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1 

Hypercomplex Numbers and the Origin of Celestial 1 
Magnetic Fields 2 

 3 
The origin and evolution of the celestial magnetic field remains an unsolved 4 
mystery. Many hypotheses have been proposed to explain the origin, but 5 
each hypothesis has some insurmountable difficulties. Currently, the widely 6 
accepted theory by the scientific society is the dynamo model, which believes 7 
that the motion of the magnetic fluid inside a celestial body can overcome the 8 
Ohmic dissipative effect and generate a continuous weak electric current and 9 
then produce the macroscopic magnetic field. However, the model requires 10 
an initial seed magnetic field, and there is no stable solution for a wide 11 
range of fluid motion. Moreover, the model is difficult to explain the 12 
correlation between the magnetic field and the angular momentum of the 13 
celestial objects. By Clifford algebra in the formalism of hypercomplex 14 
numbers, the author calculated the interaction between the particle spin and 15 
the gravitational field of a rotating body. We find that there is a pseudo-16 
vector field Ωa, which is coupled with the spin of the charged particles by 17 
SaΩa. Ωa is similar to the dipole magnetic field, and the charged particles are 18 
then arranged regularly along the force line of Ωa, which induces a 19 
macroscopic dipole magnetic field. The calculation shows that the strength 20 
of Ωa is proportional to the angular momentum of the celestial body, which 21 
explains the correlation between the magnetic strength and the angular 22 
momentum. Thus, the celestial magnetic field is mainly a relativistic effect, 23 
and the physical laws should be better described by hypercomplex numbers. 24 
 25 
Keywords: Earth magnetic field, Celestial magnetic field, magnetic dipole, 26 
Clifford algebra, hypercomplex number  27 

 28 
 29 
Introduction 30 
 31 

Magnetic fields are ubiquitous in the universe. Magnetic fields play an 32 
important role in various branches of astrophysics. The magnetic field strength 33 
in galactic spiral arms can be up to 30 micro-Gauss. Fields of order several 34 
micro-Gauss and larger, with even larger coherence scales, are seen in clusters 35 
of galaxies. To understand the origin of magnetic fields in all these 36 
astrophysical systems is a problem of great importance. Astronomical 37 
observation shows that the existence of large-scale regular magnetic field in 38 
rotating celestial bodies is a common phenomenon. In the solar system, the 39 
sun, Jupiter, Saturn, Uranus, Neptune and so on, all have strong dipolar 40 
moment magnetic fields. The magnetic fields of other distant stars, such as 41 
white dwarfs, pulsars and so on, are even greater [1, 2]. 42 

The earth magnetic field is of great significance to the ecosystem. 43 
Geomagnetism has the function of navigation and location, and prevents the 44 
attack of solar wind against earth. On the origin of geomagnetism, more than a 45 
dozen different hypotheses have been put forward. However, there is no 46 
convincing explanation for the origin of geomagnetism, so it is listed by 47 
Einstein as one of the five major physics problems. Gilbert's hypothesis that the 48 
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Earth is a permanent magnet, for example, faces a serious challenge to the 1 
Curie point temperature of the material: below the depth of 20 to 30 kilometers 2 
of the earth's crust, the temperature has exceeded the Curie point of most 3 
materials on the earth, so the material here cannot remain enough residual 4 
magnetism. The magnetism of the thin crustal material is far from enough to 5 
generate the observed geomagnetic field. Other hypotheses of geomagnetism 6 
origin, such as rotating magnetic effect, rotating charge effect, Hall effect, 7 
piezomagnetism effect and so on, are also denied due to the too small order of 8 
magnitude. 9 

By analysis of observational data of the magnetic field for a large number 10 
of celestial bodies, it is found that the magnetic dipole moment of a celestial 11 
body has a strong correlation with its angular momentum, and the so-called 12 
Schuster-Wilson-Blackett relation approximately holds on a wide range of 13 
orders of magnitude [2, 3, 4, 5, 6] 14 

,
2

G
L c
µ β
=                                                                             (1)  15 

in which μ,L are magnetic moment and angular momentum of the celestial 16 
body respectively, and β∈O(1) is a dimensionless number. The physical 17 
reason for this relationship was not specified at that time, so the result was not 18 
generally accepted. In the analysis of [2], it is found that there is a significant 19 
positive correlation between logμ and logL for cold stars. But such correlation 20 
between hot stars is much smaller. For the same kind of hot stars, logμ and 21 
logL are even negatively correlated. In subsamples of the solar system, the 22 
correlation is basically the same as the slope of the cold star. On a large scale, 23 
logμ and logL for different types of objects remain positively correlated(see 24 
Figure 9 in [2]). 25 

The widely accepted theory of the origin for the earth's magnetic field at 26 
present is the geodynamo. Its basic idea is that the conductive fluid of the outer 27 
core inside the earth is subjected to convective motion under the drive of 28 
various energy sources, and a magnetic field is generated by the current 29 
corresponding to the convection [7, 8]. That is, a process in which the driving 30 
energy is converted into the kinetic energy of the fluid, and then the kinetic 31 
energy is converted into the magnetic energy. If the converted magnetic energy 32 
can resist Ohmic dissipation, the magnetic field can be maintained by 33 
convective motion. The dynamical quenching model was actually developed 34 
much earlier [9], but it was mostly applied in order to explain chaotic behavior 35 
of the solar cycle. Another example is the so-called small scale dynamo whose 36 
theory goes back to the early work of Kazantsev [10]. 37 

With the advent of fast computers allowing high Reynolds number 38 
simulations of hydromagnetic turbulence, the community became convinced of 39 
the reality of the small scale dynamos. The dynamo model for the earth's 40 
magnetic field has been fully developed, and a large number of numerical 41 
simulations have been carried out. In [11, 12], the first three-dimensional self-42 
consistent numerical solution of geomagneto-hydrodynamic equation with time 43 
is calculated. The equation describes the generation of thermal convection and 44 



2023-5441-PHY – 19 JUN 2023 
 

3 

magnetic field in a rapidly rotating spherical fluid shell with a solid conductive 1 
core. 2 

In recently years, dynamo models have received extensive theoretical 3 
studies and simulation calculations. For examples, The magnetic field strength 4 
in Milky-Way increases by turbulent small-scale dynamo [13], the galactic and 5 
galaxy cluster feed magnetic fields induced by the renormalized quantum 6 
vacuum expectation value of the two-point magnetic correlation function in de 7 
Sitter inflation [14], the common origin of magnetism from planets to white 8 
dwarfs [15], the toroidal magnetic field pattern in the halo above and below the 9 
disk of the galaxy [16], the possible relationship between inflation and the 10 
origin of galactic magnetic fields [17], the generation of neutron star magnetic 11 
fields by the properties of dynamos from other astrophysical systems [18], the 12 
origin of magnetic fields in stars [19, 20] and the origin and evolution of 13 
magnetic white dwarfs [21, 22]. However, the galactic dynamo model is still 14 
incomplete because the origin of the seed magnetic field used to start the 15 
dynamo is not explained. In addition, the time scale of magnetic field 16 
amplification in the standard αω-dynamo model is too long to explain the 17 
magnetic field intensity observed in very young galaxies. 18 

According to the hypercomplex form of Dirac equation, this paper propose 19 
a new explanation of the origin of celestial magnetic fields. The calculations 20 
show that the main part of the celestial magnetic field may be caused by the 21 
interaction between gravity and the spin of the charged particles, so it is a 22 
relativistic effect. A celestial body with angular momentum produces a pseudo 23 
vector Ωμ similar to torsion. The force lines of Ωμ and the magnetic force lines 24 
almost coincide, and the spin-gravity coupling potential SμΩμ will arrange the 25 
charged particles along the magnetic lines like small magnetic needles. This 26 
state will induce a macroscopic magnetic field distribution, and the dynamo 27 
model may only provide small local corrections to the celestial magnetic field. 28 

 29 
 30 
Clifford Algebras and Hypercomplex numbers 31 

 32 
Hypercomplex number system is an n-d vector space with the 33 

definitions of multiplication and division of vectors [23, 24, 25]. Denoting the 34 
basis vectors by {ek}, their multiplication table forms the following 35 
multiplication matrix M, 36 

0 1 1, ( , , , ).T
n−≡ =M e e e e e e                                                         (2) 37 

M fully describes the associative algebra of {ek}. If the bases {ek} satisfy the 38 
following group-like properties, 39 

1. Including unit element e0=I, such that Iek=ekI=ek. 40 
2. Associativity  41 

( ) ( ).j k m j k m=e e e e e e                                                                      (3) 42 
3. Closed for multiplication 43 

, | | 1, .j k jk m jk jkf f f= = ∈e e e F  44 
4. Existing generalized inverse element ek

-1=ei θk ej, such that 45 
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1 1
0.k k k k

− −= =e e e e e  1 
Then we have the following conclusions. 2 
Theorem 1 For the multiplication matrix M, denoting 3 

0 1 0 1, ( ) , ( ) .m m m m
m

m

− −∂
= = = =
∂
MC E C C A M C E e
e

                              (4) 4 

If the bases {ek} satisfy the above group-like properties, then we have structure 5 
equation A2=nA, and  6 

m

m m≡ ↔E E e  7 
is an isomorphic map. {Ek} is a faithful matrix representation of {ek} satisfying 8 
|det(Ek)|=1. 9 

By the above theorem, for any given multiplication table of bases, we can 10 
establish the multiplication matrix M and A=M(C0) -1. If A2=nA, then the 11 
canonical matrix representation {Ek} can be defined and we can establish a 12 
hypercomplex number system by x=xk Ek according to matrix algebra. By (3) 13 
we find C0=( C0)T. For B=( C0) -1A C0 we also have B2=nB and similar 14 
conclusions. The condition ejek=fjkem guarantees that the inverse element em

-1 is 15 
also a monomial. The norm is defined by  16 

|| || | det( ) |,n=x x  17 
which is an invariant scalar under transformations of rotation, reflection, 18 
translation and so on [26]. In this paper, we use the Einstein summation, the 19 
repeated upper and lower indices means summation for all indices if without a 20 
specific remark. By the group-like property of bases, the coordinates { }kx ∈F  21 
are computed according to numbers, and the hypercomplex numbers x,y 22 
operates according to complex matrix algebra, such as 1, , .e−± xx y x y  23 

For example, considering the bases made of the following Pauli matrices 24 
1 0 0 1 0 i 1 0

, , , ,
0 1 1 0 i 0 0 1aσ

 −        
∈        −        

 25 

we have the multiplication rules as 26 
2

1 2 2 1 3, i , i .a a b abc cσ σ σ σ σ σ σ σ σ= = − = =I ò  27 

The coefficients fjk contain the imaginary unit i, so a
ax σ=x  forms a 28 

quaternion system over the complex field  . If taking all the following 29 
matrices as bases 30 

( , , i , i ), ( , 1, 2,3),a j k j kσ σ= =e I I  31 

Then 1,jkf = ±  thus 32 

i ia b
a bs E B pσ σ= + + +x I I                                                              (5) 33 

forms a kind of biquaternion over  . We have 34 
2 2 2 2det( ) 2i( ).s p E B sp E B= − − + + − ⋅x

   
 35 

For || || | det( ) |$,≡x x  the imaginary unit i appearing in the determinant 36 
have no effect on neither the hypercomplex operations nor the norm 37 
calculations. 38 
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In a Minkowski space-time with metric diag( , )ab
ab p qη η= = I I , for the 1 

orthonormal basis {ea} and co-frame { }a ab
bη=e e , we have the following  2 

 3 
Clifford relations 4 
 5 

2 , 2 .a b a b ab
a b a b abη η+ = + =e e e e I e e e e I                                                 (6) 6 

The products of basis vectors eaeb and eaeb are called Clifford product, 7 
and the algebra with Clifford products is called Clifford algebra or geometric 8 
algebra. The hypercomplex number system (5) is isomorphic to the Clifford 9 
algebra 3,0( )C   [25, 26, 27]. If taking  10 

1 2 3{ , i , i , i }σ σ σ= = − =I i j k  11 
as basis, we have multiplication rule as follows  12 

2 2 2 .= = = = −i j k ijk I  13 
We obtain quaternion over real field  , which is isomorphic to the 14 

Clifford algebra 0,2( )C  . 15 
For the 1+3 dimensional realistic spacetime, the lowest-order complex 16 

matrix representation of the generators of Clifford algebra 1,3( )C   is Dirac 17 
matrices γa, which generate the Grassmann bases of 1,3( )C   as 18 

0123 0123 5
4 , , , , i ,a ab a b abc abcd

dγ γ γ γ γ γ γ γ γ= ∧ = − = −I ò                            (7) 19 

in which 5
2 2diag( , )γ = −I I  and 0123 1=ò . We have the Clifford-Grassmann 20 

number as 21 
0123 0123

4 ,a ab a
a ab as A H Q pγ γ γ γ γ= + + + +K I                                           (8) 22 

where ( , , , )as p A ∈  . 0s∈Λ  is a scalar, 1
aA ∈Λ  is a true vector, 23 

2
abH E B= + ∈Λ

 
 is a 2-vector, 3

aQ ∈Λ  is a pseudo vector and 4p∈Λ  is a 24 

pseudo scalar. In general, any Clifford algebra ,( )p qC   is a hypercomplex 25 
number. 26 

In the region {det( ) 0}≠K , the Clifford-Grassmann number (8) is a 24=16 27 
dimensional hypercomplex number. We can define the analytic functions for 28 
the hypercomplex numbers on the field  , such as sin( ) mω −=H K T A , where 29 
(H,T,A) are all Clifford-Grassmann numbers over  . For any given unitary 30 
matrix U, the similarity transformation K'=U K U-1 transforms one set of 31 
orthonormal bases ab cγ   into another set of orthonormal bases 32 

1ab c ab cU Uγ γ −=  . By the product rule of matrix determinants, we have 33 
||K'||=||K|| and modulus law || || || || || ||= ⋅KL K L . This norm is the same as the 34 
usual modulus for ordinary numbers such as real, complex and quaternions. 35 
The zero norm set {||K||=0} is a low-dimensional closed set similar to the light-36 
cone, which has little influence on algebraic operations. 37 

Natural laws are high-dimensional and therefore should be described by 38 
high-dimensional number systems. Although the vector space is a good tool to 39 
describe high-dimensional variables, it is still insufficient in computation. For 40 
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example, the multiplication does not define the inverse operation, so it is 1 
difficult to adapt to the nonlinear relations of complicated systems. If the zero-2 
factor condition 3 

0 0 or 0= ⇔ = =ab a b  4 
is relaxed, then many new hypercomplex numbers with high value of 5 
application can be defined by matrix algebra. The zero-factor condition has 6 
little influence on the algebraic operations and applications of the number 7 
systems [23]. As the most important class of hypercomplex numbers, Clifford 8 
algebras have been well studied, and are widely used in geometry, physics and 9 
engineering [28, 29, 30, 31]. The hypercomplex number is the unification and 10 
generalization of real numbers, complex numbers, quaternions and vector 11 
algebra, which naturally combines the advantages of algebra, geometry and 12 
analysis to efficiently process problems of complicated Systems [32, 33, 34, 35, 13 
36, 37, 38]. 14 

 15 
 16 
Spinor Connection and Celestial Magnetic Field 17 

 18 
By the theory Clifford algebra 1,3( )C  , we show that the main part of 19 

celestial magnetic field is an effect of relativity. At first we review the concept 20 
of magnetic dipoles. The magnetic dipole is a small planar current-carrying 21 
coil. Its magnetic moment is defined as ISµ =

 , where I is the current, S is the 22 

coil loop area and the direction of S


 has a right-hand spiral relationship with 23 
the current direction. The vector potential generated by the magnetic dipole is 24 
given by 25 

( )7 20
02( ) ( ), 4 10 (N/A ) ,

4
A r r

r
µ µ µ π
π

−= × = ×
     26 

μ0 is vacuum permeability, r  is the position vector from the center of the 27 
dipole to the measuring point. The magnetic field intensity of the magnetic 28 
dipole is calculated by 29 

[ ]0
3 ˆ ˆ ˆ3( ) , ( 0, ).

4
rB A r r r r

r r
µ µ µ
π

= ∇× = ⋅ − > =
                                    (9) 30 

 31 
In the spherical coordinate system, the magnetic force line equation of (9) 32 

is as follows 33 
22 cos sin .

sin
dr dr rB r R
ds d

θ θ
θ θ

= ⇒ = ⇔ =
 

                                        (10) 34 

When there are multiple magnetic dipoles, according to the superposition 35 
principle, the total magnetic field is the total vector sum of the magnetic field 36 
of each magnetic dipole. So the total magnetic moment and magnetic field of a 37 
planet can be obtained by integral. The distribution of magnetic fields outside a 38 
planet is very close to that produced by a single magnetic dipole. 39 

The properties of electrons and protons are fully described by spinor 40 
equations. To unravel the secrets of celestial magnetic field, we need to 41 
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examine the interaction between spinors and gravitational field. Denote the 1 
element of curved space-time by 2 

,a a
a ad dx dx X Xµ µ

µ µγ γ γ δ γ δ= = = =x                                       (11) 3 
in which the basis or tetrad γa satisfies Clifford relations (6). The relation 4 
between the tetrad coefficient and the metric is given by 5 

     
     

   
   

, , ,

, .

,a a a a a
a a b b a

ab a b
a b ab

f f f f f f

f f g f f g

µ µ µ ν ν
µ µ µ µ µ

µ ν µν
µ ν µν

γ γ γ γ δ δ

η η

= = = =

= =
 6 

In the form of Dirac matrices [39, 40, 41], by straightforward calculation 7 
we have 8 

, .g g gµ ν µν µν µν ω µ νω ν µω µνωγ γ γ γ γ γ γ γ= + = − +                               (12) 9 
Taking the natural unit 1c= = , we have Dirac equation in curved space-10 

time without torsion, 11 
(i ) , ( ) ,eA mµ

µ µ µ µ µγ φ φ φ φ∇ − = ∇ = ∂ +Γ                                      (13) 12 
in which the spinor connection is given by 13 

; ;
1 1 1 ( ).
4 4 4

ν ν ν α
µ ν µ ν µ µ ν µν αγ γ γ γ γ γ γΓ ≡ = = ∂ −Γ  14 

For the total connection µ
µγ Γ , by (7) and (12), we have hypercomplex 15 

form [41] 16 
5i ,

2
µ µ α

µ µ αγ γ γ γΓ = Υ + Ω                                                     (14) 17 

in which µΥ  is Keller connection and µΩ  is Gu-Nester potential, which is a 18 
pseudo vector 19 

 
     

1 1( ), .
2 2

a a e abcd
a d a b cef f f f f f fν α α µ ν

µ µ ν ν µ µ ν ηΥ = ∂ −∂ Ω = ∂ ò                         (15) 20 

Substituting (14) into (13) and multiplying the equation by γ0, we get the 21 
Dirac equation in the Hermitian form 22 

0ˆˆ ,p S mµ µ
µ µα φ φ γ φ+ Ω =  23 

where µα  is current operator, p̂µ  is momentum operator and Ŝµ  spin operator. 24 
They are defined respectively as 25 

1ˆˆdiag( , ), i( ) , diag( , ),
2

p eA Sµ µ µ µ µ µ
µ µ µ µα σ σ σ σ= = ∂ + Υ − = −   26 

where  27 

   ,a a
a af fµ µ µ µσ σ σ σ= =   28 

are Pauli matrices in curved space-time. The Hamiltonian of the spinor is given 29 
by 30 

0ˆˆ ˆ ,H p S mµ µ
µ µα γ= + Ω −  31 

in which we derived a spin-gravity coupling potential Ŝ µ
µΩ . If the metric can 32 

be orthogonalized, we have 0µΩ ≡ , and then the spin and gravity are 33 
decoupled. 34 
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If the gravitational field is generated by a rotating ball, the corresponding 1 
metric, like the Kerr metric, cannot be diagonalized. In this case the spin-2 
gravity coupling term have non-zero coupling effect. Similarly to the case of 3 
charged particles in a magnetic field, the spins of spinors will be automatically 4 
arranged along the force lines of µΩ . If the spins of all charged particles are 5 
arranged regularly along these force lines, a macroscopic magnetic field will be 6 
induced. In order to clarify whether this magnetic field is related to the 7 
magnetic field of celestial bodies, we examine the force line of µΩ  field of a 8 
rotating star. The metric produced by the rotating sphere is similar to the Kerr 9 
metric, and in the asymptotically flat space-time we have the line element in 10 
quasi-spherical coordinate system [42] 11 

1
0 1 2 3( ) ( ) sin ,d U dt Wd V dr rd U r dγ ϕ γ γ θ γ θ ϕ−= + + + +x                       12 

(16) 13 
2  2 2 2 2 1 2 2 2( ) ( ) sin ,d U dt Wd V dr r d U r dϕ θ θ ϕ−= + − + −x                          (17) 14 

in which (U,V,W) is just functions of (r,θ). 15 
Assume that (m, L) are the mass and angular momentum of the star 16 

respectively, and Rs=2m is the Schwarzschild radius. If sr R , we have 17 

22 4 21 , sin , 1 .m L mU W V
r r r

θ→ − → → +  18 

For common stars and planets we always have r m L  . For example, 19 
we have 3m ≈ km for the sun. For LU decomposition of metric (17), the 20 
nonzero tetrad coefficients are given by 21 

0 1 2 3 0

0 1 2 3 3

sin, , , , ,

1 1 1, , , , .
sin sin

t r

t r t

rf U f V f r V f f UW
U
U UWf f f f f

r rU V r V

θ ϕ ϕ

θ ϕ

θ

θ θ

 = = = = =


− = = = = =

 22 

Substituting it into (15) we get  23 

4

4 (0,2 cos ,sin ,0).L r
r

α θ θΩ →                                            (18) 24 

By (18) we find that, the intensity of αΩ  is proportional to the angular 25 
momentum of the star, that is to say, the absolute value of the spin-gravity 26 
coupling potential of charged particles is proportional to the angular 27 
momentum of the star. 28 

Now we examine the force line of αΩ . By (18) we have 29 

22 cos sin .
sin

dx dr r r R
ds d

µ
µ θ θ

θ θ
= Ω ⇒ = ⇔ =                                     (19) 30 

Eq(19) shows that, the force lines of αΩ  and the magnetic force lines (10) 31 
of the magnetic dipole (9) coincide with each other. According to the above 32 
conclusions, we know that the spin-gravity coupling potential of charged 33 
particles will certainly induce a macroscopic dipolar magnetic field for the star, 34 
and it should be in accordance with the Schuster-Wilson-Blackett relation (1). 35 
 36 
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Discussion and Conclusion 1 
 2 
Hypercomplex numbers are vector spaces with the definitions of vector 3 

multiplication and division, describing complex numbers and quaternions in a 4 
unified way that can be directly extended to higher dimensions. Matrix 5 
representation carries more information that is difficult to express by abstract 6 
concepts, such as the definitions of norm and reciprocal [26, 31]. Natural laws 7 
are high-dimensional, therefore they should be more naturally described by 8 
hypercomplex number systems. In the hypercomplex form, the symmetries of 9 
the physical equations will automatically appear. 10 

The origin and evolution of celestial magnetic field is a complex and 11 
difficult problem. Compared with the existing hypotheses and theories, the 12 
explanation proposed in this paper seems to be more natural and reasonable, 13 
and may be closer to the truth. The rotating planet provides a weak 14 
gravitational field for particle spin like the magnetic dipole magnetic field, 15 
which is a somewhat unexpected discovery. The spin-gravity coupling 16 
potential is equivalent to equip each particle with a pair of eyes of navigation 17 
and location functions. 18 

So far, we have two more questions to explain for the magnetic fields of 19 
the star and planet: The first one is how to understand that, the direction of the 20 
magnetic dipole of a planet always deviates a little from the direction of 21 
angular momentum? The metric of a rotating celestial body is non-diagonal, 22 
which will produce some dynamic effect. The precession of the planet 23 
magnetic dipole relative to the rotational pole should be a relativistic effect, so 24 
in order to clarify this effect we need more detailed dynamic analysis. The 25 
second is how to understand the negative correlation between the magnetic 26 
dipoles and angular momentum of the same type of hot stars (see Figures 6, 7, 27 
8 in [2]). In the above discussion, we only consider a simplified model with 28 
concentrated parameters, that is, only the total mass m and total angular 29 
momentum L of the star are considered, but the distribution of variables such as 30 
mass density, temperature, and velocity are ignored. The temperature reflects 31 
the moving speed of particles, and high temperature will inevitably reduce the 32 
order of spin arrangement, and then reduce the magnetic dipole intensity of a 33 
star, so the magnetic field of the star will be relatively weakened with the 34 
increase of temperature. By introducing the distributive parameters and 35 
dynamo model, we will get more accurate results for the magnetic field of 36 
celestial body. 37 
 38 
 39 
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