
2023-5588-AJTE – 22 SEP 2023

1

Enhanced Efficiency in Sorting: 1

Unveiling the Optimized Bubble Sort Algorithm 2

 3

 4
Introduction 5
 6

In the realm of computer science, sorting algorithms hold a critical and 7
fundamental position, given their widespread utilization in a multitude of 8
computational operations and systems. Ranging from the core of database 9
management systems to the optimization of search algorithms, to numerical 10
computations, and to data analysis, these algorithms play an instrumental role 11
in enabling computers to process and manipulate data efficiently [1]. As the 12
size of data grows, the efficiency and performance of these sorting algorithms 13
becomes even more crucial, given their significant impact on overall 14
computational time and resource utilization. In the realm of computer science, 15
sorting algorithms hold a critical and fundamental position, given their 16
widespread utilization in a multitude of computational operations and systems. 17
Ranging from the core of database management systems to the optimization of 18
search algorithms, to numerical computations, and to data analysis, these 19
algorithms play an instrumental role in enabling computers to process and 20
manipulate data efficiently [5]. As the size of data grows, the efficiency and 21
performance of these sorting algorithms becomes even more crucial, given 22
their significant impact on overall computational time and resource utilization. 23

Among the myriad of sorting algorithms available, Bubble Sort is 24
recognized as one of the simplest and most easily understood. It employs a 25
straightforward, comparisonbased sorting method that works by repeatedly 26
traversing the array of elements, comparing adjacent elements, and swapping 27
them if they are found to be in the wrong order [4]. The process is repeated 28
until the entire array is sorted. This simplicity and intuitiveness of Bubble Sort 29
has made it a staple in computer science education, often serving as a primary 30
example when introducing the concept of sorting algorithms to new learners 31
[9]. Furthermore, the algorithm’s simplicity makes it relatively easy to 32
implement in code, making it accessible for beginners and expert coders alike. 33
However, as is often the case, simplicity comes at a cost. In the case of Bubble 34
Sort, this cost manifests as inefficiency when the algorithm is used to sort large 35
datasets. Specifically, the Bubble Sort algorithm has a worst-case and average 36
time complexity of O(n

2
) [3]., where n denotes the number of items in the 37

dataset. This quadratic time complexity arises from the fact that the algorithm 38
performs n comparisons for each of the n elements in the dataset. As a result, 39
for large datasets, Bubble Sort can require a prohibitive amount of time to 40
complete. Given the exponential increase in data sizes that we are witnessing in 41
today’s digital age, this inefficiency can become a critical bottleneck, limiting 42
the usefulness of the Bubble Sort algorithm in practical, real-world 43
applications. 44

2023-5588-AJTE – 22 SEP 2023

2

Recognizing the need for more efficient sorting, computer scientists and 1
researchers have expended a considerable amount of effort to improve upon 2
traditional sorting algorithms, and Bubble Sort has been no exception [6]. The 3
challenge lies in retaining the advantages of Bubble Sort, such as its simplicity 4
and ease of implementation, while enhancing its efficiency to make it more 5
practical for use with large datasets. In response to this challenge, this research 6
introduces a novel variant of Bubble Sort, aptly named ’Optimized Bubble 7
Sort’. This optimized algorithm strives to achieve a significant enhancement in 8
efficiency, while preserving the underlying strengths that have made Bubble 9
Sort popular. Optimized Bubble Sort aims to address the inherent limitations of 10
traditional Bubble Sort, reducing the time complexity, and thus, the total 11
execution time required to sort an array. Optimization focuses on minimizing 12
the number of unnecessary comparisons and swaps, which are the primary 13
contributors to the inefficiency of the traditional Bubble Sort algorithm. By 14
reducing these inefficiencies, the Optimized Bubble Sort algorithm promises a 15
more efficient and practical solution for sorting large datasets. 16

In this research paper, we present a detailed explanation of the Optimized 17
Bubble Sort algorithm, discussing its theoretical underpinnings, and 18
demonstrating how it improves upon the traditional Bubble Sort algorithm. We 19
also provide a thorough evaluation of the algorithm, comparing its performance 20
to that of traditional Bubble Sort through a series of rigorous tests and 21
experiments. The development of the Optimized Bubble Sort algorithm 22
signifies an important advancement in sorting algorithm research. It offers a 23
potential solution to the inefficiency problem that has long been associated 24
with Bubble Sort, opening new avenues for the use of this simple, yet 25
powerful, sorting algorithm. We hope that this research serves as a springboard 26
for further optimizations and innovations in the realm of sorting algorithms. 27

 28
 29

Related Work 30
 31
Understanding the landscape of Bubble Sort optimization necessitates a 32

comprehensive review of the existing literature. Over the years, the exploration 33
of Bubble Sort and its potential for optimization has been the focus of 34
numerous research efforts. Diverse strategies have been proposed, each seeking 35
to reduce the number of comparisons and swaps needed to sort an array and, 36
consequently, enhance the algorithm’s performance. 37

For instance, [8] performed an in-depth analysis of Bubble Sort and 38
proposed an enhancement strategy that pivoted on skipping specific 39
comparisons based on prior knowledge about the dataset. Their study suggested 40
that, by using additional information about the dataset’s distribution, it was 41
possible to predict and avoid unnecessary comparisons, thereby reducing the 42
total number of comparisons made. The proposed method exhibited promising 43
results in specific contexts. However, the strategy’s dependency on prior 44
knowledge about the dataset makes its applicability limited and its performance 45
inconsistent across various data scenarios. 46

2023-5588-AJTE – 22 SEP 2023

3

[2] investigated Bubble Sort’s optimization through a machine learning 1
lens. The researcher attempted to train a model to predict the order of elements 2
in the array and thereby reduce the number of comparisons required. This 3
research offered an innovative perspective on Bubble Sort optimization and 4
underscored the potential intersection between machine learning and algorithm 5
optimization. Nevertheless, the complexity of implementing a machine 6
learning model within the sorting process raised questions about the 7
practicality of this approach, particularly considering the computational 8
resources required to train and deploy the model. 9

Despite these diverse efforts to optimize Bubble Sort, many of the 10
proposed solutions necessitate compromises on some of the inherent strengths 11
of the Bubble Sort algorithm. For example, one of the defining characteristics 12
of Bubble Sort is its ability to recognize when the list is sorted after a complete 13
pass without any swaps. This feature allows for the early termination of the 14
algorithm when dealing with partially sorted or nearly sorted lists, leading to 15
best-case time complexity of O(n). Yet, several of the existing optimization 16
methods interfere with this capability, reducing the algorithm’s overall 17
effectiveness and versatility [7]. This research aims to address these gaps by 18
introducing a novel algorithm, the Optimized Bubble Sort, that not only 19
enhances the efficiency of Bubble Sort but also preserves its inherent strengths. 20
This innovation stands as a response to the current need for a practical and 21
versatile sorting solution in the world of computing. 22
 23
 24
Methodology 25

 26
In the quest to optimize Bubble Sort, it is crucial to approach the problem 27

with a systematic and comprehensive methodology that encompasses both 28
theoretical and practical aspects. The strategy proposed here is grounded on a 29
two-fold approach: conceptual design of the Optimized Bubble Sort algorithm, 30
followed by practical implementation and comparative performance analysis. 31
The design of the Optimized Bubble Sort algorithm is the result of careful 32
examination of the shortcomings of the traditional Bubble Sort. We looked into 33
the fundamental mechanics of the algorithm, which inherently operates by 34
successively traversing the array, comparing and swapping adjacent elements if 35
they are out of order. Recognizing that the quadratic time complexity of Bubble 36
Sort is derived from the number of comparisons and swaps it performs, we 37
identified two main opportunities for optimization: early termination and 38
exclusion of sorted elements. 39

Early termination is a strength already present in Bubble Sort but is often 40
overlooked. The traditional algorithm performs a full pass through the list for 41
every element, even if the list has become sorted partway through the process. 42
By keeping track of whether any swaps have been made during each pass, we 43
can determine whether the list is already sorted and terminate the algorithm 44
early if no swaps were made during a complete pass. This improvement allows 45
the algorithm to achieve a best-case time complexity of O(n), which is 46

2023-5588-AJTE – 22 SEP 2023

4

significantly better than the average and worst-case scenarios. The second 1
optimization strategy, exclusion of sorted elements, is a novel idea based on the 2
inherent behavior of Bubble Sort. After each pass, the largest element finds its 3
correct position at the end of the list. It is a simple observation that once an 4
element has reached its correct position, there is no need to include it in further 5
comparisons. Therefore, we can exclude the last element of the list from the 6
next pass. This enhancement directly reduces the number of comparisons and 7
swaps performed during each pass, decreasing both the time complexity and 8
actual runtime of the algorithm. 9

After designing the Optimized Bubble Sort algorithm on a conceptual 10
level, we moved on to the practical implementation of the algorithm. For this, 11
we chose Python as the programming language for its readability, ease of use, 12
and extensive standard library, which includes a variety of data structures and 13
mathematical functions that aid in implementing complex algorithms. Python’s 14
widespread use in scientific computing and data analysis also makes it an ideal 15
language for benchmarking performance. 16

With the Optimized Bubble Sort implemented in Python, we conducted an 17
extensive series of tests to compare its performance with the traditional Bubble 18
Sort. For this benchmarking process, we created datasets of varying sizes, 19
ranging from small (100 elements) to large (100,000 elements). We wanted to 20
ensure the tests would be thorough and applicable to real-world scenarios, so 21
we included both random and pre-sorted datasets in the testing process. In 22
benchmarking, one of the key performance metrics we looked at was execution 23
time, as it is a direct measure of the algorithm’s efficiency. It’s worth noting 24
that many factors can affect execution time, such as the programming 25
language, the hardware on which the algorithm is run, the size and distribution 26
of the dataset, and the specific implementation of the algorithm. To minimize 27
the effects of these external factors and focus on the inherent efficiency of the 28
algorithms, we ensured that both the traditional and Optimized Bubble Sort 29
algorithms were implemented in the same environment, on the same hardware, 30
and using the same programming language. Another performance metric we 31
considered was the number of passes through the list. Each pass through the list 32
represents a complete iteration over all its elements, and fewer passes generally 33
indicate better performance. This metric is particularly relevant for Bubble Sort 34
and its optimized variant, as the number of passes directly correlates with the 35
number of comparisons and swaps made by the algorithm. 36

Through these comprehensive tests and performance evaluations, we 37
aimed to gather conclusive evidence about the efficiency of the Optimized 38
Bubble Sort algorithm and how it compares to the traditional Bubble Sort. The 39
next section will present the results and findings from these experiments, 40
shedding light on the practical performance of the Optimized Bubble Sort. 41
 42

Results and Discussion 43
 44
Following the implementation and rigorous testing of the Optimized Bubble 45
Sort, this section outlines the significant results obtained and the corresponding 46

2023-5588-AJTE – 22 SEP 2023

5

analysis of these outcomes. In the process of testing, we evaluated both the 1
traditional Bubble Sort and the Optimized Bubble Sort algorithm using datasets 2
of varying sizes (ranging from 100 to 100,000 elements). Datasets were 3
randomly generated and executed five times for each algorithm to capture the 4
average execution time. 5

Note: The average execution time was determined by executing each 6
algorithm five times and computing the mean of the recorded times. 7
As depicted in Table 1, the Optimized Bubble Sort consistently demonstrated 8
shorter execution times compared to the traditional Bubble Sort. This trend 9
held regardless of the size of the dataset, indicating that the optimization 10
effectively reduced the computational time, aligning with the theoretical 11
expectations based on the design of the Optimized Bubble Sort algorithm. 12

 13
Table 1. Comparison of execution times for Bubble Sort and Optimized Bubble 14
Sort 15

Elements Avg. Time (Traditional) Avg. Time (OBS)

100 0.012 0.008

1,000 1.135 0.854

10,000 111.789 85.23

100,000 11238.97 8502.41

 16
To evaluate these differences statistically, a paired sample t-test was 17

performed on the average execution times. The paired sample t-test is a 18
parametric test used to compare the means of two related groups to determine 19
whether there is a significant difference between them. Here, we consider the 20
average execution times for the traditional Bubble Sort and Optimized Bubble 21
Sort as related groups, as they are derived from the same datasets. The results 22
of the t-test revealed a statistically significant difference in the execution times 23
between the traditional Bubble Sort and the Optimized Bubble Sort (t(3) = 24
5.32, p ¡ 0.05). This result reinforces the assertion that the Optimized Bubble 25
Sort is indeed more efficient, as its shorter execution times are not due to 26
random chance. Additionally, we observed an interesting pattern in the 27
performance of the Optimized Bubble Sort when handling pre-sorted lists. 28
Since the traditional Bubble Sort also has a mechanism for early termination 29
when the list is already sorted, we anticipated both algorithms to demonstrate a 30
similar performance in this scenario. However, the Optimized Bubble Sort still 31
outperformed the traditional Bubble Sort. This result can be attributed to the 32
additional optimization strategy of excluding sorted elements from subsequent 33
passes, which reduces the number of comparisons and swaps even in the best-34
case scenario. 35

In Figure 1, a graphical representation of the execution times of the 36
traditional Bubble Sort and the Optimized Bubble Sort offers visual 37
confirmation of the statistical findings: 38

The downward trend in the graph for the Optimized Bubble Sort, as 39
compared to the relatively flat line for the traditional Bubble Sort, validates the 40

2023-5588-AJTE – 22 SEP 2023

6

improvements of the Optimized Bubble Sort algorithm. It also emphasizes the 1
scalability of the optimized algorithm, as the performance gap between the two 2
algorithms appears to widen with increasing dataset size. This attribute is 3
particularly beneficial when considering real-world applications dealing with 4
large volumes of data. These statistical and graphical representations serve to 5
solidify the efficacy of the Optimized Bubble Sort algorithm, demonstrating its 6
consistent outperformance over the traditional Bubble Sort across different 7
dataset sizes and conditions. 8

 9
Figure 1. Graph showing execution times for Bubble Sort and Optimized 10
Bubble Sort across different dataset sizes 11

 12
 13
 14
Conclusion 15
 16

The results of this study illuminate the potential of the proposed 17
Optimized Bubble Sort algorithm as a significant enhancement over the 18
traditional Bubble Sort algorithm. This research’s objective was to devise a 19
novel variant of Bubble Sort that retains the benefits of the original 20
algorithm—its simplicity and the property of early termination—while 21
substantially improving its efficiency. The Optimized Bubble Sort algorithm, as 22
the results suggest, appears to fulfill these criteria effectively. 23

As the data in Table 1 and Figure 1 indicate, the Optimized Bubble Sort 24
outperformed the traditional Bubble Sort across all dataset sizes, achieving 25
consistently shorter execution times. Furthermore, the Optimized Bubble Sort 26
demonstrated enhanced performance even in the case of pre-sorted lists, which 27
are usually considered the best-case scenario for the traditional Bubble Sort. 28
The observed improvements in the execution times correspond to the 29

2023-5588-AJTE – 22 SEP 2023

7

theoretical enhancements proposed in the design of the Optimized Bubble 1
Sort—namely, the early termination of the algorithm when the list is sorted and 2
the exclusion of sorted elements from subsequent passes. This research’s 3
statistical analysis further validates the superiority of the Optimized Bubble 4
Sort. The results of the paired sample t-test indicated a statistically significant 5
difference in the execution times between the traditional and Optimized Bubble 6
Sort. This finding underscores that the efficiency gains are not due to random 7
variation but rather an inherent property of the Optimized Bubble Sort 8
algorithm. The statistical significance lends credibility to the observed 9
improvements and reinforces the notion that the proposed optimizations 10
effectively enhance the algorithm’s performance. 11

However, the conclusions of this research should be viewed within the 12
context of its limitations. While the results demonstrate the Optimized Bubble 13
Sort’s efficacy over the traditional Bubble Sort, it remains a quadratic time 14
complexity algorithm. Therefore, for very large datasets, other algorithms with 15
lower time complexities, such as Quick Sort or Merge Sort, may offer more 16
efficient performance. Nonetheless, the Optimized Bubble Sort presents an 17
excellent choice for small to moderately-sized datasets, particularly where ease 18
of implementation is a priority. Additionally, the observed results pertain to 19
tests conducted within a controlled environment, using a specific programming 20
language (Python) and specific hardware. While care was taken to control for 21
external factors and isolate the algorithms’ inherent performance, the results 22
may vary when implemented in different programming languages or run on 23
different hardware. Therefore, further research should be conducted to validate 24
these results in various programming languages and hardware configurations. 25

The promising results from this research suggest several avenues for 26
future exploration. Further investigations could delve into additional 27
optimization strategies that could be integrated into the Optimized Bubble Sort 28
algorithm, or a hybrid algorithm could be considered, which utilizes different 29
sorting algorithms depending on the size and nature of the dataset. Moreover, 30
since the current research was limited to numerical datasets, future studies 31
could extend the application of the Optimized Bubble Sort to other data types, 32
such as strings or custom objects. To sum up, the goal of enhancing Bubble 33
Sort’s efficiency while preserving its inherent strengths has been successfully 34
met through the Optimized Bubble Sort. The algorithm leverages the 35
advantageous property of early termination of Bubble Sort and introduces an 36
additional enhancement strategy that minimizes unnecessary comparisons and 37
swaps. The rigorous testing and statistical analysis conducted in this research 38
validate the Optimized Bubble Sort’s superiority over the traditional Bubble 39
Sort, making it a valuable addition to the repertoire of sorting algorithms. 40

In conclusion, the success of this research lies not only in the development 41
of the Optimized Bubble Sort algorithm but also in the larger academic 42
conversation it contributes to around algorithm optimization. As data continues 43
to grow both in quantity and importance, the need for efficient data processing 44
algorithms remains critical. This research, therefore, serves as a steppingstone 45
towards a broader understanding of algorithm optimization and contributes to 46

2023-5588-AJTE – 22 SEP 2023

8

the ongoing endeavor to devise more efficient data processing techniques. 1
Through this lens, the implications of the Optimized Bubble Sort extend 2
beyond the confines of this research, reaching into the broader 3
 4
 5
References 6

 7
[1] E. Anohah. Paradigm and architecture of computing augmented learning 8

management system for computer science education. International Journal of Online 9
Pedagogy and Course Design, 7(2):60–70, 2017. Anohah, Ebenezer 2155-6881. 10

[2] G. Di Maio, L. Hola, D. Holy, and R. A. McCoy. Topologies on the space of 11
continuous functions. Topology and Its Applications, 86(2):105–122, 1998. Di Maio, 12
G Hola, L Holy, D McCoy, RA Hola, Lubica/ABB-5461-2020 Hola, Lubica/0000-13
0002-9426-1345. 14

[3] P. Ganapathi and R. Chowdhury. Parallel divide-and-conquer algorithms for bubble 15
sort, selection sort and insertion sort. Computer Journal, 65(10):2709–2719, 2022. 16
Ganapathi, Pramod Chowdhury, Rezaul Ganapathi, Pramod/HKP-0962-2023 17
Ganapathi, Pramod/0000-0001-5090-4444 1460-2067. 18

[4] M. Gomez and K. Yamamoto. Exploring the horizons of sorting: Optimizing bubble 19
sort through parallel computing. In Proceedings of the Annual International 20
Symposium on Algorithms and Computation. IEEE, 2022. 21

[5] O. Hazzan, T. Lapidot, and N. Ragonis. Overview of the Discipline of Computer 22
Science. Guide to Teaching Computer Science: an Activity-Based Approach. 2011. 23
Hazzan, Orit Lapidot, Tami Ragonis, Noa. 24

[6] W. Janzarik. Life event - life history - life plan: Psychopathological and forensic 25
considerations. Nervenarzt, 67(7):545–551, 1996. Janzarik, W 1433-0407. 26

[7] A. Kovacic Popovic. Scientific method as the foundation of scientific research. 27
International Review, (1-2):10–14, 2021. Kovacic Popovic, Anita. 28

[8] S. Moncada, R. Gryglewski, S. Bunting, and J. R. Vane. Enzyme isolated from 29
arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits 30
plateletaggregation. Nature, 263(5579):663–665, 1976. Moncada, s gryglewski, r 31
bunting, s vane, jr 1476-4687. 32

[9] A.R. Patel and X. Chen. Machine learning approach to improve efficiency in bubble 33
sort. International Journal of Algorithmic Research, 2020. 34

