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Early STEAM Education Practice: Application of 1 

Graph Theory through Teaching Assistants 2 

 3 
In the age of Society 5.0, which is the concept of a future society developed 4 
by the Japanese government, science, technology, engineering, art, and 5 
mathematics (STEAM) human resources with the skills to grasp things from 6 
multiple perspectives and solve problems will be required. Furthermore, 7 
Society 5.0 indicates that the National Institute of Technology (KOSEN) 8 
will become the STEAM center for elementary and junior high school 9 
students, as part of the efforts to establish a system that supports STEAM 10 
education. Since 2019, we have practiced STEAM education as part of 11 
“Liberal Arts Special Lectures” for 4th-year students of the main course (1st 12 
year of the undergraduate course). In these lectures, the teachers of liberal 13 
arts subjects present themes using their specialties, such as mathematics, 14 
debate, and economics. Collaborative learning between students from 15 
various departments led them to deep learning, which was a fusion of 16 
knowledge and creation. However, there are few opportunities to give back 17 
to society, particularly a platform to disseminate the acquired mathematics 18 
ability. Therefore, we aim to realize early STEAM education and give back 19 
to society by creating STEAM teaching materials on graph theory in open 20 
courses for junior high school students with help from teaching assistants. 21 
 22 
Keywords: Society 5.0, graph theory, open course for junior high school 23 
students, teaching assistants, liberal arts special lecture 24 

 25 

 26 

Introduction 27 

 28 

Introduced by Yakman, science, technology, engineering, art, and 29 

mathematics (STEAM) education is an approach to learning that uses science, 30 

technology, engineering, the arts, and mathematics as access points to guide 31 

student inquiry, dialogue, and critical thinking to solve problems in the real world. 32 

As an attempt, we have formulated financial education material on simple 33 

interest and compound interest from the perspective of STEAM education, i.e., 34 

a fusion of economics and mathematics. Moreover, we have used this material 35 

in an open course for citizens by utilizing the abilities of liberal arts special 36 

course students and the 3rd-year students who studied both subjects as 37 

instructors. As a result, we have been highly rated by the participants and the 38 

students have had a good opportunity to give back their acquired knowledge 39 

and ability to society.  40 

As another attempt, this work mainly aims to create STEAM teaching 41 

materials on graph theory for open courses for junior high school students and 42 

practice early STEAM education; liberal arts special course students are 43 

employed as teaching assistants, and the acquired mathematics ability is 44 

returned to society. 45 

Graph theory is a mathematical theory about figures consisting of a set of 46 

vertices and edges; it has one of its origins in 1736 when Leonhard Euler 47 
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solved the “Königsberg problem,” which is closely related to the single stroke. 1 

It can be applied to studying physics, chemistry, computer science, linguistics, 2 

and social sciences. Additionally, since a graph is easily understood visually 3 

and little prior knowledge is required to grasp it, it is suitable as a STEAM 4 

learning material for a wide number of generations. 5 

The open course carried out in 2022 is divided into three parts: an 6 

introduction to graph theory, including the Königsberg problem and single 7 

stroke, applications to social networks, and applications to maximum flow and 8 

minimum cut problems. The findings reveal that junior high school students 9 

provide high survey ratings, whereas teaching assistants have an invaluable 10 

opportunity to give back to society by making use of their acquired skills. The 11 

results of a questionnaire demonstrate that our course is effective for learners, 12 

and its potential as a STEAM teaching theme is shown. Moreover, the teaching 13 

assistants can study graph theory in depth because of the lectures; they can 14 

obtain new results and successfully present their research at the 28th KOSEN 15 

Symposium in 2023. 16 

Herein, we first describe the graph theory and the structure of an open 17 

course. Second, the content of our practice is outlined, and we review the 18 

scenes of open courses with photos, including a description of the results of the 19 

questionnaire obtained from the participants. Third, we describe what these 20 

teaching assistants presented at the Symposium. Finally, we present concluding 21 

remarks and future scope. 22 

 23 

 24 

Graphs 25 

 26 

In this section, we introduce the graph and its notation. First, we define 27 

graphs, which are the theme of this open course, and define the degree, which 28 

is a quantity used to characterize graphs. Consider the diagram shown in Figure 29 

1. 30 

Example 1. Points P, Q, R, S, and T are called vertices, the lines are called 31 

edges, and the entire diagram is called a graph. The degree of a vertex is the 32 

number of edges with the vertex as an endpoint. For example, the degree of 33 

vertex P is 3, and the degree of vertex Q is 4. 34 

 35 

Figure 1. An Example of Graphs 36 

 37 
 38 

  39 
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Figure 1 presents a graph. Formally, graph G consists of a finite non-empty 1 

set (V) of objects called vertices (the singular is a vertex) and a set (E) of 2 

2-element subsets of V, called edges. Therefore, graph G is a pair (an ordered 3 

pair) of two sets (V and E). Thus, some write G = (V, E). Hereinafter, for 4 

simplicity, a vertex is referred to as a point. The vertex set of graph G is 5 

denoted by V(G), and the edge set of graph G is denoted by E(G). The 6 

cardinality of V(G) is the order of G, and the cardinality of E(G) is the size of 7 

G. For example, the order and size of the graph shown in Figure 1 are 5 and 8, 8 

respectively. 9 

There are many numbers, referred to as parameters, associated with graph 10 

G. Knowing the values of specific parameters provides us with information 11 

about G but rarely tells us the entire structure of G. We mentioned the 12 

best-known parameters: the order and the size. Further, numbers were 13 

associated with each vertex of the graph. This is called the degree of a vertex. 14 

The degree of a vertex (v) in graph G is the number of edges incident on v and 15 

is denoted as deg(v). For example, for vertices P and Q in the graph shown in 16 

Figure 1, deg(P) = 3 and deg(Q) = 4, respectively. 17 

Next, we define connected graphs. Most graphs covered in this open 18 

course were connected graphs. 19 

Definition 2. A graph is connected if it cannot be expressed as a union of 20 

graphs. 21 

What we have shown in Figure 1 is a connected graph. Graph G is said to 22 

be connected if any two vertices (x, y) in G, G have an x–y path (a path in a 23 

graph is a finite sequence of edges that joins a sequence of vertices that are all 24 

distinct, and x–y path is a path from x to y). 25 

 26 

 27 

Structure of the Open Course 28 

 29 

We constructed the open course as follows. 30 

 31 

(a) Learning contents 32 

Graph theory and its application. 33 

 34 

(b) Construction 35 

- Participants 36 

Thirty-four Junior high school students (1st to 3rd grade) 37 

- Leaders 38 

Three teachers and two teaching assistants who studied graph theory 39 

in a special lecture on the liberal arts 40 

- Time 41 

210 (60 + 60 + 90) min 42 

 43 

 44 

  45 
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The Content of our Practice 1 

 2 

Our practice in graph theory consists of three parts: the Königsberg 3 

problem and single stroke, applications to social networks, and applications to 4 

maximum flow and minimum cut problems. 5 

 6 

(a) Introduction to graph theory 7 

 8 

First, we showed a diagram of the Königsburg bridges and asked whether 9 

or not you could cross each of the seven bridges shown in Figure 2 once and 10 

return to your starting point. 11 

 12 

Figure 2. Königsberg Bridge 13 

 14 
 15 

Next, we explained how the basic idea of topology was used: crossing a 16 

bridge was independent of the shape and size of the river, land, and bridge. The 17 

graph was constructed by transforming (continuously) the land shown in Figure 18 

2 as points and the bridges connecting lands as lines, as shown in Figure 3. 19 

 20 

Figure 3. Figure of a graph 21 

 22 
 23 

Remark 1. This problem is equivalent to asking whether or not the graph 24 

in Figure 3 has an “Eulerian trail” (as defined below). 25 

 26 

To familiarize the participants with one-stroke writing, the following questions 27 

were asked. 28 

Exercise 1. Determine if the following graph can be written in one stroke. 29 

 30 

  31 
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Figure 4. Some graphs 1 

 2 
 3 

Further, we defined the odd vertices and gave the problem of examining 4 

the relationship between the number of odd vertices and the possibility of one 5 

stroke. 6 

 7 

Exercise 2. A vertex with an odd degree is referred to as an odd vertex. 8 

 9 

 10 

(1) Fill in the table below for the graph in Exercise 1. 11 

(2) How many odd vertices would make one stroke possible? 12 

 13 

Table 1. The Number of Odd Vertices and Possibility of One Stroke 14 

 (1) (2) (3) (4) (5) 
Number of odd 

vertices 
     

Possible or not      

 15 

After explaining the necessary and sufficient conditions using simple 16 

examples, the conditions for writing one stroke were provided. 17 

Theorem 1. A connected graph is one stroke possible if and only if the 18 

number of odd points is 0 or 2. 19 

After defining the Eulerian graphs and having the students examine 20 

whether the graph in Exercise 1 is an Eulerian graph or not, we provided the 21 

necessary conditions for it. 22 

Definition 3. A connected graph (G) is Eulerian if there is a closed trail 23 

that includes every edge of G. 24 

Exercise 3. Determine whether the graph in Exercise 1 is an Eulerian 25 

graph or not. 26 

Theorem 2. A connected graph (G) is Eulerian only if the degree of each 27 

vertex of G is even. 28 

After defining the Hamilton graphs and having the students examine 29 

whether the graph in Exercise 1 is a Hamilton graph or not, we provided the 30 

necessary conditions for it. 31 

Definition 3. A Hamiltonian cycle is a cycle that visits each vertex 32 

precisely once. A graph that contains a Hamiltonian cycle is referred to as 33 

a Hamiltonian graph. 34 

Exercise 4. Determine whether the graph in Exercise 1 is a Hamilton 35 

graph or not. 36 

https://en.wikipedia.org/wiki/Cycle_(graph_theory)
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We introduced the “sufficient” condition for a graph to be a Hamiltonian 1 

graph and asked students to check that the following graph satisfies this 2 

condition. 3 

Theorem 3 (Ore). If G is a simple graph with n (≧3) vertices and if 4 

deg(v) and deg(w) ≧ n for each pair of nonadjacent vertices, v and w, G is a 5 

Hamiltonian. 6 

Exercise 5. Verify that the following graph satisfies Ore’s condition. 7 

 8 

Figure 5. Some Graphs 9 

 10 
 11 

We provide an example of a Hamiltonian graph for which the inverse of 12 

Ore does not hold and show that the methods for discriminating Hamiltonian 13 

graphs are still being studied. 14 

                15 

Figure 6. Example of a Graph that is Hamiltonian but does not satisfy the 16 

Ore’s Condition 17 

 18 
 19 

(b) Applications to social networks 20 

 21 

The subject of this part is the centrality of a vertex in a given graph, which 22 

has been frequently used in network science since the end of the last century.  23 

Graphs can be applied to effectively describe the structure of many social 24 

situations. In these cases, the word “network” is used more often than a graph. 25 

(Thus, in this part, “network” and “graph” are almost equivalent. However, in 26 

the next part, “network” is used in a more restricted sense.) For example, 27 

Figure 7 shows the railway network map in the Fukuoka city area. 28 

 29 

  30 
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Figure 7. Fukuoka City Railway Map 1 

 2 
cited from https://ontheworldmap.com/japan/city/fukuoka/fukuoka-rail-map.html 3 

 4 

In this case, each vertex corresponds to a station and each edge corresponds to 5 

a railway path between two stations. We emphasized that we focused only on 6 

whether one station is (directly) connected to another station by a railway or not. 7 

The distance between the two stations does not matter, although, in reality, the 8 

distance or time it takes to move between them are sometimes important factors. 9 

The centrality indicates the importance of a vertex in the graph: the higher the 10 

centrality, the higher the importance of the vertex. The meaning of “important” 11 

depends on the purpose and context. Thus, many different definitions of centrality 12 

have been proposed, and choosing, or sometimes developing, a centrality suitable 13 

for a specific purpose is a substantial problem. 14 

We examined three types of centrality in this lecture: degree, closeness, and 15 

betweenness centralities. These are easily evaluated, and the ideas on which they 16 

are based are easy to understand. 17 

We began by introducing two quantities required to define the centralities: the 18 

degree of a vertex and the distance between the two vertices. For simplicity, we 19 

assumed that each edge was undirected and unweighted. As an example, consider 20 

the graph shown in Figure 8. 21 

 22 

 23 

  24 

https://ontheworldmap.com/japan/city/fukuoka/fukuoka-rail-map.html


2023-5498-AJE-STEAM – 17 JUL 2023 

 

8 

Figure 8. The Sample Graph used to evaluate the Centralities in the Lecture 1 

 2 
 3 

As explained in the second section, the degree of a vertex is the number of 4 

edges connected to it. For example, the degree of vertex 1 is 2 because two 5 

edges are connected to it. The degree counts the number of vertices directly 6 

connected to the vertex. Subsequently, we consider a path from one vertex to 7 

another along the edges of the graph. The distance is the least number of edges 8 

necessary to start from one vertex and move to another; such a path is called 9 

the shortest path. For example, the distance between vertices 1 and 5 is 2, since 10 

the shortest paths are 1→3→5 and 2→4→5, and each of them consists of two 11 

edges. 12 

The degree centrality is defined as the degree of a vertex. This can be 13 

easily evaluated and understood. Typical social examples include large stations 14 

with many connected railway lines and influencers on social networking 15 

services with many followers. A vertex with a high degree centrality is 16 

important in the graph because it can directly affect many other vertices. 17 

Briefly, a vertex with high closeness centrality is close to any other vertex. 18 

The closeness centrality is defined as the reciprocal of the average distance 19 

between a vertex and all other vertices in the graph. For example, we evaluated 20 

the closeness centrality of vertex 1 in the graph shown in Figure 8. The 21 

distances from vertex 1 to vertices 2, 3, 4, 5, and 6 were 2, 1, 1, 2, and 3, 22 

respectively. Thus, the average distance was 9/5, and the closeness centrality 23 

was 5/9 ≒  0.556. The closeness centrality is useful in transportation, 24 

communication, etc. 25 

The betweenness centrality measures the extent to which a vertex is 26 

involved in the (indirect) connection with other vertices in the graph. In other 27 

words, if a vertex with high betweenness centrality is removed, many pairs of 28 

connections will be cut off or become relatively long. For example, it is 29 

utilized in traffic and information exchanges. It is defined as the proportion of 30 

the shortest paths between two vertices that include the vertex. For example, 31 

we evaluate the betweenness centrality of vertex 3 in the graph shown in 32 

Figure 2. The number of pairs of vertices, excluding vertex 3, is 10. The 33 



2023-5498-AJE-STEAM – 17 JUL 2023 

 

9 

shortest path between vertices 1 and 2 includes vertex 3; however, the shortest 1 

paths between vertices 1 and 4, 2 and 5, 2 and 6, 4 and 5, 4 and 6, and 5 and 6 2 

do not include vertex 3. For pairs 1 and 5, 1 and 6, and 2 and 4, there are two 3 

shortest paths between them, and in each pair, one includes vertex 3. Thus, 4 

each pair is considered to contribute half. Therefore, the betweenness centrality 5 

was (1 + 1/2 + 1/2 + 1/2)/10 = 0.25. 6 

The participants tried to evaluate these three types of centralities of all the 7 

vertices of the graph shown in Figure 8 with the help of KOSEN students. It 8 

seems that it took many participants some time to find the shortest paths of a 9 

given pair of vertices, which are necessary for the evaluation of the closeness 10 

and betweenness centralities. The results are shown in Figure 9. 11 

 12 

Figure 9. The three centralities of all the vertices of the graph shown leftward 13 

(the same graph as shown in Figure 8) The maximum values in each centrality 14 

are colored red 15 

 16 
 17 

In this example, no matter which type of centrality we considered, vertices 18 

with a high centrality almost coincide. This is because the size and order of the 19 

graph (i.e., the numbers of vertices and edges) is small and the shape of the 20 

graph is “typical” for the social network. We commented that for a graph with 21 

an extreme shape, which is a vertex with high centrality depends on the type of 22 

centrality (see Figure 10). This is sometimes the case. Finally, we commented 23 

that as the size of the graph increases, it will be a terrible task to evaluate the 24 

centralities by hand; therefore, we use a computer to analyze a real social 25 

network. 26 

 27 

  28 
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Figure 10. An example of a graph with an extreme shape. The vertex at the 1 

center bridges the left and right clusters. The degree centrality of the center 2 

vertex is not considerably high; however, the closeness and betweenness 3 

centralities are high 4 

 5 
 6 

(c) Applications of the graph theory: Maximum flow problems and Ford–7 

Fulkerson algorithm 8 

 9 

In this lecture, participants analyzed transportation capacity using algorithms 10 

related to graph theory to understand the practical applications of graph theory. 11 

We constructed the contents of the lecture as follows: 12 

 13 

- Maximum flow problem and networks 14 

- Flow networks 15 

- Max-flow min-cut theorem 16 

- Residual networks 17 

- Ford–Fulkerson algorithm 18 

- Exercises 19 

 20 

The following are the descriptions of each content. 21 

 22 

Maximum Flow Problem and Networks 23 

 24 

 The maximum flow problem is the problem of determining the 25 

maximum amount that can be transported from the starting point to the 26 

terminal point on a graph.  27 

For example, the problem of determining the maximum amount of goods 28 

that can be transported from point S to point T in the graph shown in Figure 11 29 

is called the maximum flow problem. 30 

The edges of the graph shown in Figure 11 indicate the direction in which 31 

the goods can be transported. Additionally, the maximum quantity of goods 32 

that can be transported is indicated at the edge. As shown in Figure 11, a graph 33 

with starting and terminal points and with a defined direction and non-negative 34 

integer values on the edges is called a network. 35 

  36 



2023-5498-AJE-STEAM – 17 JUL 2023 

 

11 

Figure 11. An Example of Networks 1 

 2 
 3 

Flow Networks 4 

 5 

A correspondence that assigns a nonnegative integer to each edge of the 6 

network under the following constraints is called a flow. 7 

 8 

- Capacity constraints: The non-negative integer assigned to each edge 9 

is less than or equal to the maximum amount that can be transported. 10 

- Balance constraints: The inflows and outflows at each point are the 11 

same, except for the starting and terminal points. 12 

 13 

In other words, flow is a method of transporting everything from the 14 

starting point to the terminal point, maintaining the upper limit of the amount 15 

that can be transported at each edge. 16 

The graph shown in Figure 12, which is called a flow network, is based on 17 

the network shown in Figure 11, with capacity constraints represented by blue 18 

numbers and flows represented by red numbers. The flow network shown in 19 

Figure 12 shows how to transport two goods from point S to point T. 20 

 21 

Figure 12. An Example of Flows 22 

 23 
 24 

 25 

 26 

 27 

 28 

 29 
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Max-flow min-cut theorem 1 

 2 

The division of all points into two regions, D1 containing the starting point 3 

and D2 containing the terminal point, is called a cut. The sum of the capacities 4 

of the edges flowing from region D1 to region D2 is referred to as the capacity 5 

of the cut. The cut with the smallest capacity is referred to as the minimum cut. 6 

Figure 13 shows an example of a cut in the network shown in Figure 11. 7 

The capacity of the cut is 3 + 1 = 4, which is the minimum cut. 8 

The max-flow min-cut theorem states that the maximum quantity that can 9 

be transported from the starting point to the terminal point is equal to the 10 

capacity of the minimum cut. For example, in the network shown in Figure 11, 11 

the maximum amount that can be transported from the starting point to the 12 

terminal point has a minimum cut capacity of 4. This indicates that the number 13 

of goods that can be transported is higher than the flow, as shown in Figure 12. 14 

 15 

Figure 13. The Minimum Cut of the Network in Figure 11 16 

 17 

 18 

Residual Networks 19 

 20 

The residual network is a graph representing how much more flow can be 21 

added and how much more flow can be returned. For example, Figure 14 22 

shows the residual network created based on the network shown in Figure 12. 23 

The flow from point A to point B is 1, whereas the maximum amount that 24 

can be transported is 3. Therefore, it is possible to flow an additional 2 from 25 

point A to point B. Since the flow is 1 from point A to point B, it is possible to 26 

return 1 from point B to point A. Notably, if 1 is returned from point B to point 27 

A in the residual network, the flow from point A to point B becomes 0 in the 28 

flow network. 29 

Similarly, by representing how much flow can be added and how much 30 

flow can be returned, a residual network can be created, as shown in Figure 14. 31 

 32 

 33 

 34 

 35 

 36 

 37 
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Figure 14. The Residual Network of the Network in Figure 12 1 

 2 

 3 

Ford–Fulkerson Algorithm 4 

 5 

The following algorithm can be used to find the maximum amount that can 6 

be transported and the transport method. This is known as the Ford–Fulkerson 7 

algorithm. 8 

 9 

- Algorithm (Ford–Fulkerson algorithm) 10 

 11 

Step 0: The initial flow is set to 0. 12 

Step 1: Create the residual network from the flow network. 13 

Step 2: Find a path in the residual network from the starting point to the 14 

terminal point, consisting of edges assigned to positive integers. If 15 

there is no such path, stop the process. 16 

Step 3: Update the flow in the flow network corresponding to the path 17 

found in Step 2 and return to Step 1. 18 

 19 

Ford–Fulkerson Example 20 

 21 

The first flow is set to zero. 22 

 23 

Figure 15. The Network with Zero Flow 24 

 25 
 26 

Subsequently, a residual network is created. From this, we find a path 27 

consisting of edges to which a positive integer is assigned. Here, we select path 28 

S→A→B→T. 29 



2023-5498-AJE-STEAM – 17 JUL 2023 

 

14 

Figure 16. The Residual Network of the Network in Figure 15 1 

 2 
 3 

The minimum capacity among the three edges is 3 (A→B). Accordingly, 4 

the flow network is updated. 5 

 6 

Figure 17. Updated Flow Network based on Figure 16 7 

 8 
 9 

Afterward, we create the residual network again and select another path: 10 

S→A→D→T. 11 

 12 

Figure 18. The Residual Network of the Network in Figure 17 13 

 14 
 15 

The minimum capacity of the three edges is 1 (D→T). Accordingly, the 16 

flow network is updated (this is the maximum flow according to the max-flow 17 

min-cut theorem). 18 

 19 

  20 
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Figure 19. Updated Flow Network based on Figure 18 1 

 2 
 3 

We create a residual network; however, there is no path from the starting 4 

point to the terminal point consisting of edges that are assigned positive 5 

integers. Thus, the procedure is discontinued. 6 

 7 

Figure 20. The Residual Network of the Network in Figure 19 8 

 9 
 10 

Exercises 11 

 12 

At the end of the lecture, participants analyzed their transportation 13 

capacity during the following exercise. 14 

 15 

- Exercise: Kurume is crowded with people returning to Hakata after the 16 

Chikugo River Fireworks Festival. How many people should be transported 17 

between each route to deliver as many people as possible to Hakata? Note 18 

that the arrows indicate passable routes, and the numbers indicate the number 19 

of people that can be transported. 20 

 21 

 22 

  23 
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Figure 21. The Network of the above Exercise 1 

 2 
 3 

- Sample answer: It can transport up to 350,000 people, which can be 4 

achieved by transporting as shown in the figure below. 5 

 6 

Figure 22. The Maximum Flow of the Network in Figure 21 7 

 8 
 9 

The participants completed this exercise using the Ford–Fulkerson 10 

algorithm. They attempted this exercise with advice from teaching assistants, 11 

and almost all participants could arrive at the correct answer. We believe that 12 

the participants could understand that graph theory could be used in familiar 13 

situations by completing this exercise. 14 

 15 

 16 

  17 
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Some Scenes from the Open Course 1 

 2 

In this section, we review the scenes of an open course using photos. A 3 

teacher and student showed slides on the screen, and the participants solved the 4 

exercise (see Figure 23). 5 

 6 

Figure 23. The Scene of Open Course 7 

 8 

 9 
 10 

 11 

Results of the questionnaire 12 

 13 

A questionnaire was administered during the course. The questions and 14 

results are as follows: 15 

 16 

Question 1. Did you understand this course? 17 

Question 2. How was the level of this course? 18 

Question 3. Was this course useful for you? 19 

Question 4. Were you satisfied with this course? 20 

  21 
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Table 2. Questionnaire Responses 1 

 2 
 3 

 4 

Student Presentations at the Symposium 5 

 6 

The teaching assistants could study graph theory in depth because of the 7 

lectures; further, they could obtain new results and successfully present their 8 

research at the 28th KOSEN Symposium in 2023. Some of their efforts are as 9 

follows. 10 

They studied the optimization of the number of images for noise reduction. 11 

The purpose of this study was to verify the relationship between the accuracy 12 

of a restored image and the number of images used for restoration. They 13 

prepared several images to which noise (image distortion) was added based on 14 

a specific monochrome image and considered restoring the original image from 15 

these images. When the probability of noise was between 0.01 and 0.20, the 16 

restoration accuracy increased as the number of images used for restoration 17 

increased. However, when the noise probability was greater than 0.28, the 18 

restoration accuracy was low regardless of the number of images used for 19 

restoration; this was due to excessive noise. 20 

 21 

  22 
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Figure 24. A Poster at the Symposium (in Japanese) 1 

 2 
 3 

Another teaching assistant studied the detection of Hamiltonian paths 4 

using quantum annealing (QA). The purpose of this study was to investigate 5 

whether or not Hamilton routes exist in complex geometries, such as route 6 

maps. This study investigated and verified a method for detecting Hamiltonian 7 

paths using a QA machine, which made remarkable progress in recent years. 8 

The principle of QA enabled the search for a quasi-optimal solution from 9 

numerous alternatives with high speed and accuracy. 10 

They proposed a method for detecting Hamiltonian paths using QA and 11 

introduced an Android application developed to demonstrate that Hamiltonian 12 

paths can be detected using this method.  The main results obtained are as 13 

follows. 14 

When using only QA, the general method could not detect Hamilton paths 15 

from graphs with 8 points, whereas the proposed method could. Using 16 

simulated annealing, they found that Hamiltonian paths could be detected from 17 

graphs with 24 points by increasing the execution time. However, it cannot be 18 

said that increasing the execution time with QA enables the detection of 19 

Hamiltonian paths; this is due to noise effects. Based on these verifications, 20 

they believe that the best method for detecting Hamiltonian paths using QA is 21 

to use hybrid QA, which uses both quantum and classical (nonquantum 22 

computer) methods. 23 

 24 

  25 
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Conclusion of this effort and a future subject 1 

 2 

We received the following comments about our open course from 3 

participants. 4 

 5 

- “The course was interesting because it was a field I didn’t usually 6 

study.” 7 

- “It was a little difficult, but I realized that mathematics can be used for 8 

various purposes.” 9 

- “The teacher’s explanation was easy to understand, and it was a fun 10 

course. When I was in trouble because I didn’t understand it, I was 11 

able to understand it because a teacher and a student taught me about 12 

it.” 13 

- “Unlike usual mathematics and science, I was able to get to know each 14 

problem deeply. I’m glad that I found that it was easy to understand 15 

and fun to connect with various things.” 16 

- “After taking today’s course, I thought that I wanted to learn more 17 

about graph theory at college.” 18 

 19 

The questionnaire demonstrated that our course was effective for the 20 

learners and showed potential as a STEAM teaching material. 21 

We now describe teaching materials for future use. Knot theory is easy for 22 

beginners to understand because it is not necessary to know its background 23 

well, and there are various teaching materials from which they can learn 24 

visually. The knot theory is associated with various fields, such as quantum 25 

field theory in physics, molecular design in chemistry, and DNA in biology. In 26 

the future, we intend to create STEAM teaching materials related to physics 27 

and chemistry.  28 

The next material is the “L-S category” (Cornea, Lupton, Operea, & 29 

Tanre, 2003; Miyaji & Sakai, 2013), which is an invariant for various figures. 30 

We find it easy to begin because we can learn it visually as a knot theory and 31 

because we need little preliminary knowledge of it. For these reasons, this 32 

theme would be interesting to students. For example, the L–S categories of a 33 

torus and a Klein bottle are both two. There is a fibrewise version of the L–S 34 

category, which is known to have a possibly different value from the ordinary 35 

L–S category. As a simple example, a torus has a value of two as its ordinary 36 

L–S category but one as its fibrewise version (Cornea, Lupton, Operea, & 37 

Tanre, 2003). Using the property of the fibrewise A∞-structure, one of the 38 

authors states that the fibrewise L–S category of the Klein bottle has a value of 39 

two (Sakai, 2010). Additionally, it is known that the fibrewise L–S category is 40 

related to “topological complexity,” a field of research involved in the motion 41 

planning of robot arms (Iwase & Sakai, 2010). 42 

 43 

  44 
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