
2023-5361-AJA-PLA – 19 MAY 2023 

 

1 

Generative Urban Design in the Field of Infrastructure.  1 

An Optimize Solution for Connecting Fier and Vlora 2 

County by a 600 m Bridge over Selenica River, Albania 3 

 4 
The way we think about infrastructure is being completely changed by 5 
parametric and generative design. Meanwhile the contemporary urban 6 
planning process is often viewed as a complicated and fragmented workflow. 7 
The main goal is to optimize solutions with tens of thousands of variations while 8 
concurrently taking into consideration various limits. This Paper will discuss 9 
and demonstrate the use of a generative urban design framework at the local 10 
scale. Although relevant to infrastructure, generative design is not limited to 11 
architecture. And on the other hand, the construction sector is becoming more 12 
specialized and complex. The close cooperation between structural engineers, 13 
architects, urban planners and other stakeholders is a major driving force 14 
behind modern projects. The building site is cut off from architects and 15 
engineers, particularly in the digital age. To ensure a three-dimensional scope 16 
of work, digital models are therefore necessary. The difficulty is that the 17 
structural model and architectural model do not match up exactly. A generative 18 
design is therefore explained in the case of a bridge design. Bridges are 19 
effective structures that provide a variety of topologies, materials, and 20 
geometries. This paper examines how the geometry and topology of a 600 21 
meters long bridge can bring an optimal solution for connecting two nearby 22 
counties, Fieri and Vlora. The performance of the bridge can be examined by 23 
altering the geometrical parameters in addition to the topology. By adding 24 
more design factors and offering a fresh method for bridge optimization, the 25 
study aims in further developing the initial parametric model. Since the process 26 
of changing the design is quite quick and the analysis is displayed instantly, 27 
using parametric design to study alternative options for bridges could be highly 28 
helpful to designers.  29 
 30 
Keywords: generative design, bridge, geometry, typology, optimization, 31 
deflection. 32 

 33 

 34 

Introduction 35 

 36 
The generative urban works in fact count for many urban aspects and 37 

corresponding structures. One of them is related to terrain modelling and road 38 

planning which several times go hand in hand. However, developing them in 2D 39 

poses numerous difficulties and frequently results in time lost through rework. 40 

Road and infrastructure engineers may need to start the same project over more 41 

than once due to their conflicting perspectives and that of numerous other 42 

stakeholders. This re-work can be avoided by using a parametric road modelling 43 

software solution, which makes road design and terrain modelling considerably 44 

simpler and more effective. The road body can be modelled once the terrain's 45 

surface and axes have been established. There are several plugins that help 46 

towards employing a template-based modelling strategy, which has the benefit of 47 

being highly flexible.  48 
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There are four templates that define the fundamental road geometry: 1 

 2 

 The road layer structure, standard width, vertical offsets, and lane count 3 

are all specified in the cross-section template. 4 

 All of the parameters for the substructure are defined in the sub-base 5 

template. 6 

 Every shoulder, ditch, slope, and wall are defined using the roadside 7 

templates. 8 

 The calculation parameters for the model are defined by the land 9 

requirement template. 10 

 11 

The templates are allocated to the axis after they have been constructed. Of 12 

course, by setting the inlet and outlet distances, the transitions between adjacent 13 

templates are automatically made. A road body's geometry can vary a lot and in 14 

this regard the plugins offer numerous detailing functions to improve the structure, 15 

preventing the need for hundreds of templates for tiny variations. The templates 16 

allow for the overwriting of all previously set parameters to meet specific criteria. 17 

The above example of the road preliminary design aspect are very much related 18 

also with the bridge design as one important element of the whole terrain 19 

modeling. 20 

Nevertheless, it is important to intiate explaining the broad concept of the 21 

generative urban design. And in this regard, the three main elements of the 22 

generative design process are based on how natural processes create shapes in 23 

complicated patterns (Krish, 2011). There are several advantages to using these 24 

essential elements in product design. The first step is to create design solutions that 25 

are effective, resilient and compatible. The use of digital technologies and 26 

algorithms to generate a huge number of workable design directions comes in 27 

second. The third step is to design beautiful, dynamic forms and patterns. 28 

 29 
Figure 1. Predesign and Schematic Design stages are when the majority of 30 

critical decisions that affect the design and cost of construction are made 31 

 32 
Source: BLOG on AEC Innovation. https://www.invokeshift.com/thoughts-on-the-future-of-33 
generative-design-in-aec-from-an-engineering-perspective/ 34 

 35 
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There are numerous ways to integrate generative design into the design 1 

process and by the perspective of a designer, the majority of methods fall into two 2 

broad categories: i) by subtraction and ii) by addition. Parts of a product are 3 

examined based on their strength or durability during a subtractive process in order 4 

to remove superfluous pieces while preserving performance. Utilizing techniques 5 

like shape optimization, trabecular structures, and lattice design, this strategy is 6 

accomplished (Autodesk, 2018; Singh, 2012). A subtractive technique has a very 7 

short learning curve, although it also originates from too precise designs and offers 8 

only minor advancements over existing options. An additive technique produces a 9 

wide number of viable solutions that satisfy the design objectives and limitations 10 

for a particular challenge. 11 

There are many techniques for additive generative design, including 12 

tabernacle structures. Although the generative design far exceeds what human 13 

capability could produce on its own (Cui & Tang, 2012), it also makes it difficult 14 

to develop algorithms that function as expected, let alone to choose viable and 15 

desirable solutions from among the many options generated. The role of the 16 

designer, who works with computers to create systems that are sophisticated, 17 

linked, robust, and novel, is at the centre of this process (McCorkmack, Dorin & 18 

Innocent, 2004). The authors in fact mention also the iterative design process, a 19 

very interesting approach to the design phase too. The relationship between 20 

generative design and iterative design process offers an innovative framework 21 

where designers may feel at ease utilizing tried-and-true workflows and fusing 22 

them with cutting-edge technology, all of which results in more effective and 23 

compelling designs. 24 

New strategies and technologies are required to help urban designers plan 25 

resilient and sustainable urban landscapes. Numerous computational methods have 26 

been suggested, such as automated production of urban design suggestions based 27 

on predetermined parameters or various types of spatial analysis to assess the 28 

effectiveness of design plans. However, the majority of these ideas have led to 29 

isolated tools and disjointed workflows. An appropriate computational 30 

representation of the urban design problem is one of the primary obstacles to 31 

merging urban analytics and generative approaches in the framework of urban 32 

design optimization procedures. 33 

A comprehensive data representation for urban fabrics, including the 34 

organization of street networks and parcels, is offered to help overcome this 35 

challenge. This form may be effectively employed with evolutionary optimization 36 

techniques. It is shown how the data structure developed for the Grasshopper for 37 

Rhino3D software can be used as a component of an adaptable, modular, and 38 

extensible optimization system that can be applied to a range of urban design 39 

issues and can reconcile potentially incompatible design objectives in a semi-40 

automated design process. The proposed case study method intends to help a 41 

designer by introducing possibilities into the design phase for deeper investigation. 42 

An urban design concept for the communities of Fieri and Vlora is used to 43 

illustrate how the system works. 44 

The paper's objectives are to automate bridge modeling in the early design 45 

phases, to conduct a full analysis, and to optimize the bridge structure with regard 46 
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to reinforced concrete material used. According to the study case's findings, 1 

designing bridges utilizing optimization and parametric design has some promise. 2 

Generative designs can be investigated with minimum effort from the designer 3 

with a strong parametric design description. A parametric design approach might 4 

be used for its ability to expedite the design process and give the designer access to 5 

adaptive design. 6 

In order to analyze the effects of the bridge link for the counties of Fieri and 7 

Vlora over the Selenica River, a generative design approach was suggested in this 8 

regard. In addition to providing deeper understanding of potential conflicts and 9 

trade-offs between design goals, the case illustrates how the Generative Design 10 

method can produce effective design strategies. It was possible to demonstrate 11 

how, at the heart of generative design, there is always a choice of inputs and 12 

constraints that do not absolve the engineer or architect of responsibility but that 13 

can be gradually refined by further enhancing the generated strategies and 14 

resulting in a more informed design. This can be done by expanding the process to 15 

include the generative design for architectural space planning's evaluative 16 

component and outlining a new set of metrics for the automatic evaluation of end-17 

user satisfaction inside the defined areas. As a result, when big datasets are 18 

available, machine learning can be a useful tool to enhance generative design. In 19 

terms of technology, it can attempt to use machine learning at any point during the 20 

generative design process. 21 

 22 

 23 

The Historic Path 24 

 25 
Study the past if you want to define the future, advised Confucius. We could 26 

get a clear picture of the development of design optimization techniques in 27 

architectural and urban design from a summary of historical development (table 28 

1). From this image, it is anticipated that the benefits (table 2) and difficulties 29 

(table 3) of the methodologies will be easier to comprehend from a historical 30 

standpoint. The development of design optimization methods and strategies to 31 

deliver the newest cutting-edge technology to satisfy the continuously changing 32 

requirements in architecture and urban design is equally fascinating to observe. 33 

This part should respond to the first query. 34 

Prior to being scaled up to urban design, design optimization first appeared in 35 

architectural design. Attempts to use optimization techniques to solve design 36 

problems may be traced back to 1969 in academia thanks to Simon's ground-37 

breaking paper on the "Science of Design" in his influential book "The Sciences of 38 

the Artificial"
1
. The optimization process was encouraged to be one of the many 39 

attempts to demonstrate the scientificity of architecture in addition to its inherently 40 

aesthetic aspect during this time, when architecture did not even have a well-41 

established theory
2
. Architects navigate through and add elements one at a time to 42 

                                                 
1
Simon, H. A. (2019). The sciences of the artificial. MIT press. 

2
Widdowson, W. (1971). Architecture as art: aphenomenological theory of architectural esthetics. 

University of Pennsylvania. 
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a rich combinatorial space, which Simon
3
 further characterized as the essence of 1 

design creativity. This definition perfectly aligns with mathematical optimization. 2 

 3 

Table 1. The Development of the Methods used and Respective 4 

Instruments into Design Process 5 
Objects Developments 

1960s-1980s the objective of a single optimization 

1990s methods instruments based in human logic 

2000s multi-objective simulation-based methods 

2010s methods using artificial intelligence 
Source: Miao, Y., Koenig, R., Knecht, K., (2020) The Development of Optimization Methods in 6 
Generative Urban Design: A Review, SimAUD: Symposium on Simulation for Architecture & 7 
Urban Design, at: Vienna, Austria 8 
 9 

Table 2. The Advantages of the Optimisation Methods in Different 10 

Periods of Time 11 
Objects Advantages 

1960s-1980s the scientific framework of architecture in the architectural design 

1990s field design approach and new application methods in regard 

2000s 
emerged problems which are complex and the corresponding 

applications in urban design 

2010s 
technologies used in artificial intelligence and best practices to 

design phase 
Source: Miao, Y., Koenig, R., Knecht, K., (2020) The Development of Optimization Methods in 12 
Generative Urban Design: A Review, SimAUD: Symposium on Simulation for Architecture & 13 
Urban Design, at: Vienna, Austria 14 
 15 
Table 3. The Methods of Optimisation and the Challenges in Different Periods of 16 

Time 17 

Objects Challenges 

1960s-1980s lack of mathematical models 

1990s CAAD community debates on topic 

2000s thriving scenarios 

2010s misalignment of design techniques and data-driven approaches 
Source: Miao, Y., Koenig, R., Knecht, K., (2020) The Development of Optimization Methods in 18 
Generative Urban Design: A Review, SimAUD: Symposium on Simulation for Architecture & 19 
Urban Design, at: Vienna, Austria. 20 

 21 
A variety of optimization techniques' uses in architecture and urban planning 22 

were explored by Gero
4
. He emphasized how the lack of numerical models in 23 

architecture limited the use of this method in design. For decades, efforts to create 24 

optimization-based design methodologies in the CAAD field persisted. Through a 25 

                                                 
3
Simon, H. A. (1975). Style in design. Spatial synthesis incomputer-aided building design 9, 287–

309. 
4
Gero, J. S. (1975). Architectural optimization-a review. Engineering Optimization 1, 3, 189–199. 
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number of articles in the 1980s, the optimization in the design was first introduced 1 

by Gero, Radford, and Balachandran
5
 

6
 

7
 to the design field. During this stage, 2 

design optimization did succeed in resolving a few related architectural design 3 

issues. However, when the design difficulties could not be expressed 4 

mathematically, the applied numerical optimization methods frequently failed. 5 

More logic-based AI approaches were created in the 1990s to loosen the 6 

restrictions of scientific formulation, but the need for such techniques in design 7 

was hotly contested at the time. An intelligent computer-aided design system 8 

prototype that placed an emphasis on the collaboration between a computer and a 9 

person was proposed by Pohl et al
8
. Schmitt

9
 drew attention to the fact that the 10 

research frontiers of CAAD were beginning to switching to design support from 11 

design automation, urged additional insights into human cognition. A design-12 

oriented approach was put up as a way to assess, criticize, and optimize building 13 

energy use and design. Despite numerous attempts during this decade, the CAAD 14 

field has faced skepticism and criticisms. 15 

It was indisputable that the created systems' applicability was still very 16 

constrained. Internal criticism from the field was also expressed at the same time, 17 

which pushed the research agenda forward. The CAAD's seven deadly sins, which 18 

Maver
10

 mentioned and which include macro-myopia, d'ej'a vu, xenophilia, 19 

unsustainability, failure to validate, failure to evaluate, and failure to criticize, are a 20 

well-known example. New approaches, like using genetic programming to explore 21 

design spaces, started to emerge as a result to both internal and external 22 

criticisms
11

. As processing power increased at the start of the twenty-first century, 23 

additional derivative-free and stochastic optimization techniques were developed 24 

and used to tackle challenging discrete nonlinear issues. 25 

Utilizing generative algorithms to create architectural design shapes is one of 26 

the projects Coates et al
12

 started in Center for Environment and Computing in 27 

Architecture. Derix
13

 employed Quantum Annealing to determine desired 28 

adjacencies between various land use units and Ant Colony Optimization to create 29 

roadway networks for urban design. In addition, fresh perspectives on the 30 

                                                 
5
Gero, J., and Radford, A. (1984) The place of multi-criteria optimization in design. Design Theory 

and Practice, London: The Design Council, 81–85. 
6
Balachandran, M., and Gero, J. (1987) A knowledge-based approach to mathematical design 

modeling and optimization. Engineering Optimization+ A35 12, 2, 91–115. 
7
Radford, A. D., and Gero, J. S. (1987) Design by optimization in architecture, building, and 

construction. John Wiley & Sons, Inc. 
8
Pohl, J., Myers, L., and Chapman, A. (1990) Icads; an intelligent computer-aided design 

environment. ASHRAE Transactions (American Society of Heating, Refrigerating and Air-

Conditioning Engineers); (United States) 96, CONF-9006117. 
9
Schmitt, G., and Oechslin, W. (1992) Computer aided architectural design futures. In CAAD 

Futures, vol. 91. 
10

Maver, T. W. (1995) Caad’s seven deadly sins. In Sixth International Conference on Computer-

Aided Architectural Design Futures, 21–22. 
11

Broughton, T., Tan, A., and Coates, P. (1997) The use of genetic programming in exploring 3d 

design worlds. In CAAD futures, Springer. 
12

Coates, P., Appels, T., Simon, C., and Derix, C. (2001) Current work at ceca. In Proceedings of 

the 4th Generative Art Conference (GA2001). 
13

Derix, C. (2009) In-between architecture computation. International journal of architectural 

computing 7, 4, 565–585. 
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application of optimization techniques arose. Using optimization, Bleiberg & 1 

Shaviv
14

 improved collaborative design. Multi-objective optimization is also used, 2 

research also made strides, leading to the development of outstanding algorithms 3 

like SPEA2
15

, NSGA-II
16

, and later HypE
17

. Although more and more physical 4 

realities, like the Science City Zurich, were made possible with the aid of CAAD, 5 

design support tools did not make a substantial impact on design practice
18

. 6 

Within the CAAD discipline, research in design optimization has advanced 7 

over the last ten years, moving from architectural design to urban design. 8 

Numerous studies in this field centered on exploring the design space. Turrin et 9 

al.
19

 created a technique for design exploration a combination of performance-10 

driven geometries parametric modeling and genetic algorithms. Additionally, 11 

Stouffs
20

 put forth strategies for fusing generative and evolutionary exploration.  12 

When the issue is or can be reformulated as a single objective optimization 13 

problem, model-based optimization has been shown to be a faster and more 14 

practical alternative to evolutionary algorithms. Hybrid approaches using both 15 

metaheuristic and model-based optimization would suitable for multi-objective 16 

optimization issues, as has already been demonstrated in other engineering design 17 

domains
21

.  18 

A growing variety of quantitative evaluation methods have been brought to 19 

urban design with the advent of spatial analysis tools like space syntax
22

, which 20 

expand the design requirements that design optimization could meet. For land use 21 

planning, Cao et al
23

 employed multi-objective optimization techniques. In 22 

contrast to earlier design optimization attempts, their methods reinforce how 23 

designers may highlight the value of human intelligence interactions with the 24 

generated urban design. This aims to address a major criticism of computational 25 

                                                 
14

Bleiberg, T., and Shaviv, E. (2007) Optimisation for enhancing collaborative design. In 

Proceedings of the Building Simulation. 
15

Zitzler, E., Laumanns, M., and Thiele, L. (2001) Spea2: Improving the strength pareto 

evolutionary algorithm. TIK-report 103. 
16

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002) A fast and elitist multiobjective 

genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation 6, 2, 182–197. 
17

Bader, J., and Zitzler, E. (2011) Hype: An algorithm for fast hypervolume-based many-objective 

optimization. Evolutionary computation 19, 1, 45–76. 
18

Schmitt, G. (2004) The impact of computer aided architectural design on physical reality. 

International Journal of Architectural Computing 2, 1, 31–41. 
19

Turrin, M., Von Buelow, P., and Stouffs, R. (2001) Design explorations of performance driven 

geometry in architectural design using parametric modeling and genetic algorithms. Advanced 

Engineering Informatics 25, 4 (2011), 656–675. 
20

Stouffs, R., and Rafiq, Y. (2015) Generative and evolutionary design exploration. AI EDAM 29, 

4, 329–331. 
21

Sindhya, K., Miettinen, K., and Deb, K. (2012) A hybrid framework for evolutionary multi-

objective optimization. IEEE Transactions on Evolutionary Computation 17, 4 (2012), 495–511. 
22

Hillier, B. (2007) Space is the machine: a configurational theory of architecture. Space Syntax. 
23

Cao, K., Batty, M., Huang, B., Liu, Y., Yu, L., and Chen, J. (2011) Spatial multi-objective land 

use optimization: extensions to the non-dominated sorting genetic algorithm-ii. International Journal 

of Geographical Information Science 25, 12, 1949–1969. 



2023-5361-AJA-PLA – 19 MAY 2023 

 

8 

creativity, namely the lack of humanity
24

. The EMO-based generative 1 

methodologies at the heart of their strategy have the potential to improve urban 2 

design through benefits like transparency
25

 and integrativeness
26

. 3 

Additionally, this study intends to overcome the representation problem, one 4 

of the main obstacles to generative urban design. In their most recent study
27

, the 5 

application of EMO to the creation of numerous urban design layouts including 6 

urban elements such roadway networks, blocks, lots, and buildings was successful. 7 

Despite progress across academic frontiers, there is still a long way to go in terms 8 

of implementation. The absence of quantitative design evaluation metrics and 9 

measures continues to be a major problem. Additionally, computer-generated 10 

design solutions are frequently straightforward and only appropriate for prototype. 11 

Because of the nature of EMO, complex processing is frequently needed even for 12 

basic generation, which takes longer than real time. A hybrid strategy is 13 

anticipated to be used to resolve these issues.  14 
 15 

 16 

Methodology 17 
 18 

The methodology employed in this work is associated with parametric design, 19 

which is defined as a technique for producing geometries based on various 20 

parameters and rules in an algorithmic manner. The method will generate a new 21 

version of the geometry when the parameter values are altered. With the 22 

Rhinoceros add-on visual programming tool grasshopper, parametric design may 23 

be utilized. The Rhinoceros viewport is used to preview the geometry once it has 24 

been defined in Grasshopper. The structure of the model is one advantage of 25 

parametric design. A modification to the parameter will have an impact on the 26 

remainder of the design and the model if a collection of parameters defines the 27 

curves that serve as its foundation. In this regard, the chosen case study is being 28 

further analysed by primary choosing the structure, that of a 600 meters long 29 

bridge. After that the technical parameters of the bridge are being selected and the 30 

referenced schematic view of the 3D bridge is conceived. The structural 31 

sustainability is checked for the modelled bridge by resulting at the end in the 32 

proposed version for the connection of the two ground areas divided by the river. 33 

 34 

 35 

  36 

                                                 
24

Colton, S., Cook, M., Hepworth, R., and Pease, A. (2014) On acid drops and teardrops: Observer 

issues in computational creativity. In Proceedings of the 7th AISB Symposium on Computing and 

Philosophy. 
25

Monizza, G. P., Bendetti, C., and Matt, D. T. (2018) Parametric and generative design techniques 

in mass-production environments as effective enablers of industry 4.0 approaches in the building 

industry. Automation in Construction 92, 270–285. 
26

Singh, V., Gu, N. (2012). Towards an integrated generative design framework. Design Studies, 33 

(2), pp. 185-207. 
27

Koenig, R., Miao, Y., Knecht, K., Aichinger, A., and Konieva, K. (2020) Integrating urban 

analysis, generative design, and evolutionary optimization for solving urban design problems. 

Environment and Planning B. 
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How does Generative Design Work? 1 
 2 

In order to create the normal design process, also known as the traditional 3 

design process, calls upon the expertise of the designer. This is frequently a time-4 

consuming process that necessitates designers and engineers to thoroughly 5 

comprehend many ideas and processes in order to produce an effective final phase. 6 

And then, after spending countless hours on design and analysis, the need to 7 

shorten the process frequently leads to less-than-ideal designs. Here is where 8 

generative design will play a role in creating the future's most optimal designs. 9 

This can be added to the new generation of products that are being developed, 10 

which have features of ultra-high performance and are too demanding for the 11 

conventional design process. 12 

Designers and engineers may now co-create ideas utilizing parameter driven 13 

optimization because to the development of technology like artificial intelligence 14 

algorithms and limitless computing, which are far more accessible than at any 15 

other time in history. To assist create an optimum solution that satisfies the design 16 

goals within the constraints specified in the study setting, generative design tests 17 

the structure with each iteration, learns from each step, and applies change at each 18 

level. This technique frequently yields designs that the conventional design 19 

process would not have been able to produce. The final forms' shapes are 20 

distinctive and are referred to as "organic" because they are created to meet a 21 

particular requirement. 22 
 23 
Figure 2. As A Subset of Various Disciplines and Skill Sets, Generative Design 24 

  25 
Source: (left scheme) BLOG on AEC Innovation. https://www.invokeshift.com/thoughts-on-the-26 
future-of-generative-design-in-aec-from-an-engineering-perspective/, (right scheme) the authors, 27 
2023. 28 

As was previously said, generative design enables a workflow that is more 29 

tightly connected between the designer/engineer and computer. In actuality, they 30 

both contribute to the final design. 31 

 32 

 33 

Case Study 34 
 35 

Bridges are intricate geometric constructions, and the many structural options 36 

typically show substantial geometric differences in their designs. In addition, with 37 

the new instruments developed, the construction industry frequently requires 38 

reducing the computational cost, shorter model runtime development and analysis, 39 

and little to no material waste in light of the environmental emergency. A low 40 

level reusing models in projects of a similar size is implied by the modeling 41 

complexity.  42 

https://www.invokeshift.com/thoughts-on-the-future-of-generative-design-in-aec-from-an-engineering-perspective/
https://www.invokeshift.com/thoughts-on-the-future-of-generative-design-in-aec-from-an-engineering-perspective/
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In order to achieve the aforementioned goals, the present paper suggests a 1 

generative technique to improve the bridge design process. This approach 2 

increases efficiency by lowering computational costs and modeling efforts. The 3 

methodology that follows uses a workflow to develop adaptable geometric models 4 

while introducing numerical and parameter correlations between each design 5 

parameter. As a result, by changing the parameter settings within the same model, 6 

new the elements of a bridge's geometric solutions can be produced via a 7 

generative development. Finally, the goal of the current work is to specify a 8 

modeling and analytic technique for a bridge project based on structural analysis, 9 

parametric development, and optimization.  The outcomes can be used to better 10 

integrate the structure modeling in order to explore and develop high-probability 11 

designs complicated geometries and discover affordable solutions in the future.   12 

Despite the fact that generative design can be applied in a variety of ways, the 13 

following is a study case of a connection bridge between the Fieri and Vlora 14 

County. Those two counties are being separated by Selenica river where there is 15 

no connection between the two existed highways. Taking into account that these 16 

areas are less than 3 km far from each-other, in this study there is conducted a 17 

generative analysis through the scripts of the grasshopper software and several 18 

plugins to give a solution to that. In order to get a wider view of the study case, 19 

there have been conducted through google map the measurement of the distance 20 

between two areas. 21 

Figure 3. Photos from the Existing Infrastructure of the Studied Area22 

23 

 24 
Source: Google Map, 2023. 25 

 26 

Using a first script via Urbano plug-in of Grasshopper, it is conceived the 27 

converting infrastructure process into vectors. Practically, and programmatically, 28 
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there is no difference between points and vectors. Both are lists-of-coordinates 1 

with a bunch of associated operations. In fact, plenty of programming 2 

platforms/languages do not distinguish between points and vectors, and sometimes 3 

not even between vectors and colours. 4 

However theoretically, and mathematically, they are very different entities 5 

and it is just easier to think with them if you keep them separate. As mentioned in 6 

several authors already, points are locations in space specified using a set of 7 

coordinates, whereas vectors are directions magnitudes in space, specified using a 8 

set of coordinate differences. Vectors are not geometry, and whenever we draw a 9 

vector in some specific place, we can only do so because we know, from the 10 

context, where that vector makes sense. 11 
 12 
Figure 4. The Converting Infrastructure Process into Vectors and Finding the 13 

Closest Points of the Ground Terrain 14 

 15 
Source: Authors script, 2023. 16 

 17 

The process is following by finding the closest points between the parts of the 18 

infrastructure, which are being separated by Selenica river. In this way, it is very 19 

close to mind to make the solution by joining the two close points with a straight 20 

line by obtaining in regard a solution: a 600 meters long bridge that connect both 21 

sides. The visualized script is given above. 22 

 23 

 24 

Simpler Structural Modifications 25 
 26 

Sometimes it is necessary to alter the construction of the road, possibly to 27 

integrate it with a nearby feature. The model can be adjusted with the robust tools, 28 

referred to as "Limits," to accommodate any auxiliary component. A linear 29 

element can be readily utilized to align the road model in both the horizontal and 30 

vertical directions once it has been captured as an axis. The study case is referred 31 

to a 600 metres long bridge with the technical parameters and the modelling bridge 32 

proposed for the study case is given as below: 33 
 34 

  35 
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Figure 5. The Technical Properties and the Cross-section of the Bridge 1 

 2 
Source: Authors design, 2023. 3 

 4 

Parametric structural analysis of the deck is done utilizing Tekla Structural 5 

Designer Link plug-in inside Grasshopper3d. The first effort, where the girders are 6 

modelled with an identical thickness of 20 cm. 7 

 8 
Figure 6. The Structural Modelling of the Bridge 9 

 10 
Source: Authors script, 2023. 11 

 12 

After that, were checked the girders. It resulted that Most of the girders failed 13 

due to the loads considered. 14 
 15 
Figure 7. The First Structural Check of the Bridge 16 

 17 
Source: Authors script. 18 

 19 
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So, to prevent significant deformations and improve durability, it was simple 1 

to switch the model from uniform girders to variable cross-section girders and 2 

change the material of concrete class from C30/45 to C40/50. As a final step, it 3 

was conducted the verification of the deck structure due to major shear stresses, 4 

bending moments and deformations of the deck model of the bridge. As it can be 5 

seen from the last figure, it has been obtained Schematic visualisation of the bridge 6 

model placed on the terrain generating by a full script (figure on the left). 7 

 8 

Figure 8. The Schematic 3D Visualization of the Bridge and the surrounding 9 

 10 
Source: Authors, 2023. 11 
 12 

Although a strong design application has been described in the study, it still 13 

needs some components before it can be applied to more bridge situations and be 14 

used by practical engineers. It is possible to further develop it, some of which are 15 

described below. 16 

 17 

 More bridge design options should be included. Evaluating many design 18 

options is crucial early in the design process. 19 

 For improved optimization and more accurate optimization outcomes, 20 

include surface topology in the definition. 21 

 The members are presently picked from center to center. It follows by a 22 

procedure of cutting parts and alter the issues to permit more thorough 23 

modeling in, say, Tekla. 24 

 Include a foundations study that takes into account the concrete, 25 

reinforcing, and geotechnical piles. 26 

 Using machine learning to choose the best cross-sections for each set of 27 

elements. 28 

 Expanding on CO2e as an objective from the perspective of an LCA.  29 

 Test out several optimization algorithms, including the Firefly algorithm, 30 

to see if it can get even better results.  31 

 32 

 33 

  34 
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Conclusions 1 
 2 

In order to increase the effectiveness and efficiency of urban bridge 3 

infrastructure, the paper investigates the application of generative design and 4 

optimization approaches. It covers the problems with conventional bridge design 5 

and optimization techniques and how generative design can offer a better answer. 6 

A case study is presented that shows how generative design may be used to 7 

optimize a link bridge between two locations in an urban setting, producing a 8 

design that is both structurally effective and aesthetically pleasing.  9 

In the framework of sustainable urban design, the use of generative design to 10 

optimize bridge infrastructure is also covered in this study. Additionally, an 11 

historical path of employing generative design in the context of infrastructure 12 

design and urban planning are discussed, along with how generative design might 13 

contribute to the development of more effective and sustainable bridge designs. 14 

By adding more design factors and offering a fresh method for bridge 15 

optimization, the study was successful in further developing the initial parametric 16 

model. Due to the speed with which the design can be changed and the 17 

instantaneous display of the analysis, using parametric design to study alternative 18 

options for bridges could be highly helpful to designers.  19 

Utilizing generative design is rapidly changing how manufacturers create the 20 

newest items. The need for project designs to perform better is one aspect of this. 21 

Another is for fresh, cutting-edge designs that provide their consumers exclusivity 22 

and customizability while utilizing the most recent manufacturing techniques. And 23 

because it is now more reasonably priced than ever before, designers can quickly 24 

and efficiently develop thousands of designs in a fraction of the time it would take 25 

to do so using a more traditional method.  26 

Even while the definition of a parametric model is pretty solid as it is, it can 27 

still be improved. On the other hand, it offers the opportunity to be utilized in a 28 

real project in the early stages of design to really appreciate the benefits of the 29 

script. The first is whether the script for the following design stage may be utilized 30 

as a template (transferring it to Tekla), and the second is the degree of cost 31 

estimation accuracy in relation to the final design. Generatively developed 32 

products in the future will be networked, measuring information and utilizing it to 33 

train the algorithms and increase the technology's effectiveness. Future will be 34 

more intriguing than ever as this new generative design and all instruments used 35 

take center stage in contemporary design. 36 

 37 
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