area in the field of software 37

engineering today. Bug or defect prediction is a process by which researchers try 38

to learn from mistakes committed in the past and build a prediction model to 39

leverage the location and number of future bugs. 40

 Finding and eliminating bugs in software systems has always been one of the 41

most important issues in software engineering. If the bugs are detected earlier 42

through prediction, the quality of software can be improved. [2] When bugs are 43

found before the release of the software, they can be removed before the 44

deployment of the software. 45

 46

The goals of software bug prediction, especially when being applied to the 47

early stage, are to increase the value of the software and lessen the cost, which 48

2022-5107-AJTE – 2 DEC 2022

2

eventually offers well-planned software management. There has been impressive 1

development and premium in modern uses of AI (ML) as of late. ML engineers, as 2

a result, are sought after across the business, yet improving the proficiency of ML 3

engineers stays a central test. 4

Mechanized AI (AutoML) has arisen as an approach to save time and 5

exertion on dull assignments in ML pipelines, for example, information handling, 6

include designing, model determination, hyperparameter streamlining, and 7

forecast result examination. H2O AutoML is a robotized AI remembered for the 8

H2O structure. That is easy to utilize and delivers top-notch models that are 9

appropriate for arrangement in an undertaking climate. 10

H2O AutoML upholds administered preparing of relapse, double order, and 11

multi-class grouping models on plain datasets. One of the advantages of H2O 12

models is the quick scoring abilities – numerous H2O models can produce 13

expectations in sub millisecond scoring times. H2O AutoML offers APIs in a few 14

dialects (R, Python, Java, Scala) which implies it tends to be utilized flawlessly 15

inside an assorted group of information researchers and specialists [1]. 16

 17

 18

Literature Review 19

 20

This article focuses on related works and studies that are mainly related to 21

machine learning (ML) and the techniques were applied to software bugs 22

classification. This section introduces recent studies and literature that are related 23

to bugs‟ classification. 24

Malhotra [2] focused on the objective of programming bug expectation to 25

distinguish the product modules that will have the probability to get bugs, by 26

utilizing some key undertaking assets before the genuine testing begins. Because 27

of significant expense in revising the recognized bugs. They conducted a survey of 28

past writing on programming bug forecast and AI to understand the suitable way 29

toward building the expectation model. Not just they need to see the AI 30

procedures that previous analysts utilized, they likewise survey the datasets, 31

measurements and execution estimates that are utilized during the improvement of 32

the models. In this investigation, they have limited to 31 fundamental 33

examinations and six kinds of AI procedures have been recognized. 34

Two public datasets are discovered to be much of the time utilized and 35

object-arranged measurements are the exceptionally picked measurements for the 36

forecast model. Concerning the presentation measure, both graphical and 37

mathematical measures are regularly used to assess the exhibition of the models. 38

From the out-comes, they presume that the AI procedure can foresee the bug, 39

however there are relatively few applications in this space that exist these days. 40

Tóth Zoltán [3] examined two principal themes, these being the development 41

of new bug datasets with their assessment in bug forecast, and a philosophy for 42

estimating practicality in heritage frameworks written in the RPG programming 43

language. In the event of bug datsets, they gathered existing public bug datasets 44

that utilization static programming item measurements to describe the bugs. These 45

datasets assembled from different sources, like Source-Forge, Jira, Bugzilla, CVS, 46

2022-5107-AJTE – 2 DEC 2022

3

and SVN. GitHub, being a pattern for facilitating open-source projects, was a 1

decent contender to accumulate new ventures from. 2

They developed another dataset to beat these inadequacies and to propose 3

another dataset with exceptional bug information. Also, they introduced a 4

technique for binding together open bug datasets, in this way they share normal 5

measurements as descriptors. They showed how heterogeneous distinctive datasets 6

can be by contrasting their metric suites. They likewise introduced the capacities 7

of assembled bug expectation models on account of the recently made GitHub 8

Bug Dataset and on account of the Unified Bug Dataset also. They recommend 9

that specialists should initially take a stab at utilizing existing bug datasets, and 10

just if none of them adjusts to their necessities, build another redid dataset for their 11

very explicit prerequisites [3]. 12

Abozeed et al. [1] demonstrated that the expense of fixing mistakes raises as 13

task travels through its life cycle in an outstanding style. Recognizing carriage 14

classes, when they are focused on the Form Control System, would essentially 15

affect decreasing such expense. In this paper, tests are done to consider the impact 16

of highlight determination on the presentation of bug forecast models furthermore, 17

to check if better outcomes can be gotten by utilizing the promising Deep 18

Learning procedures. Results show that applying include choice, utilizing a basic 19

channel approach, for example, choosing the exceptionally positioned 9 and 5 20

highlights out of the 17 highlights, did not improve the exhibition measures as a 21

rule. On the other hand, results show that Deep Learning model (DL) 22

accomplishes better measures than choosing a set of base classifiers for little and 23

adjusted datasets. 24

Perera [4] introduced SBST methods, replacing costly assignment of 25

physically composing experiments. SBST strategies are viable at producing tests 26

with high code inclusion. They argue that SBST should be engaged to look for 27

experiments in imperfect zones maybe in non-flawed spaces of the code to boost 28

the probability of finding the bugs. Imperfection forecast calculations give 29

valuable data about the bug inclined regions in programming. Subsequently, they 30

aimed to improve the bug discovery ability of SBST by joining deformity 31

expectation data. They devise two examination targets, i.e., 1) Develop a novel 32

methodology SBST that dispenses time spending plan to classes dependent on the 33

probability of classes being deficient, and 2) Foster a novel technique SBST to 34

manage the hidden pursuit calculation (i.e., hereditary calculation) towards the 35

flawed territories in a class. Through exact assessment on 434 genuine revealed 36

bugs in the Defects4J dataset, they exhibit that the novel methodology, SBST, is 37

altogether more effective than the best-in-class SBST at the point when they are 38

given a tight time spending plan in an asset compelled situation. 39

Other researchers [5] utilized bug datasets to construct and approve novel bug 40

expectation models. They focused on gathering existing public source code 41

metric-based bug datasets and bind together their substance. Moreover, they wish 42

to evaluate the plenty of gathered measurements and the abilities of the brought 43

together bug datasets in bug forecast. They considered 5 public datasets and 44

downloaded the relating source code for every framework in the datasets and 45

performed source code investigation to get a typical arrangement of source code 46

2022-5107-AJTE – 2 DEC 2022

4

measurements. Along these lines, they delivered a bound together bug dataset at 1

class and document level also. They examined the redirection of metric definitions 2

and upsides of the diverse bug datasets. At last, they utilized a choice tree 3

calculation to show the capacities of the dataset in bug forecast. They combined all 4

classes (and documents) into one dataset which comprises of 47,618 components 5

(43,744 for records) and assessed the bug prediction model expand on this dataset 6

also. At last, they additionally examined cross-project abilities of the bug 7

prediction models and datasets. 8

Ferenc et al. [6] investigate growing dependence on programming items and 9

how to discover bugs as ahead of schedule and as effectively as expected. They 10

propose to restore static source code measurements and use them with deep 11

learning – among the most encouraging and generalizable prediction techniques – 12

to find suspicious code fragments at the class level. They show a point-by-point 13

philosophy of how they adjusted deep neural networks, applied them to a bug 14

dataset (containing 8780 messed with and 38,838 not messed with Java classes), 15

and compared them using different metrics. They show that deep learning with 16

static measurements can undoubtedly support prediction correctness‟s. The best 17

model has a F-score of 53.59%, which increments to 55.27% for the best group 18

model containing a profound learning segment. 19

Kaen et al. [7] investigate the evolution and development in the field of man-20

made brainpower and its different branches, for example, Machine Learning (ML) 21

and Deep Learning in different imperative fields like advanced mechanics, smart 22

vehicles, urban communities, medical services, computer programming and 23

numerous different fields. They propose to use the Chi-Square feature selection 24

method to find features importance. They also propose to build ML models by 25

using both of 1) top ten important features and 2) top five important features, 26

based on the three ML classifications algorithms, Support Vector Machine (SVM), 27

Naïve Bayes (NB), and Linear Discriminant Analysis (LDA). Results showed that 28

the proposed approach against baseline achieved an improvements as average 29

accuracy reaching up to 5.12%, 4.15% and 1% on the NB, SVM and LDA 30

classifiers respectively. 31

Khan and others [8] introduced programming bug prediction (SBP) models to 32

improve the product quality assurance (SQA) measures by predicting buggy 33

components. The bug prediction models use ML classifiers to predict bugs in 34

software parts in some software metrics. Numerous strategies have been proposed 35

by specialists to predict the imperfect segments, yet these classifiers sometimes do 36

not perform well when default settings are utilized for AI classifiers. They use ML 37

classifiers related to the Artificial Immune Network (AIN) to improve bug 38

prediction accuracy through its hyper-boundary streamlining. For this reason, 39

seven classifiers, for example, support vector machine Radial base capacity 40

(SVM-RBF), K-closest neighbor (KNN) (Minkowski metric), KNN (Euclidean 41

measurement), Naive Bayes (NB), Decision Tree (DT), Linear segregate 42

investigation (LDA), Random woods (RF) and versa-tile boosting (AdaBoost), 43

were utilized. The results showed that hyper-boundary improvement of ML 44

classifiers, utilizing AIN and its applications for programming bug prediction, 45

performed better compared to when classifiers with their default hyper-boundaries 46

2022-5107-AJTE – 2 DEC 2022

5

were utilized. 1

Wahono [9] introduced a systematic literature review that aims to identify 2

and analyze the techniques, methods, frameworks, and datasets which are used in 3

software defect prediction. Results showed that researchers proposed many 4

techniques for improving the accuracy of ML classifiers for software defect 5

prediction using different methods, different algorithms, and using different 6

optimization methods for some classifiers. 7

Pandey et al. [10] propose a simple grouping-based system Bug Prediction 8

utilizing Deep portrayal and Ensemble learning (BPDET) methods for SBP. The 9

product measurements which are utilized for SBP are generally traditional. 10

Marked denoising auto-encoder (SDA) is utilized for the deep portrayal of 11

programming measurements, which is a strong element learning strategy. The 12

proposed model is primarily separated into two phases: deep learning stage and 13

two layers of EL stage (TEL). The analysis was performed using 12 datasets 14

extracted from NASA, to uncover the effectiveness of DR, SDA, and TEL. 15

Different metrics have been used such as: Mathews Correlation Coefficient 16

(MCC), the Area Under Curve (AUC), Precision-Recall Curve (PRC), F-measure, 17

and Time. Out of 12 dataset MCC values over more than 11 datasets, ROC values 18

over than 6 datasets, PRC values over 12 datasets and F-measure more than 8 19

datasets which outperform the existing studies. 20

Brumfield [12] focus is to improve the prediction of programming bugs using 21

miniature examples with deep learning techniques. Software bug prediction at a 22

better granularity level will allow designers to restrict code to test and troubleshoot 23

during the development process. Existing research demonstrates that these 24

methods help designers in distinguishing programming that has possible 25

deformities during development. The major goal is to restrict the product bugs to 26

guarantee that only the affected documents are addressed to test and troubleshoot. 27

Researchers have discovered relationships amongst measurements and 28

programming absconds in programming undertakings to construct perceptive 29

models utilizing static examination and AI procedures. 30

Bilgin and others [13] aim to develop a ML model for vulnerability 31

prediction based on the AST representation of source code, and transfer as much 32

information as possible from AST to numeric array representation. According to 33

the experimental analysis, this process reduces training time by about 68%. The 34

authors first proposed a source code representation method that is capable of 35

characterizing source code into a proper format for further processes in ML 36

algorithms. The authors conducted many experiments under different settings with 37

the objective of predicting five different predetermined vulnerability types and 38

achieved promising and encouraging results compared to state-of-art methods. 39

Felix [14] demonstrated how certain optimal variables can be applied both in 40

data preprocessing, and in predicting the possible number of defects in a future 41

version of a software product, using information available from the current version 42

at the method level of the software. Also, Trautsch and others [15] combined a 43

state-of-the art just-in-time defect prediction approach with additional static source 44

code metrics from OpenStaticAnalyzer and static analysis warnings from a well-45

known Java static analysis tool (PMD). 46

2022-5107-AJTE – 2 DEC 2022

6

Also, others [16] proposed research that aims to automatically recognize 1

relevant functions, which later should be revised manually by programmers; that is 2

the authors were interested in achieving high recall and trading precision for recall 3

if needed. Machine learning methods were applied to a software engineering 4

problem of fault prediction. 5

Lee et al. [17] proposed 56 micro interaction metrics (MIMs). They proposed 6

defect prediction models using the MIMs, traditional metrics, and their 7

combinations. To evaluate the proposed model, they used a 10-fold cross 8

validation, and repeated the process 100 times for each prediction model on each 9

different time split to validate the prediction performance of MIMs. Results 10

showed that they altogether improve defect classification and regression accuracy. 11

Ramay et al. [18] propose a deep neural network-based automatic approach 12

that aims to predict the severity of bug reports. The proposed approach involves : 13

1) applying NLP techniques for text preprocessing of bug reports, 2) computing 14

and assigning the emotion score for each of the processed bug report, 3) creating a 15

vector for each preprocessed bug report, and finally 4) passing the vectors and the 16

emotion scores to the deep neural network for severity prediction. We also 17

evaluate the proposed approach on the history-data of bug reports. The evaluation 18

process showed that the proposed approach outperforms the previous approaches 19

by improving the f-measure by 7.90%. 20

Fan and others [19] proposed a deep learning-based strategy called DP-21

ARNN, as a guide to programming testing and code analysis, to predict potential 22

code defects in programming. DP-ARNN used RNN to naturally create syntactic 23

and semantic highlights from source code. The authors applied the proposed 24

system to catch significant features that help to predict defects accurately. They 25

used seven open-source projects to validate their method. Results showed that DP-26

ARNN outperforms the previous approaches and improves the F1-measure by 27

14% and AUC by 7%. 28

Mani and others [20] propose a bug report representation using a deep 29

bidirectional RNN called DBRNN-A that discovers the syntactic and semantic 30

features from long word sequences in an unsupervised manner. They use unfixed 31

bug reports for training (about 70% of bugs from a open-source bug tracking 32

system) which were ignored in previous studies. The other major contribution of 33

this work is the delivery of a public dataset of bug reports from three open-source 34

bug tracking systems (Google Chromium, Mozilla Core, and Mozilla Firefox). 35

Results showed that DBRNN-A provides a higher rank-10 average accuracy 36

compared to that other approached. 37

Bani-Salameh et al. [21] present a model that focuses on predicting priority 38

level for each bug report. This work use a dataset built using bug reports that are 39

taken from closed-source projects stored in the JIRA bug tracking system, which 40

are used then to train and test the model. Also, they built a tool to help assign a 41

priority level for the bug report automatically. Expermints involved applying 42

RNN-LSTM neural network and comparing the results with other neural networks 43

(SVM and KNN). Results found that the proposed model is 90% accurate in 44

comparison with KNN (74%) and SVM (87%), and that RNN-LSTM improves 45

the F-measure by 3% compared to SVM and 15.2% compared to KNN. Also, it 46

2022-5107-AJTE – 2 DEC 2022

7

showed that LSTM reported the best performance results based on all performance 1

measures (Accuracy = 0.908, AUC = 0.95, F-measure = 0.892). 2

 3

 4

Proposed Approach 5

 6

Given a UNIFIED dataset of bugs from open-source software projects, this 7

study uses H2O AUTOML [11] to detect and categorize code bugs. The process 8

of assigning the category for code bugs consists of multi phases. Involves data 9

collection, formatting priority of the bugs, feature selection, dataset training, 10

applying H2O algorithm, and finally evaluation process (see Figure 1). 11

 12

Figure 1. Proposed framework flow 13

 14
. 15

 16

Data Collection 17

 18

The “unified bug dataset" had been used. This dataset produced from the 19

Department of Software Engineering, the University of Szeged on December 20, 20

2019, and includes java classes with there are metrics and code Bugs extracted 21

from 5 public bug datasets (PROMIS, Eclipse Bug, Bug Prediction, Bug catchers 22

Bug, and GitHub Bug). The corresponding source code for each system in the 23

datasets has been downloaded and then source code analysis has been performed 24

using (OpenStaticAnalyzer-1.0-Metrics) to obtain a common set of source code 25

metrics, then the result has been merged into one large dataset that consists of 26

47,618 elements with 72 feature. Therefore, this dataset is a good source of data 27

for bug prediction models. 28

 29

Labeling Bugs Categories 30

 31

The bug category was labeled using the pd.cut function from the PANDAS 32

library. The dataset was grouped into four classes (No, Low, Medium, Haigh) 33

according to the number of bugs in each class, and the problem was converted to a 34

classification problem. 35

 36

37

2022-5107-AJTE – 2 DEC 2022

8

Feature Selection 1

 2

The dataset contains a large set of features that are still difficult to be 3

processed us-ing the proposed algorithms. Thus, we choose a set of relevant 4

features as an input for the proposed model. The unnecessary columns such as 5

(„ID‟,„Type‟,„Name‟,„LongName‟,„Parent‟, „Component‟, „Path‟, „Line‟, 6

„Column‟, „EndLine‟, „EndColumn‟) were dropped, while the features‟ selection 7

process has been done automatically by H2O AUTOML. 8

 9

 10

Evaluation Metrics 11

 12

The performance and efficiency of the classification algorithms were assessed 13

using known metrics such as MSE, RMSE, LOGLOSS, and MEAN PER CLASS 14

ERROR. Below is a description of the metrics used. 15

 16

 MES: the MSE metric measures the root mean square of error or deviation. 17

MSE squares the distance from the point to the regression line (these distances 18

are called "errors") to eliminate the negative sign. The lower the MSE, the best 19

model performance (see Equation 1). 20

 21

 22
 23

 RMSE (Root Mean Squared Error): the RMSE metric evaluates how properly 24

a version can are expecting a continuous value. The RMSE devices are like the 25

anticipated target, that‟s beneficial for information if the dimension of the 26

mistake is of challenge or not. The smaller the RMSE, the higher the model‟s 27

performance. 28

 29

 Logloss: the log loss rate can be used to evaluate the performance of binomial 30

or polynomial classifiers. Different from the classification effect of the “Area 31

Under Curve” test model on binary targets, the log loss estimates the closeness 32

between the predicted value of the model and the actual target value. 33

 34

 35

H2O AUTOML Algorithms 36

 37

H2O AutoML was used, which is a machine-learning algorithm for tabular 38

data, which is part of the H2O machine-learning platform. H2O is easy to use and 39

extensible and has a very active and participating user base in the open-source 40

machine learning community. H2O AutoML can deal with lost or classified data, 41

including a comprehensive modeling strategy for powerful functional combination 42

components and the ability to easily deploy and use H2O models in enterprise 43

production environments. Use Python to implement H2O AUTOML in a unified 44

data set. 45

2022-5107-AJTE – 2 DEC 2022

9

 1

 Input Variables: Considering many factors (indicators), input variables were 2

selected to predict category. Operators are columns reserved after features 3

selection in the data set, except for the "bug" category. 4

 Output variables: In this paper, Bug class is the output variable used in the 5

ML algorithms to be predicted. 6

 7

 8

Experiment and Results 9

 10

The modified unified data set was divided into three parts (train, validation, 11

test), the train part was used to train the models, and the verification part was used 12

to set the hyperparameters and choose the best model for the problem, and the test 13

part was used to verify Model performance in non-visual data. 14

Figure 2 shows the distribution of classes in the dataset during the data 15

exploring process, which showed imbalanced classes, a problem in which the 16

distribution of examples be-tween known classes is biased or skewed. The 17

distribution range can range from slight offset to severe imbalance, with one 18

example in the minority class for hundreds, thousands in the majority class or 19

classes. 20

 21

Figure 2. The Distribution of the Classes during the Data exploring Process 22

 23
 24

Therefore, the train part of data had been sampled using “SMOTE" 25

(Synthetic Minority Oversampling Technology), an oversampling technology that 26

uses the k algorithm to generate synthetic data for the nearest neighbors. SMOTE 27

first selects random data from the minority class and then determines the k nearest 28

neighbors of the data. Then the data placed between the random data and the 29

randomly selected nearest neighbor k. the process Repeated until the minority 30

category has the same proportion as the majority category. [22] 31

After that, the dataset had been trained into google Colab by the H2O Autml 32

library. The H2O AutoML interface is designed to contain as few parameters as 33

2022-5107-AJTE – 2 DEC 2022

10

possible. Customers only need to refer to their data set, define a response column, 1

and optionally specify a time limit or the total number of trained models. Some of 2

parameter that could be changed such as Max models, Nfolds, Max run-time secs, 3

Balance classes, Stopping metric, Stopping rounds, Stopping tolerance, and Keep 4

cross validation models [11]. Then, the model had been trained into the 5

oversampled dataset, and the problem determined automatically by H20 as a 6

multiclass. 7

After completing the training process, the result showed that 19 models 8

belong to 6 families had been built during training (XGBoost, GLM , DRF , GBM 9

, DeepLearning, DRF) A classification table is created every time AutoML is 10

started. According to the nature of the problem, use standard metrics (the second 11

column in the classification table) to classify the model. AUC is a metric used for 12

binary classification problems, and the average error of each category is used for 13

classification problems involving multiple categories. The standard ranking 14

indicator for regression problems is variance. The user can choose to change the 15

default ranking index of the ranking table. The result shows that the best 10 16

models for our dataset as presented in Table 1. 17

In addition, the result showed that the best model that solves the problem is 18

“GBM 2 AutoML 20210415 132614", from the Gradient Boosting Machine 19

family. which is a forward learning ensemble method that sequentially builds 20

regression trees on all the features of the dataset in a fully distributed way each 21

tree is built in parallel. This family is used for both Regression and Classification 22

problems. The H2o suggests adapting the model settings as in Table 2 to give the 23

best result in the unified dataset. 24

 25

Table 1. Best 10 models fitted dataset 26

Model_Id MPCR LogLoss RMSE MSE Algorithm

GBM_1_AutoML_20210524_001830 0.457483 0.941693 0.599223 0.359069 GBM

GBM_2_AutoML_20210524_001830 0.474377 0.921466 0.591464 0.34983 GBM

XGBoost_3_AutoML_20210524_001830 0.474787 0.727399 0.5075 0.257556 XGBoost

GBM_3_AutoML_20210524_001830 0.477752 0.981109 0.616594 0.380189 GBM

GBM_4_AutoML_20210524_001830 0.479495 1.00402 0.62688 0.392978 GBM

GBM_grid__1_AutoML_20210524_001830_model_2 0.486995 0.868863 0.566413 0.320824 GBM

GBM_grid__1_AutoML_20210524_001830_model_1 0.513725 0.573223 0.43698 0.190951 GBM

GBM_5_AutoML_20210524_001830 0.525829 0.992099 0.622708 0.387766 GBM

XGBoost_1_AutoML_20210524_001830 0.528332 0.776078 0.529233 0.280087 XGBoost

GBM_grid__1_AutoML_20210524_001830_model_3 0.545588 1.21901 0.702968 0.494164 GBM

 27

Table 2. Models’ parameter summary 28

id parameter value

1 number_of_trees 7

2 number_of_internal_trees 28

3 model_size_in_bytes 23704.0

4 min_depth 6

5 max_depth 6

6 mean_depth 6

7 min_leaves 54

2022-5107-AJTE – 2 DEC 2022

11

8 max_leaves 64

9 mean_leaves 62.857143

 1

The METRICS of the best model into train, validate, and test parts of unified 2

dataset are mentioned in Table 3. Figure 3 shows a summary of the cross-3

validation metrics for the best model. 4

 5

Table 3. The metrics of the best model 6

Metric train_data cross_validation trest_data

MSE 0.37648429685384704 0.3775879368430466 0.35906867464119113

RMSE 0.6135831621335832 0.614481844193176 0.5992233929355488

LogLoss 0.9703039488095602 0.9732992146307755 0.9416925324811019

Mean

Per-

Class

Error

0.29158092018227255 0.2918014111421432 0.4574829531658866

 7

Figure 3. A summary of the cross-validation metrics 8

 9
 10

Moreover, the result showed that the most 20 importance features that effect 11

classification for the best model were as mentioned in Figure 4. 12

 13

14

2022-5107-AJTE – 2 DEC 2022

12

Figure 4. The most 20 important features 1

 2
 3

The statistical significance of each variable in the data in terms of its effect on 4

the model was represented by variable importance. The variables were listed in 5

descending order of importance. The percentage values represent the proportion of 6

importance across all variables, scaled to 100%. The algorithm determines how to 7

compute the importance of each variable (see Figure 5). 8

 9

Figure 5. The importance of each variable 10

 11
 12

 13

14

2022-5107-AJTE – 2 DEC 2022

13

Conclusion and Future Works 1

 2

All in all, this research provides a framework that can automatically assign 3

appropriate classes to code bugs, thereby avoiding time-consuming and resource-4

limited software testing. The proposed structure involves using the library H2O 5

AUTOML to determine the best model that matches the bugs unified dataset .the 6

results showed that the best model is “GBM 2 AutoML 20210415 132614" from 7

the Gradient Boosting Machine family with an accuracy of 73% and mean per 8

class error of 46%. In addition, Features that most affect bug classification have 9

been identified. 10

The ability to use H2O AutoML to classify bugs in Unified dataset has been 11

demonstrated, H2O exceeds expectations in terms of ease of use and scalability, 12

active customer base, and open-source machine learning community. 13

In future work, we plan to perform the following operations: perform the same 14

experiment on new datasets, metrics, and other types of bugs. Use different types 15

of AutoML libraries such as AutoKeras and Autogloun to train new models and 16

compare the results between them. development of a new tool based on the best 17

model that fits the data set for automatic bug classification and correction. 18

 19

 20

References 21

 22

[1] S. M. Abozeed, M. Y. ElNainay, S. A. Fouad, and M. S. Abougabal, “Software bug 23

prediction employing feature selection and deep learning,” in 2019 Inter-national 24

Conference on Advances in the Emerging Computing Technologies (AECT). IEEE, 25

2020, pp. 1–6. 26

[2] R. Malhotra, “A systematic review of machine learning techniques for software fault 27

prediction,” Applied Soft Computing, vol. 27, pp. 504–518, 2015. 28

[3] Z. Tóth, “New datasets for bug prediction and a method for measuring maintainability 29

of legacy software systems,” Ph.D. dissertation, University of Szeged, 2019. 30

[4] A. Perera, “Using defect prediction to improve the bug detection capability of search-31

based software testing,” in 2020 35th IEEE/ACM International Conference on 32

Automated Software Engineering (ASE). IEEE, 2020, pp. 1170–1174. 33

[5] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, “A public unified bug 34

dataset for java and its assessment regarding metrics and bug prediction,” Software 35

Quality Journal, pp. 1–60, 2020. 36

[6] R. Ferenc, D. Bán, T. Grósz, and T. Gyimóthy, “Deep learning in static, metric-based 37

bug prediction,” Array, vol. 6, p. 100021, 2020. 38

[7] E. Kaen and A. Algarni, “Feature selection approach for improving the accuracy of 39

software bug prediction.” 40

[8] F. Khan, S. Kanwal, S. Alamri, and B. Mumtaz, “Hyper-parameter optimization of 41

classifiers, using an artificial immune network and its application to software bug 42

prediction,” IEEE Access, vol. 8, pp. 20 954–20 964, 2020. 43

[9] R. S. Wahono, “A systematic literature review of software defect prediction,” Journal 44

of Software Engineering, vol. 1, no. 1, pp. 1–16, 2015. 45

[10] S. K. Pandey, R. B. Mishra, and A. K. Tripathi, “Bpdet: An effective software bug 46

prediction model using deep representation and ensemble learning techniques,” 47

Expert Systems with Applications, vol. 144, p. 113085, 2020. 48

[11] A. Candel, V. Parmar, E. LeDell, and A. Arora, “Deep learning with h2o,” H2O. ai 49

2022-5107-AJTE – 2 DEC 2022

14

Inc, 2016. 1

[12] M. Brumfield, “A deep learning approach to predict software bugs using micro 2

patterns and software metrics,” Ph.D. dissertation, Mississippi State University, 3

2020. 4

[13] Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Çomak, and L. Karaçay, “Vul-5

nerability prediction from source code using machine learning,” IEEE Access, vol. 8, 6

pp. 150 672–150 684, 2020. 7

[14] E. A. Felix and S. P. Lee, “Predicting the number of defects in a new software 8

version,” PloS one, vol. 15, no. 3, p. e0229131, 2020. 9

[15] A. Trautsch, S. Herbold, and J. Grabowski, “Static source code metrics and static 10

analysis warnings for fine-grained just-in-time defect prediction,” in 2020 IEEE 11

International Conference on Software Maintenance and Evolution (ICSME). IEEE, 12

2020, pp. 127–138. 13

[16] B. Wójcicki and R. Dabrowski, “Applying machine learning to software fault 14

prediction,” e-Informatica Software Engineering Journal, vol. 12, no. 1, 2018. 15

[17] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro interaction metrics for defect 16

prediction,” in Proceedings of the 19th ACM SIGSOFT symposium and the 13th 17

European conference on Foundations of software engineering, 2011, pp. 311–321. 18

[18] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, and I. Illahi, “Deep neural network-based 19

severity prediction of bug reports,” IEEE Access, vol. 7, pp. 46 846–46 857, 2019. 20

[19] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Software defect prediction via 21

attention-based recurrent neural network,” Scientific Programming, vol. 2019, 2019. 22

[20] S. Mani, A. Sankaran, and R. Aralikatte, “Deeptriage: Exploring the effective-ness of 23

deep learning for bug triaging,” in Proceedings of the ACM India Joint International 24

Conference on Data Science and Management of Data, 2019, pp. 171– 179. 25

[21] H. Bani-Salameh, M. Sallam et al., “A deep-learning-based bug priority prediction 26

using rnn-lstm neural networks,” e-Informatica Software Engineering Journal, vol. 27

15, no. 1, 2021. 28

[22] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: syn-thetic 29

minority over-sampling technique,” Journal of artificial intelligence research, vol. 16, 30

pp. 321–357, 2002. 31

