
2023-5364-AJTE-DAT – 23 MAY 2023 

 

1 

Inherently Interpretable Machine Learning 1 
 2 

In recent years, machine learning (ML), especially deep neural networks 3 

(DNNs), have been intensively studied and applied to many scientific and 4 

industrial sectors where intelligent processing is required, leading to superior, 5 

sometimes unprecedented performance. Despite the extraordinary success, the 6 

interpretability of ML systems, especially the black-box nature of state-of-the-7 

art (SOTA) ML architectures, has posed a big challenge, causing concerns 8 

about questionable performances and predictions in real applications. To 9 

address this black-box problem, interpretable ML (I-ML) has recently drawn 10 

considerable attention in the ML community. While most ML models experience 11 

certain level of black-box design, the consensus is that the contemporary neural 12 

network (NN)-based models, e.g., convolutional neural network (CNN), exhibit 13 

less interpretable characteristics, thus attracting more attention from both 14 

academia and industry. A plethora of publications on I-ML have been made 15 

available to the ML and intelligent processing communities, mostly focusing on 16 

using feed forward NN (FFNN)-based or DNN-based to explain the internal 17 

structure of a black- box. While acknowledging progress along this line of 18 

research, emphasis of this paper will be given to the class of models which are 19 

designed to be inherently interpretable from analytically inspired perspectives, 20 

especially those integrating statistics guided optimization (SGO) with NN 21 

architecture, coined as SGO-NN. The class of SGO-NN models features three 22 

distinct characters: a) Kolmogorov-Arnold (K-A) theorem as the foundation; b) 23 

the incorporation of certain neurobiological facts in architecture design; c) 24 

powerful optimization methods in the training process by solving SGO 25 

problems in the convolutional layers. Analytically, the recent progress in 26 

approximation theory has solidly verified K-A theorem under mild conditions. 27 

At the same time, numerous practical SGO-NN models with three or fewer 28 

layers have emerged and demonstrated their flexibility, effectiveness, and 29 

computational affordability. Amongst this branch of I-ML models, those based 30 

on canonical correlation analysis (CCA) stand out, demonstrating tremendous 31 

potential to address the interpretability challenge in ML research. To validate 32 

the power of the SGO-NN models, practical examples in text-image 33 

representation, facial analysis, and object recognition are presented. It is 34 

expected that the SGO-NN models and the inherently I-ML models in general 35 

would better inspire researchers and practitioners in the pursuit of powerful 36 

interpret ML models in their R&D endeavor. 37 

 38 
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 41 

 42 

Introduction 43 

 44 

Recently, machine learning (ML), especially deep neural networks (DNNs) 45 

and artificial intelligence (AI) in general, have been successfully utilized in a broad 46 

rand of applications, such as audio recognition, visual computing, video 47 

processing, image retrieval, amongst others [1-2]. Nonetheless, the interpretability 48 

of ML/AI becomes a persistent challenge. Specifically, the black-box nature of 49 
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contemporary ML architectures has posed a longstanding challenging problem, 1 

causing concerns about questionable performances and predictions in real 2 

applications. In order to address this black-box problem, interpretable ML (I-ML) 3 

methods have drawn considerable attention and interests [4]-[5]. As consensus 4 

suggests [6]-[7], the classical neural network (NN)-based models (e.g., neural 5 

network, convolutional neural network (CNN) and DNNs in general) eexhibit less 6 

interpretable characteristics, thus attracting more attention from both academic and 7 

industrial sectors, first attempting to explain the black-box and, more recently, 8 

designing new models that are inherently interpretable. 9 

Although NN-based models stem from Kurt-Vladimir (K-V) Universal 10 

approximation (UA)theory [8]-[9], research into DNNs has dominated the 11 

landscape for the past 10 years in visual computing, natural language processing, 12 

video processing, and more [10]-[11].It is known that most deep learning (DL)-13 

based models utilize the end-to-end architecture, which makes the DNN-based 14 

representations a black-box [12]-[13], implying that it is difficult to tell what the 15 

prediction relies on, and what features or representations play more important roles 16 

in a given task.  As a result, the ultimate goal of studying interpretability is to 17 

construct the model architecture, which is inherently interpretable to avoid the 18 

black-box problem [14].  19 

The core of this paper focuses on finding relationships either contained in the 20 

data or learned by the ML model. Several survey papers have been made available 21 

[15]-[19] to the ML and intelligent processing communities, mostly attempting to 22 

explaining the internal structure of a black-box. While this paper will touch recent 23 

advances along this line of research, emphasis will be given to another class of 24 

models which are designed to be inherently interpretable from analytically or 25 

mathematically inspired perspectives. Evaluation the I-ML models and 26 

comparisons with representative models pertinent to multi-modal image and 27 

multimedia analysis and recognition will be presented. 28 

 29 

 30 

NN Based Methods 31 

 32 

Recently, DNN-based methods have achieved great success and outperform 33 

humans in numerous difficult tasks, such as visual classification, natural language 34 

recognition, and video processing. However, the black-box nature of the 35 

contemporary methods presents a real challenge to understand mechanisms and 36 

behaviors of the networks. Essentially, for this class of methods, the word 37 

‗interpretability‘ refers to the ability to clarify and extract knowledge 38 

representations in different layers of NN-based methods as defined in [20]. In this 39 

section, the most studied methods in this class, feedforward neural network 40 

(FFNN) based and DL based, are surveyed. 41 

 42 

FFNN based Methods 43 

 44 

In the 1980‘s, FFNN was already employed to interpret and design NNs and 45 

other networks [15]. Kuo et al. [21] designed an interpretable feedforward (FF) 46 
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model by utilizing a data-centric strategy. As a result, the parameters in the current 1 

layer are able to be derived from the previous layer in a one-pass manner. Yosinski 2 

et al. [22] investigated the activation values of neurons in different layers 3 

according to different types of input data. Based on the experimental results, the 4 

live activation values are helpful for understanding inner mechanisms of networks, 5 

leading to an interpretable model. 6 

 7 

DNN based Methods 8 

 9 

Lately, a great number of works based on pure DNNs have been introduced, 10 

forming the mainstream tactics in identifying explainability of DNNs, especially 11 

for CNNs. Zhang et al. [20] introduced interpretable CNNs to clarify knowledge 12 

representations in high convolution layers, which aid in the understanding of 13 

intrinsic logic inside a CNN architecture. In [23], a CNN-INTE solution is 14 

presented and applied to explain deep CNNs. By employing global interpretation 15 

for any given samples in the hidden layers, the CNN-INTE is able to explain the 16 

inner mechanisms of CNN-based models. In [24], a prototype layer was proposed. 17 

With the extra prototype layer, the involved DL-based model is capable of 18 

generating several prototypes for different parts of the input samples, resulting in 19 

appropriate interpretation. In [25], the Locality Guided Neural Network (LGNN) 20 

method is presented and applied to explainable artificial intelligence (XAI). Since 21 

LGNN is able to preserve locality between neighbouring neurons within each 22 

layer of a deep network, it is able to alleviate the black-box nature of current AI 23 

methods. 24 

The schematic diagram of the interpretability by FFNN/DNN is drawn in 25 

Figure 1. It is known the power of the reviewed methods on I-ML is confined by 26 

certain limitations such as the vanishing/exploding gradient problem and tuning of 27 

parameters manually. In order to address these limitations, some researchers and 28 

practitioners investigate the model interpretability from alternative angles, leading 29 

to inherently I-ML methods/approaches. 30 

 31 

Figure 1. The Interpretability by FFNN/DL 32 

 33 
 34 

Inherently I-ML Methods  35 

 36 

In this section, coined as inherently interpretable models, this class of I-ML 37 
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obeys structural knowledge of different domains, e.g., monotonicity, causality, 1 

structural (generative) constraints, or physical constraints that come from domain 2 

knowledge and can, at least, be partially justified by theoretical analysis such as 3 

mathematical expressions and/or physics laws [26]. The representative members 4 

include physics-informed, model based, algorithm unrolling solutions and 5 

mathematics inspired methods. More detailed information is given as following 6 

subsections. 7 

 8 

Physics-informed NN 9 

 10 

Physics-informed NN based algorithms are mainly utilized to deal with the 11 

supervised learning tasks while respecting any given laws of physics is described 12 

by nonlinear partial differential equations [27]. In [28], a physics-informed NN 13 

model was employed to address two problems in ML: data-driven solution and 14 

data-driven discovery of partial differential equations, resulting in satisfying 15 

performance in computational science. In [29], a survey paper on physics-16 

informed NN based models was published. The research emphasis was given on 17 

customizing this class of models through gradient optimization techniques, NN 18 

structures, and loss functions in ML. 19 

 20 

Model based NN 21 

 22 

Studies on interpretability of model-based NN mainly focus on the 23 

construction of models that readily provide insight into the relationships they have 24 

learned [30]. A model based NN framework was created for image reconstruction 25 

in [31]. Based on this framework, a systematic approach was introduced, 26 

producing an interpretable DNN model for different image applications. In [32], a 27 

model based NN was presented for optimized sampling and reconstruction. 28 

Benefiting from the combination of continuous optimization of the sampling 29 

pattern and the CNN parameters, it is able to improve image quality to some 30 

extent, generating certain levels of interpretability in ML. 31 

Algorithm Unrolling 32 

 33 

In I-ML studies, algorithm unrolling handles model interpretability by 34 

providing a concrete and systematic connection between iterative algorithms [33]. 35 

Koo et al. [34] proposed a Bayesian based unrolling algorithm for single-photon 36 

Lidar systems. Profiting from the integration statistical and learning based 37 

frameworks, it resulted in improved network interpretability. In [35], a graph 38 

unrolling network algorithm was presented with application to signal denoising, 39 

leading to an interpretation of the architecture design in ML. 40 

 41 

Mathematics Inspired Methods 42 

 43 

By integrating Statistics Guided Optimization (SGO) with NN architecture, 44 

this class of models, coined as SGO-NN, exhibits model agnostic properties and is 45 

ideal for global model interpretability. Essentially, the SGO-NN architecture is 46 
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designed according to three characters: a) Kolmogorov-Arnold (K-A) theorem 1 

[36] and K-V UA theory [8]-[9] as the foundation; b) biological justifications and 2 

scientific rules in architecture design; c) powerful optimization methods for a 3 

quality training process. Analytically, the recent progress in approximation theory 4 

solidly verified the K-A theorem/KV UA theory that three hidden layers are 5 

sufficient for a NN to approximate any nonlinear functions under mild conditions 6 

[37]. In addition, a great number of practical models with three or fewer layers 7 

have emerged and demonstrated their flexibility [38][69], effectiveness and 8 

computational affordability in I-ML. Examples consist of PCANet [39], DCTNet 9 

[40], CCANet [41], DDCCANet [42][43], ILMMHA [44], etc. Note that, several 10 

representative members of this model class, such as CCANet, DDCCANet and 11 

ILMMHA, are particularly prevalent to achieve the task of information processing 12 

by mimicking certain facts in neurobiological systems, handling multiple 13 

information streams coherently and simultaneously [45-46]. Apparently, such an 14 

architecture fits well with multimodal information processing, in which two or 15 

more different data sources are processed jointly. The schematic diagram of such a 16 

network architecture is given in Figure 2. 17 

 18 

Figure 2. The Interpretability by SGO and NN Architecture 19 

 20 
Exemplar Applications 21 

 22 

In this section, the performances of different I-ML methods are evaluated on 23 

several applications, including cross-modal (text-image)-based and multi-view 24 

visual-based (face recognition and recognition of objects) examples. The involved 25 

algorithms/models are classified into three categories, a) without I-ML (WO-I-26 

ML), b) with contemporary NN (C-NN), and c) SGO-NN. 27 

 28 

Cross-modal (Text-image) Recognition 29 

 30 

The Wiki Database 31 

There are 2,866documents stored in text-image pairs and associated with 32 

supervised semantic labels of 10classes in the Wiki database. In our experiments, 33 

the total samples are divided into a training subset with 2173samples and a testing 34 

subset with 693 samples as practiced in past studies [47]-[50]. The SGO-NN 35 

model, ILMMHA, is applied to two different classical features (bag-of-visual 36 
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SIFT (BOV-SIFT) [49] and the Latent Dirichlet Allocation (LDA) [50]). Then, the 1 

accuracies by different types of methods are given in Table 1. 2 

 3 

Table1. Recognition accuracies on the Wiki database 4 

Methods Training Number Accuracy Type 

L21CCA[47] 2173 65.99% WO-I-ML 

MH-DCCM[48] 2173 67.10% WO-I-ML 

RE-DNN[49] 2173 63.95% CNN 

ILMMHA[44] 2173 74.28% SGO-NN 

 5 

 6 

Visual Examples 7 

 8 

Face Recognition-The ORL Database 9 

In this paper, we conduct experiments on the Olivetti Research Lab (ORL) 10 

database for face recognition. There are 40 people with 10different images for 11 

each subject, leading to 400 samples in total. In this experiment, all 400samples 12 

are used with 280images randomly selected as the training subset while the 13 

remaining samples utilized as the testing subset. The SGO-NN models are 14 

performed on two-view datasets (the original image and local binary patterns 15 

(LBP)-based image). The experimental results are shown in Table 2. 16 

 17 

Table 2. Recognition accuracies on the ORL database 18 

Methods Training Number Accuracy Type 

ESP[51] 280 96.00% WO-I-ML 

DL-SE[52] 280 96.08% WO-I-ML 

HMMFA[53] 280 94.17% WO-I-ML 

CNN[54] 280 95.92% CNN 

IKLDA+PNN[55] 280 96.35% CNN 

LiSSA[56] 280 97.51% CNN 

PCANet[39] 280 96.28% SGO-NN 

CCANet[40] 280 97.92% SGO-NN 

DDCCANet [42] 280 98.50% SGO-NN 

 19 

Recognition-The ETH-80 Database 20 

The ETH-80 data set includes 3280 color RGB images. In this work, all 21 

images are normalized at a size of 64 × 64 pixels. During the evaluation, 1640 22 

images are randomly chosen for training while the remaining samples are utilized 23 

in testing. Two raw data sources (R and G sub-channel images) are adopted as the 24 

two inputs for SGO-NN models. Then, recognition accuracies in three different 25 
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categories are tabulated in Table 3. 1 

 2 

Table3. Recognition accuracies on the ETH-80database 3 

Methods Training Number Accuracy Type 

SSL-TR[57] 1640 93.40% WO-I-ML 

SRC+DPC[58] 1640 94.00% WO-I-ML 

SML[59] 1640 94.02% WO-I-ML 

RMML[60] 1640 94.25% WO-I-ML 

TLRDA+PCA[61] 1640 92.00% CNN 

CMCM[62] 1640 92.50% CNN 

AlexNet [63] 1640 94.20% CNN 

CCANet[40] 1640 93.98% SGO-NN 

DDCCANet [42] 1640 94.40% SGO-NN 

 4 

Object Recognition-The Caltech256 Database 5 

In the Caltech256 database, there are different images with a varying set of 6 

illumination, movements, backgrounds, etc. Totally, there are 256 classes and one 7 

background class. For fair comparison, the same settings used in other studies are 8 

adopted. Specifically, 60 images are chosen from each class as training samples. A 9 

relatively simple DNN architecture, VGG-19, is employed to extract DL-based 10 

features, which serve as the input to the SGO-NN models. The recognition rates 11 

are reported in Table 4. 12 

 13 

Table4. Recognition accuracies on the Caltech256database 14 

Methods Training Number Accuracy Type 

CMFA-SR[64] 15420 76.31% WO-I-ML 

LLKc[65] 15420 75.36% WO-I-ML 

Fine-tuning[66] 15420 83.80% CNN 

SMNN[67] 15420 84.70% CNN 

TransTailor[68] 15420 87.30% CNN 

CCANet[40] 15420 87.82% SGO-NN 

DDCCANet [42] 15420 88.34% SGO-NN 

 15 

According to the above aforementioned results, it clearly shows that both I-16 

ML branches work well in the evaluated data sets, with SGO-NN having a slight 17 

edge in the three visual examples and being substantially better in cross-model 18 

recognition. The results evidently verify the necessity of integrating interpretability 19 

in ML, showing the effectiveness of inherently I-ML. 20 

 21 
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Note, the current version of the DDCCANet code has been uploaded to 1 

GitHub (https://github.com/09liukai08/GADDCCANet). Interested readers can 2 

download and test the code following the readme instructions. Feedbacks are very 3 

welcome! 4 

 5 

 6 

Conclusions 7 

 8 

This paper provides a survey on the inherently interpretable machine learning 9 

(I-ML). Performance and comparison on the collected exemplar applications 10 

indicate that interpretable I-ML methods had evidently led to performance gains. 11 

Moreover, methodology fusion of SGO principles and NN architecture (SGO-NN) 12 

moves studies on I-ML towards the next level, better satisfying human demands. 13 

 14 

 15 
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