
2023-5272-COM – 18 APR 2023

1

A Case Study on using Microservice Patterns in an 1

Embedded System 2

 3
Microservice architectures, initially a consequence of devOps organization, are 4
nowadays the most fashionable architecture for enterprise or web scale 5
applications. By separating functionalities into small, easily understandable, 6
and maintainable parts, connected by a clearly defined interface, they provide 7
several desirable characteristics. A microservice can be scaled, developed or 8
updated independently from the others since the implementation of a service is 9
by nature opaque. Organizing teams along services, the individual team can be 10
small and communication overhead reduces to the absolute possible minimum, 11
i.e., the interface. These are the same characteristics that electronic components 12
have, esp. ICs, the building blocks of practically every electronic system in use 13
today. It is therefore even more surprising that this architecture pattern is not 14
used to the same extent by electronics engineers, especially in embedded 15
systems. This paper presents a case study of dividing an embedded system in 16
several small – and easy – components, each of them running on a small and 17
simple system, all of which are connected by simple interfaces, in this case 18
serial connections. 19
 20
Keywords: Microservice architecture, embedded systems, architecture patterns 21

 22

 23

Introduction 24
 25

Microservices are independently releasable services, that encapsulate a 26

business relevant functionality and provide a well-defined interface to access it 27

over the network (Newman, 2021). The key difference to Service Oriented 28

Architectures (SOA) is, that the individual services are deployable separately. 29

They run as separate processes, typically inside of a container or virtual 30

machine. Access is typically through a REST-API. The implementation is 31

completely language or platform agnostic. They are smaller than the services of 32

a service-oriented architecture and used as building blocks to construct 33

applications. Microservices are a child of cloud centric application 34

development where the distribution, deployment and scalability of services is 35

key. To allow that, it is important, that services are self-contained, that means 36

especially, don’t use shared state, often in form of a shared database, and be - 37

as much as possible - independent of other services. That means, that 38

microservices can be replaced or replicated without affecting other 39

microservices in the system (Sommerville, 2021). Achieving this goal seems to 40

be easier, when a microservice is related to a single business function (ibid). 41

Obviously, there is a strong relation between microservices and Domain 42

Driven Design, a method described in (Evans, 2003). Especially the bounded 43

contexts of DDD do form a natural boundary for microservices. 44

Of course, there are ideas and publications about using microservices in 45

embedded systems, see for example (Reglin, 2020) but most of them deal with 46

the case of running many or all services on a single computer, often even in the 47

2023-5272-COM – 18 APR 2023

2

same image. This would be considered a monolith in normal systems. Other 1

authors like (Rabault, 2022) go farther and use the same technology 2

(containers, standard interface protocols like REST etc.) in embedded systems, 3

because the problems in embedded software engineering are very similar to 4

those of the rest of the world: moving targets require flexibility and redesign of 5

the system. With embedded systems that often means changing hardware and 6

starting over from scratch. While it is possible to transfer the ideas and 7

technologies of microservice architectures to embedded systems at least for 8

some domains, see for example (Dobaj, 2018) about industrial internet of 9

things, in many applications the complexity and the resources needed for using 10

these techniques are not available because of cost, size or energy constraints. 11

Even in those cases, where these resources are available, the distributed 12

and independent nature of microservices brings additional complexity with it 13

such as complex deployment processes, complex error detection and handling, 14

complex debugging, communications failures, requiring increased monitoring, 15

due to unexpected performance problems etc. Of course, all these problems can 16

be solved, see for example (Gartziandia, 2021), since they apply to every use of 17

microservices. But it must be considered, if the gain in flexibility is worth the 18

price of complexity, especially in embedded systems where the flexibility is 19

often limited by the hardware. We do not attempt to solve this problem in 20

general, our contribution is to provide some insights from a real-life project 21

using modest hardware. 22

There are other attempts like luos
1
 running on ESP32 MCUs (luos.io) 23

which try to implement something like services but without the overhead, 24

which are interesting to follow in their progress. 25

An alternative to implement something like services is to use a real-time 26

operating system like Free RTOS or ROS running several processes that 27

communicate via standard inter-process communication techniques. This is the 28

classic attempt to integrate different functions in an embedded system. From an 29

architectural point of view, this is a conventional monolithic implementation of 30

real-time requirements. It allows to run different tasks on the same hardware. 31

The price is the (sometimes hidden) complexity of concurrent programming 32

with limited resources and critical sections and paths. 33

We will use a different approach based on first principles of software 34

engineering and keep things as simple as possible. 35

In this case study we will describe a project, that experienced exactly the 36

challenges mentioned above. The case-study is a small sized prototypical 37

example. The total effort is split equally between mechanical engineering and 38

software development. By using ideas from the microservice world, we could 39

avoid restarting from scratch even when faced with major changes in the 40

requirements. Instead of using REST, containers, Kubernetes and all the other 41

attractive current solutions, our approach relies on classic approaches of 42

electrical and software engineering and simple hardware components. Clearly 43

1https://www.luos.io/

2023-5272-COM – 18 APR 2023

3

defined interfaces help to maintain lower complexity while tackling the profits 1

described above. 2

In the next section we will describe the project on a high-level view and 3

derive our architecture from general best practices of software engineering. By 4

analyzing the problems (and their solutions) that occur during development we 5

will highlight the key findings of this case study. 6

 7

 8

Background 9

 10

The project covered in this paper was to build the control system for a 11

high-end audio speaker with electromechanical components (drives, sensors 12

etc.), controlled by an App with added measurement functionality for 13

automatic room adaption. The technical details were unclear at the beginning 14

of the project since it was a research project started in 2019. The system was 15

designed for a life span of more than 10 years and to be built in small 16

quantities, typical for the price tag of more than hundred thousand Euro. 17

The structure of the system is relatively simple and shown in Figure 1. 18

 19

Figure 1. Components of the system 20

 21
The user controls the system either via an App running on a tablet or 22

smartphone that sends commands to the master box via Bluetooth. The master 23

box communicates with the slave box via ZigBee. 24

The development was done by a small team of4 persons for the hard- and 25

software, and 1 person for mechanical engineering. 26

Development was explorative and the requirements volatile. Software and 27

Hardware (electronics and mechanics) had to be developed independently in 28

parallel. The pandemic required individuals to work separately due to contact 29

limitations. 30

The ideas guiding the development of the architecture were: 31

 32

- Maximize flexibility, 33

2023-5272-COM – 18 APR 2023

4

- loosely coupled components, 1

- low complexity, 2

- keep every important functionality on an independent, simple 3

controller, instead of using a complex central embedded system with a 4

real-time operating system, 5

- communication via simple (ASCII-text) messages transmitted via a 6

serial line (UART), and 7

- process control for complex actions at one, isolated point, instead of 8

being distributed over the system. 9

 10

The guiding metaphor was to implement “hardware objects” 11

communicating via messages (Details see Section 3). 12

The simplified state chart of the system showing the possible flow of 13

events is shown in Figure 2. The coordination of the activities described here is 14

done by the “Logic Controller” component, see Figure 3. 15

 16

Figure 2. Simplified state chart of the system 17

 18
 19

The components of one box are shown in Figure 3. 20

Measurement mode is completely controlled from the tablet. The app is 21

written in Java for Android. 22

In measurement mode the satellites are moved to their starting position 23

first. Then a few measurements are performed for fixed steps. Each step 24

consists of the following tasks: 1) The test signal is played for a fixed time 2) 25

2023-5272-COM – 18 APR 2023

5

Audio is captured and analyzed. Steps 1 and 2 are repeated several times. If the 1

difference between the measurements is too large, the measurement has to be 2

repeated, due to issues with the equipment. 3

Before every measurement the system tests, if the box is disconnected 4

from the external amplifier. If yes, the amplifier is activated, and the playback 5

of the test signal is started. As soon as the tablet signals, that the signal was 6

detected and the measurement has finished, the playback is stopped. If this 7

message is not received in a predefined time, the measurement mode is 8

terminated, the amplifier deactivated, and the error is signaled to the user. 9

At the end of the measurement cycle the sound generator and the amplifier 10

are deactivated and the box is connected to the external amplifier port. The box 11

is in listening mode, this is signaled to the user. 12

The tablet isn’t needed for listening mode. While in listening mode, the 13

satellites can be adjusted via the tablet in manual mode. Manual mode is 14

activated from the App. 15

 16

Figure 3. Component diagram of one box 17

 18
 19

Each box (component) in Figure 3 represents a separate controller unit. 20

The communication controller processes the incoming message and 21

forwards them to the logic controller. 22

The logic controller interprets incoming messages and creates commands 23

for the sound generator, the amplifier and its control, motor control and object 24

recognition. The logic controller monitors the condition and state of the system 25

and starts error handling if it detects problems. 26

The logic controller is designed to be as easy as possible to allow it to (re-) 27

start as fast as possible to react to incoming messages. During listening it can 28

be put in sleep mode to reduce EMI problems. It will be activated by the other 29

components when needed. 30

The sound generator, amplifier control and relays are needed only in 31

measurement mode and can be deactivated during listening or manual mode. 32

2023-5272-COM – 18 APR 2023

6

Logic controllers and motor controllers are Arduino compatible teensy 1

boards. Both motor controls are autonomous, in the sense that they receive and 2

process commands like “move to this state”. 3

The motivation for this architecture is to need as few electronic 4

components active while listening to music. All unnecessary components can 5

be turned off or at least in sleep mode while listening. Ideally all digital 6

components are turned off while hearing, but this requires a method for 7

reactivating the control system, when the tablet should be used. 8

 9

 10

Applying Microservice Patterns to Embedded Systems Design 11
 12

There are many ways to use the central ideas of Microservices in 13

embedded systems. But at the very core of those ideas is the idea of 14

encapsulation and information-hiding. These are very old and broad ideas: 15

Compared with the definition of UNIX-characteristics by (McIlroy, 1978) 16

“Make each program do one thing well. To do a new job, build afresh rather 17

than complicate old programs by adding new "features.", the parallels to the 18

Open Closed Principle and the characteristics of microservices are obvious. 19

Typical characteristics of Microservices (Fowler, 2014): 20

 21

1. Communicating with lightweight mechanisms 22

2. Using services as components, explicit interfaces 23

3. Smart endpoints and dumb pipes (esp. no ESB) 24

4. Running in its own process 25

5. Built around business capabilities 26

6. Design for failure 27

7. Evolutionary Design 28

8. May be written in different programming languages 29

9. Use different data storage technologies 30

10. Independently deployable 31

11. Products not projects (“you built it, you run it”) 32

12. Decentralized Governance 33

13. Decentralized Data Management 34

14. Infrastructure Automation 35

 36

Numbers 9-14 are organizational and/or infrastructure aspects which are 37

either irrelevant for embedded systems or at least for this project, so we will 38

ignore them. Number 8 is obviously nice to have and, since part of the project 39

is an App written in Java, was a requirement for the project anyway. Since we 40

won’t cover the development process in this case study, number 7 is beyond 41

the scope of this case study. Number 6 is obviously an important part of 42

functional safety in embedded systems and made up a large part of the motion 43

control in this project but is too specific in detail to be covered here. Number 5 44

needs some adaption, because business capabilities are not a common concept 45

in embedded systems, but if we interpret them as functional groups, then we 46

2023-5272-COM – 18 APR 2023

7

used exactly that for structuring the components (see figure 3). We interpreted 1

“running in its own process” (number 4) as running on its own node to reduce 2

complexity. Numbers 1-3 and 5 (in our interpretation) are the most interesting 3

aspects and we will cover them in the next sections in more detail. 4

Key for the successful application of services is being able to change some 5

implementation (or operational) aspect without affecting other service or 6

clients. This is a very old goal of software engineering regarding components 7

independent of the implementation mechanism (for example modules, objects, 8

or services) is used. 9

The importance of loosely coupled modules (as they typically called and 10

implemented components back then), described by low coupling is at the 11

foundation of systematic program design, see for example (Yourdon, 1979): 12

“The more that we must know of module B in order to understand module A, 13

the more closely connected A is to B. The fact that we must know something 14

about another module is a priori evidence of some degree of interconnection 15

even if the form of the interconnection is not known.” In fact, we don’t want to 16

know anything about component B when using component A. A more modern 17

view (using objects) of that is the Dependency inversion principle, the “D”-Part 18

of SOLID (Martin, 2003). 19

The same goes for high cohesion or “intramodular functional relatedness” 20

(Yourdan, 1979, p. 95), the more modern variant being the Single 21

Responsibility Principle, the “S”-Part of SOLID. 22

Loose coupling and high cohesion are essential for the independence of 23

services. The same goes for high cohesion, see (Sommerville, 2021, p.165). 24

Both can be achieved or at least supported by being dependent only on 25

abstract interfaces and not on implementation (details). That means numbers 2 26

and 4 of our list of characteristics follows direct from basic principles of 27

software engineering that are well tested since over 40 years. 28

High cohesion is not immediately on our list of characteristics. But 29

Number 5 gives at least a hint to the right direction: Deciding, what a single 30

microservices does based on the business context in the Domain Driven Design 31

perspective leads to high cohesion. 32

An important factor leading to the recent success of Microservices is 33

probably late binding (extreme loose coupling), a very popular concept. 34

A general definition of “late binding” relates to fixing the value of a 35

variable or address of a function not at compile time but at run time. A good 36

explanation including implementation in ANSI-C is given in (Schreiner, 1994). 37

For our purpose, we interpret late binding as: The resolution of the name 38

of service being called is done at the latest moment possible – when it is called 39

- not before that. That gives us the flexibility to change many properties of a 40

service at run time, like replication or sharding it or using a different 41

implementation etc. That means, the caller doesn’t have to know much about a 42

service: the name of the service and the interface being used. When called, a 43

request is made, that sends something looking like a message to the callee. The 44

nice thing (and maybe the reason, why it works so well) is, that the typical 45

implementation of a microservice uses REST-calls via HTTP. To find the 46

2023-5272-COM – 18 APR 2023

8

service, DNS is used to resolve the address of the server given in the URL. 1

That fits nicely to the definition of object-oriented programming by Alan Kay 2

(Kay, 2003). Compared with the techniques used before (SOAP via whatever, 3

XML over ESB) these protocols easily qualify as lightweight mechanisms (our 4

number 1 of characteristics). Number 3 also supports this point. 5

We started with a list of characteristics of microservices and discussed, 6

which of them apply to embedded systems. We found that some of them are 7

not applicable (or relevant) in this area. Others are basically rules of solid 8

software design. In the discussion we were not very explicit about the 9

“lightweight communication mechanism”, we will cover that in the next 10

section. 11

 12

 13

Consequences for the architecture of the system under investigation 14
 15

At the begin of the project we discussed intensively the pros and cons of 16

using a central powerful controller with a real time operating system 17

(FreeRTOS or ROS in this case) as a platform. The pros are obvious, see for 18

example (Lethaby, 2013): using a well-tested platform for scheduling and 19

communication makes life much easier. Explicit prioritization of tasks and 20

guaranteed response times make life much easier and therefore it is industry 21

standard to use a RTOS in such projects. There are several smaller cons like 22

additional complexity from an additional platform, more resources required to 23

run the OS and the additional effort of having to maintain the platform over a 24

long lifespan (10-20 years), which is even harder when using the open- source 25

variants like ROS which are changing quickly. But the main point, which led to 26

the decision not to use a RTOS is: if we separate the “business” tasks not only 27

in separate processes but on separate nodes, we didn’t have to schedule 28

anything, because on every node (except the App which runs on the Android 29

OS, so it isn’t relevant here) there is only one task with a well-defined flow of 30

events. 31

By splitting the system in independent “hardware services” (every service 32

has its own hardware), we don’t have any parallel activities running on one 33

node except the communication, especially receiving messages from the other 34

node. And this problem can be solved by a simple interrupt service routine. 35

The main reason for this being possible, is the use of smart motor drives which 36

receive a trajectory and control the acceleration and deceleration of the drives 37

independently. So, controlling the drives (two axes) was also implemented by a 38

“hardware service”, which we bought as an off-the-shelf component. 39

Using a sperate controller for each hardware service might look like a 40

waste of resources at the first glance. But considering the history of 41

components in electronic engineering it does not seem that eccentric: In 42

electronic engineering it is common to use components like operational 43

amplifiers in analog circuit design or logic gates (or combinations of them like 44

PALs or FPGAs) as building blocks of larger components. The interfaces, in 45

this case mechanical cases, pinouts, supply voltages or logic levels are highly 46

2023-5272-COM – 18 APR 2023

9

standardized. Only this way of reusing existing designs in form of components, 1

which are separately packed and connected in the appropriate way to realize a 2

required function made the quick innovation cycles possible we know today. 3

Even though that approach uses more resources (transistors in this case), the 4

gain in productivity and reliability is worth it. 5

So, the first important decision was to use hardware services: one service 6

per device. That materializes independent services, built around business 7

capabilities, platform independence and explicit interfaces (together with the 8

communication mechanism discussed next). 9

The second question was, how the services should communicate, 10

“communicating with lightweight mechanisms” being number one on our list 11

of characteristics of microservices. There are several possibilities, all of them 12

commonly used. Starting with the standard techniques in all computer systems, 13

(wired) Ethernet and Wifi which are commonly used for the communication 14

between complex systems in bigger (number and size) systems like industrial 15

shopfloor automatization. We didn’t need the power of these and want to avoid 16

the resource requirements of these computer network techniques. Communication 17

between individual controllers with low bandwidth requirements in industrial 18

(near) real time systems is often implemented with CAN (Controller Area 19

Network), for example in automotive applications. We used that to 20

communicate with the drive controls. 21

Board level communication is typically done via serial protocols like SPI 22

(Serial Peripheral Interface) for higher bandwidth requirements (for example 23

for DAQ-systems), I2C for lower bandwidth. 24

We didn’t need the performance of SPI and I2C is not good at transmitting 25

variable length messages, so we took the easiest approach: simple ASCII-text 26

messages for communication between all components using UART (Universal 27

Asynchronous Receiver/Transmitter). It requires only two wires and is 28

available on all microcontrollers. Additionally, the data paths are fixed in this 29

point-to-point topology, so we don’t even need addressing. 30

All messages are of the form <command> {parameter}. Typically, the 31

commands have only one parameter, in some cases two or three but not more. 32

So, the individual messages are short (commands are one or two characters 33

each). That means, buffering messages does not require extensive memory in 34

case a controller cannot process a message immediately. 35

An important advantage of using UART-communication is, that it can be 36

implemented transparently over many other protocols like Bluetooth, ZigBee 37

or USB, all of them we used in the project. 38

The second important decision was to implement communication via 39

messages, transmitted via simple protocol (ASCII over UART). 40

 41

Conclusions 42

 43

We traced back our architecture to solid principles of software architecture 44

and drew the connection to the characteristics of microservices. Transferring 45

these ideas to embedded systems is possible even without sticking to the 46

2023-5272-COM – 18 APR 2023

10

technical implementation (and the overhead), microservice architectures 1

typically use. 2

The independent, parallel development of the individual components 3

(App, process control, motor control) with mockups for the missing parts 4

worked well. Using messages transmitted via serial lines added some 5

complexity (buffering to avoid losing messages) but allowed very simple 6

debugging using just terminal emulation and/or simple scripts. Redesigning the 7

complete external communication from Bluetooth/ZigBee to Wifi and the 8

topology from master/slave to fully connected proved to be very simple (only a 9

few days of work). 10

 11

 12

References 13
 14
Dobaj, Jürgen, Iber, Johannes, Krisper, Michael, Kreiner, Christian, A Microservice 15

Architecture for the Industrial Internet-Of-Things, Proceedings of the 23rd 16
European Conference on Pattern Languages of Programs (EuroPLoP '18). 17
Association for Computing Machinery, New York, 2018 18

Evans, Eric, Domain Driven Design: Tackling Complexity in the Heart of Software, 19
Addison Wesley, 2003, p. 161 20

Fowler, Martin, Microservices, 2014, Available online https://martinfowler.com/artic 21
les/microservices.html 22

Gartziandia, Aitor, Microservice-based performance problem detection in cyber-23
physical system software updates, Proceedings of the 43rd International 24
Conference on Software Engineering: Companion Proceedings (ICSE '21). IEEE 25
Press, 147–149, 2021. 26

Kay, Alan, Mail exchange about what OOP is, available online at https://www.purl. 27
org/stefan_ram/pub/doc_kay_oop_en", 2003 28

Lethaby, Nick, Why Use a Real Time Operating System in MCU Applications, Texas 29
Instruments Whitepaper, 2013, available online https://www.ti.com/lit/wp/spry 30
238/ spry238.pdf?ts=1681631181658 31

Martin, Robert C, Agile Software Development, Principles, Patterns and Practices, 32
Prentice Hall, 2003 33

McIlroy, M. D., Pinson, E. N., Tague, B. A., Unix Time-Sharing System: Foreword". 34
The Bell System Technical Journal Vol. 57, No. 6, Bell Laboratories, 1978 35

Newman, Sam, Building Microservices, O’Reilly, 2021, p. 1 36
Rabault, Nicolas, How microservices enhance agility in embedded systems 37

development, Embedded.com, available online https://www.embedded.com/how-38
microservices-enhance-agility-in-embedded-systems-development/, 2022 39

Reglin, Frank, Verteilte Embedded Systems mit leichtgewichtigen Microservices 40
realisieren, Elektroniki Praxis, available https://www.embedded-software-41
engineering.de/verteilte-embedded-systems-mit-leichtgewichtigen-microservices-42
realisieren-a-165e68421d1b0bda5c9e5f33ac1a7c42/, 2020 43

Schreiner, Axel-Tobias, Object-Oriented Programming With ANSI-C, Hanser, 1994, 44
p.15 45

Sommerville, Ian, Engineering Software Products, Pearson, 2021. 46
Yourdan, Edward, Structured Design: Fundamentals of a Discipline of Computer 47

Program and Systems Design, Prentice Hall, 1979, p. 76 48
 49

https://martinfowler.com/artic%20les/microservices.html
https://martinfowler.com/artic%20les/microservices.html
https://www.ti.com/lit/
https://www.embedded.com/how-microservices-enhance-agility-in-embedded-systems-development/
https://www.embedded.com/how-microservices-enhance-agility-in-embedded-systems-development/
https://www.embedded-software-engineering.de/verteilte-embedded-systems-mit-leichtgewichtigen-microservices-realisieren-a-165e68421d1b0bda5c9e5f33ac1a7c42/
https://www.embedded-software-engineering.de/verteilte-embedded-systems-mit-leichtgewichtigen-microservices-realisieren-a-165e68421d1b0bda5c9e5f33ac1a7c42/
https://www.embedded-software-engineering.de/verteilte-embedded-systems-mit-leichtgewichtigen-microservices-realisieren-a-165e68421d1b0bda5c9e5f33ac1a7c42/

