

Between Rows and Glades: The Landscape of the Reclamation Between Aquatic Re-Balances and New Forms of Living

Reclamation landscapes result from a strong interaction between humans and nature, expressing simultaneously the need to inhabit previously hostile wetlands and the operation of reshaping the landscape. The continuous mutations linked to human settlement and climate change have, however, modified the appearance of "nature." Although it may appear random and irregular, the reclamation textures follow precise and strategic patterns designed by the water network. They are the result of numerous attempts to make the countryside efficient, productive, and controllable. By examining the case study of the Friulian lowlands, this contribution aims to highlight the importance of reinterpreting reclamation landscapes not only as a productive field but also as an essential ecological infrastructure. In particular, by reasoning on the relationship between rows and clearings, elements characterizing this type of landscape, it is possible to identify a fertile ground on which to define new ecosystemic coexistences, a vegetal front from which to defend biodiversity. Furthermore, rows and glades embody the relationship between "full" and "empty," which is essential for human settlement. Thus, starting from these elements, it is possible to formulate new modes of inhabiting this territory. By repeating and flanking each other, these elements can reach transcalar dimensions, configuring new ecological corridors and laying the groundwork for rethinking the relationship between settlements and the countryside, which has been put into crisis by new agricultural technologies. Thus, it is possible not only to reevaluate agricultural, architectural, and settlement traditions but also to rethink the management of land and water to preserve resources and cope with extreme phenomena caused by climate change.

Keywords: *rows, clearing, water patterns, ecologic corridors, new ways of living*

The Countryside as a Landscape Machine. Toward New Perspectives

The mainstreaming call for urban reforestation and the urgency of observing/intervening in the unobserved space of the countryside

38 There are landscapes and territories that, despite occupying a marginal
39 position within the contemporary debate, constitute essential reserves of
40 biodiversity, technological experimentation, and multiple investigations in
41 defining new housing models: the countryside. These territories must not remain
42 unnoticed but, as Koolhaas urges, must be urgently reintroduced into the debate
43 as they are strategic for the activation of strategies aimed at ecological transition.
44 The rural landscape, in fact, very often represents the starting points of
45 environmental corridors that reach up to urban centers, constituting proper
46 territories in transition that can be infrastructured to absorb the irremediable
47 consequences of phenomena linked to the climate emergency and, at the same
48 time, embody real fields of experimentation in which to reformulate new models

1 of agricultural production and new forms of living.

2 Within the vast countryside territories, agricultural reclamation landscapes
 3 constitute a privileged field of observation and planning, as they present
 4 extremely peculiar environmental, economic, social, and cultural conditions.
 5 Their ecosystemic balance, modulated and constructed according to the
 6 management and control of water resources – driven by economic, productive,
 7 and settlement needs – has shifted gradually from a natural to a progressively
 8 controlled and mechanized environment. The mechanization of agriculture has,
 9 in fact, turned the countryside into a "machine," and the attempts to make it more
 10 efficient, productive, and controllable come into conflict with its original
 11 spontaneity and rich biodiversity. Water, once perceived as a hostile or
 12 uncontrollable element, is regulated through a complex network of technical
 13 systems — including overflow channels, pumping stations, and compensation
 14 basins — that determine its timing, flow paths, and usage methods. Reclaimed
 15 landscapes form a dynamic setting, constantly evolving in response to
 16 technological, climatic, and socio-economic changes: territories in continuous
 17 transformation, where historical layers and contemporary innovations coexist,
 18 interact, and, at times, come into conflict.

19 The current climate scenario threatens these environments and necessitates
 20 a critical reevaluation of these complex landscape machines and their traditional
 21 operating logic. Water crises, rising sea levels, the increasing frequency of
 22 extreme weather events, and the ongoing sealing of soil surfaces pose new
 23 challenges for managing these areas. The very infrastructure of these landscapes,
 24 designed during periods of relatively stable climatic conditions, now proves
 25 inadequate in the face of present-day complexity and uncertainty. In response,
 26 multidisciplinary approaches are emerging, integrating hydraulic engineering,
 27 ecology, spatial planning, and landscape design with the aim of preserving and
 28 enhancing the unique characteristics of this particular agrarian landscape.

29 The research sets as a key normative framework the European strategies
 30 enshrined by the *Nature Restoration Regulation*¹ approved by the European
 31 Union in 2023. This regulation obliges the Member States to restore at least 20%
 32 of degraded ecosystems by 2030, extending the measures to agricultural, forestry,
 33 and marine areas. Beginning with the investigation of a specific case study in the
 34 reclamation areas of the southern Friuli Venezia Giulia region, the intent is to
 35 reflect on possible operations for landscape preservation and enhancement.

36 The aim is to highlight, through an exploration of the anatomy of this
 37 landscape, the transformative potential it holds — not only in terms of
 38 sustainability, ecological transition, and mitigation of the environmental risks to
 39 which it is increasingly exposed due to climate change but also as a fertile ground
 40 for experimenting with new agricultural models and new forms of dwelling. In

¹The *Nature Restoration Regulation* is the Regulation (EU) 2024/1991 of the European Parliament and of the Council, which entered into force on 18 August 2024 with the aim of "to restore a broad range of degraded ecosystems, habitats and species across the EU's land and seas. The Regulation creates a common legal framework for their large-scale restoration, building upon and complementing existing EU legislation." (quote taken by The Nature Restoration Regulation, Luxembourg: Publications Office of the European Union, 2025, p.6.

1 fact, the reclaimed landscape should not be conceived merely as a productive
2 machine but reinterpreted as a complex environment capable of simultaneously
3 serving as both a means and a place for achieving ecological sustainability and
4 hydraulic safety objectives, thereby enhancing the future quality of life within
5 the territory.

6 The research develops an operational reflection that assesses the
7 consequences of changes in this amphibious landscape from two perspectives.
8 On one hand, the architectural perspective of settlement and habitation; on the
9 other, the territorial perspective of the landscape, focusing in particular on the
10 transformations of its two most significant elements: the tree row and the
11 clearing.

12 The common foundation of this reflection is the relationship with water and
13 its management through infrastructure and the logic of land reclamation.
14

15 *The Research Unit: The Case Study and the Method*

16
17 The research presented is part of a series of individual works carried out
18 within the research group "Inhabiting the New Friulian Deserts," based in the
19 Department of Engineering and Architecture (DIA) at the University of Trieste
20 (Italy).

21 This research unit investigates the territory of the "Bassa Pianura Friulana"
22 to enhance its landscape and promote the reuse and accessibility of rural
23 settlements ("colonie rurali") and hydraulic heritage. This area forms a distinctive
24 geomorphological, settlement-territorial, and landscape-environmental system
25 (Venudo, 2020): a reclaimed plain that stretches from the Isonzo to the Tagliamento
26 rivers.

27 While this topic was the focus of extensive research — especially by the
28 Venetian school of IUAV (F. Tentori, G. Polesello, among others) between the
29 mid-1950s and the late 1970s — it has since been largely neglected. Compared
30 to those early explorations, the anthropic dynamics and the morphological
31 configuration of the area have changed profoundly due to the rise of
32 environmental and landscape phenomena such as the desertification of the
33 countryside (Venudo, Altobelli, Martorana, 2020). Water scarcity, the
34 consequent need for more rationalized distribution, and the spread of intensive
35 agriculture have all become constraints on agricultural systems — and thus on
36 the landscape, which has always been shaped by the logic and machinery of
37 cultivation. The result is a progressive simplification of both production and
38 landscape, changes that inevitably have repercussions on settlement patterns.
39 This system of simplifications is precisely what this research unit seeks to
40 analyze, defining new visions and approaches and proposing new design
41 strategies. The term "deserts" refers both to the gradual loss of ecological and
42 vegetative diversity in the territory and to the ongoing process of depopulation
43 in rural areas.

44 What, then, might be the new ways to "re-inhabit," use, and enhance the
45 reclaimed territories under a new spatial paradigm, starting precisely from water
46 management?

1 Could this be approached by observing the rhythm of "full" and "empty" in
 2 the agricultural landscape — that is, the relationship between tree rows and
 3 clearings?

4

5

6 **Back to the Countryside? From The Modification of the Agrarian Design of**
 7 **the Agricultural Reclamation to New Forms of Multi-Species Co-Habitation**

8

9 Architecture and planning today are obsessed with the redesign and planning of
 10 urban space, underestimating the potential of the remaining 98% of the world's
 11 territory: the countryside, an area with a very high technological, logistical, and
 12 environmental density, constantly reshaped by industrial, agricultural practices,
 13 automation, digitization, and new geopolitical conflicts.

14 This imbalance concerning solely the urban dimension of the problem is
 15 denounced by Rem Koolhaas in *Countryside, The Future* (2020), who states:
 16 "Half of mankind lives in the city, but the other half doesn't. Rem Koolhaas
 17 presents his manifesto on the countryside, revealing how little attention has been
 18 paid to the countryside in the past decades and how this unknown territory is
 19 rapidly transforming."²

20 Koolhaas proposes reformulating the role of the countryside as an
 21 operational terrain for addressing the significant ecological, social, and
 22 productive crises of contemporaneity, thereby opening up a space for design that
 23 is still largely unexplored. This vision is linked to other perspectives which,
 24 albeit from different angles, converge on the need to expand the design and
 25 environmental gaze beyond the urban perimeter. In her *Toward an Urban*
 26 *Ecology* (2016), for instance, Kate Orff interprets active, relational, and
 27 infrastructural practical ecology by introducing the concept of bioregion as an
 28 operational concept for contemporary ecological design. As her own projects
 29 demonstrate, the design process must be aimed at defining living infrastructure
 30 that dynamically connects nature and architecture. Thus, the project should not
 31 be limited to urban boundaries but must expand beyond, seeking to operate on a
 32 larger scale capable of relating to ecological corridors, watersheds, and
 33 productive landscapes in transition. This design philosophy is evident in
 34 numerous projects developed by the US firm SCAPE, of which Orff is a
 35 founding partner, including *Resilient New Jersey* and *Resilient Jacksonville*. The
 36 latter, defined as "a 50-year roadmap to prepare Jacksonville for climate change,
 37 population growth, and urban development",³ embodies a reaction to the
 38 significant threats posed by climate change – rising temperatures and increased
 39 flooding – which are addressed through 45 adaptive actions that gradually
 40 redesign the city to make room for water, providing buffer spaces capable of
 41 absorbing variations in the water body, which at the same time becomes a real

²Quote taken from the *Countryside* page, dedicated to the project, on the OMA studio website (<https://www.oma.com/lectures/countryside>)

³Quote taken from the page dedicated to the project *Resilient Jacksonville* on SCAPE's website: <https://www.scapestudio.com/projects/resilient-jacksonville/>

1 binding agent for a metamorphic landscape whose consistency varies as it moves
 2 from the more urbanized coast to the inland countryside.

3 Another interesting design consideration is outlined by Richard Weller in
 4 his *Atlas for the End of the World* (2017), in which he states: "This Atlas audits
 5 the status of land use and urbanization in the most critically endangered
 6 bioregions on Earth. It does so, firstly, by measuring the quantity of protected
 7 area across the world's 36 biodiversity hotspots in comparison to the United
 8 Nations' 2020 targets and secondly, by identifying where future urban growth in
 9 these territories is on a collision course with endangered species. By bringing
 10 urbanization and conservation together in the same study, the essays, maps, data,
 11 and artwork in this Atlas lay essential groundwork for the future planning and
 12 design of hotspot cities and regions as interdependent ecological and economic
 13 systems."⁴ Weller conceives ecological restoration as a design responsibility, not
 14 a spontaneous or residual process, interpreting the countryside as a decisive
 15 operational terrain for testing alternative models of coexistence between nature
 16 and culture. In another, more anthropological direction, Tim Ingold, in *The*
 17 *Perception of the Environment* (2000), reformulates the concept of landscape as
 18 the result of lived relationships and practices of co-habitation between humans
 19 and non-humans. His phenomenological approach breaks down the distinction
 20 between nature and culture, inviting us to think of restoration as a process of
 21 reconnection between living beings, in which the landscape becomes a relational
 22 fabric to be inhabited and cultivated over time. In this sense, thinking about the
 23 countryside becomes a way of rethinking this environment not only as a
 24 productive resource but also, above all, as a continuum of relationships between
 25 people, agricultural production, animals, and the landscape that composes and
 26 inhabits it.

27 If the countryside, as seen previously, constitutes a potential field of
 28 investigation for the contemporary era, within it, there are specific territories that
 29 present physical, social, and cultural peculiarities that are grafted onto a precise
 30 redesign not only of the soil but also and fundamentally of the body of water: the
 31 territories of land reclamation. The millennial relationship between humans and
 32 water is embodied in the practice of land reclamation, which has enabled the
 33 development of large unproductive areas, encouraged settlements, safeguarded
 34 their integrity, and preserved the local environment. To inhabit the marshy lands
 35 and settle in the newly reclaimed territories, humans needed to "make space for
 36 themselves."⁵ This necessitated rethinking a new settlement system to occupy
 37 the new territories, giving rise to the reclaimed colonies, in contrast to the
 38 traditional "village" model. While villages arose "spontaneously," developing
 39 along the roads or adapting to natural limits, colonial settlements followed
 40 precise rules, adapting to the design of the land created by man. Thus, while
 41 villages had to integrate the "emptiness" in the design (with the creation of

⁴Quote taken from the official page of the project *Atlas for the End of the World*: <https://atlas-for-the-end-of-the-world.com/>

⁵Heidegger, a German philosopher, identifies the creation of a clearing through the act of "making space," to regenerate, find refuge, or inhabit the territory.

1 courtyards for domestic and work activities and squares, the beating heart of city
 2 life), settlers had to integrate the full (the home) in the emptiness of the
 3 countryside. What these manifestations of emptiness, which we can define as a
 4 "clearing," have in common is the characteristic of being spaces circumscribed
 5 by a border, which separates them from the context but, at the same time,
 6 connects them with what surrounds them.

7 While courtyards and squares continue to be vital centers of socialization
 8 and cultural activity, the settlement model created to inhabit the reclaimed
 9 countryside is no longer efficient. The colonies have been depopulated and
 10 abandoned buildings stand out in the landscape.

11 The term 'reclamation' derives from the Latin 'bonificare,' composed of
 12 *bonus* (good) and *facere* (to do), and refers to operations aimed at improving the
 13 quality of land by draining marshy areas to improve their health conditions,
 14 previously compromised by the presence of stagnant water. Thus, since ancient
 15 times, humans have colonized marshy areas by working on the body of water
 16 through increasingly complex and compelling technologies, thereby stratifying
 17 the landscape with a veritable taxonomy of forms and water structures that are
 18 functional to the regulation and control of water. Viewed from a bird's eye
 19 perspective, the landscapes of land reclamation allow us to read the patterns of
 20 aquatic infrastructure and understand the logic behind its design, revealing the
 21 different, layered phases of its successive transformations. These are territories
 22 composed of more or less continuous lines, embodied by canals and rows, and
 23 fields of various textures and sizes, crossed by the trajectories traced by
 24 agricultural and irrigation machinery. Thus, in this formal reading, it is possible
 25 to trace a profound correspondence between form and function, observing in a
 26 highly evocative way the movements and trajectories with which human beings
 27 have colonized and domesticated the territory.

28

29 **Figure 1-3. Marco Cadioli, *Abstract Trips*, 2012**

30

31

32

33 The first experiences of land reclamation in Italy date back to when the Italic
 34 peoples abandoned their nomadic lifestyle and began to settle in the territory,
 35 domesticating it and devising ways to exploit the land and bind themselves to it
 36 through cultivation. Deep but still irregular and scattered furrows characterize
 37 these early anthropic landscapes, in which the still primordial dimension of the

1 field was dictated by the strength of the animals and the distance they could
 2 cover with the plow. A redesign of the soil and a more extensive reorganization
 3 of the territory was carried out by the Etruscans, whose land reclamation works
 4 are recorded in the Lower Veneto, Emilia, Maremma, Umbria, and Campania.
 5 In this civilization, agricultural conquest and the relationship with water
 6 resources took on extremely symbolic meanings, demonstrating how attitudes
 7 toward water management reveal anthropological, cultural, and social issues. For
 8 example, the figures of the *aquilages*, priests skilled in dowsing, and the
 9 haruspices, priests responsible for demarcating and parceling out land, are
 10 loaded with crucial symbolic and mystical significance. The Romans were the
 11 ones who gave impetus to a systematic redesign of the countryside, entrusting
 12 the task of land reclamation to military personnel and civilian veterans and
 13 carefully planning the colonization of marshy lands with a twofold objective. On
 14 the one hand, there was the health and hygiene objective of limiting the spread
 15 of malaria; on the other, there was the agricultural objective of systematically
 16 cultivating the land. The design of the reclaimed countryside was thus marked
 17 by a regular and rational grid based on the *Centuria* system: square areas of 50
 18 hectares, divided into 100 *heredia*, square fields each measuring two *jugera* (1
 19 juger = 2,550 square meters). Thus, from the furrow of the plow to a more
 20 organized and systematic dimension but still lacking an overall design, we have
 21 now arrived, in Roman times, at the first radical transformation of the
 22 countryside. Now, looking at it from above, one can appreciate orderly groups
 23 of fields of uniform size and harmonious dimensions, perfectly integrated with
 24 the road network.

25

26

Figure 4-5. Marco Cadioli, Abstract Trips, 2012

27

28

29 This operation to redesign and reorganize the countryside was abandoned
 30 during the barbarian invasions. At the same time, in the Middle Ages, what had
 31 not been destroyed was left to complete neglect until the Renaissance, which
 32 marked a revival of land reclamation. However, a strong recovery in this activity
 33 did not begin until the 1920s and 1930s, when marshy lands were reclaimed and
 34 made productive. Land reclamation works started thanks to the agricultural
 35 policy promoted by the Italian fascist regime led by Benito Mussolini, enshrined
 36 in the Consolidated Law on *Integral Land Reclamation RD No. 215/1993 - New*
 37 *rules for integral land reclamation*. Through this document, land reclamation
 38 acquired global legal significance, qualifying it as a function, and introduced the

1 term 'integral,' identifying and recognizing that broad field of operation in the
 2 convergence between public interest and private expectations, both in terms of
 3 programmatic choices and, more specifically, executive ones.

4 Furthermore, land reclamation has also been given authoritative recognition
 5 by the Constitutional Court, which defined it as: "a complex process of shaping
 6 and transforming the territory to make it suitable for residential purposes and
 7 usable for a wide range of productive uses: it is therefore rightly considered an
 8 ordinary tool for land management and [...] a service that benefits the entire
 9 community, an activity that is by its nature perennial and constantly evolving...".⁶

10 A brief examination of land reclamation history reveals how the rationale
 11 for land use has evolved from focusing solely on domestic space to
 12 encompassing productive space as well. Today, the operations associated with
 13 land reclamation involve a more complex water management system that
 14 includes, in addition to optimizing irrigation processes and land consolidation,
 15 hydraulic defense and regulation, environmental protection, safeguarding
 16 inhabited areas, and managing tourist and industrial settlements.

17 In the contemporary era, in which climate change and soil sealing are
 18 significantly exacerbating specific natural vulnerabilities that already
 19 characterize the territory – such as hydraulic instability, river flooding, marine
 20 flooding, and relative subsidence – land reclamation can address some of these
 21 critical issues, intervening on two fronts. Firstly, the sustainable preservation and
 22 management of this resource through the employment of innovative irrigation
 23 and water distribution methods. Moreover, regarding flood risk reduction,
 24 creating a robust defense mechanism involves defining floodable areas.

25 The numerous attempts to compensate for extreme weather phenomena and
 26 facilitate the management of the countryside with increasingly larger and
 27 cumbersome machinery have resulted in a landscape that is increasingly
 28 uniform, marked by the regularity of the water network's channels.

29 The rows that once delimited the fields and provided shade for the farm
 30 workers are now cut down to allow the maneuvering of technological
 31 agricultural machinery, facilitating cultivation but compromising the
 32 biodiversity of flora and fauna.

33 The row, from the Latin *filum* (thread), metaphorically suggests an act of
 34 weaving and is generally used to describe a linear sequence of plants, trees, or
 35 shrubs, spaced evenly apart. Observing the reclaimed landscape from above, the
 36 discontinuous grids formed by the rows can clearly be identified. These
 37 deliberately planted rows form continuous double lines that act as windbreak
 38 strips, protecting the canals from soil erosion. Further than the technological
 39 function of protection, the rows endure also an element fundamental for the
 40 social practices that take place within the reclamation landscapes. In fact, has
 41 always accompanied life in the fields: marking time, providing wood and fodder
 42 for livestock pulling the plough, offering shelter to farmers during the hottest
 43 hours of the day, and silently, reassuringly accompanying the labor of the land.

44 In contrast to the rows, within the countryside alternates the clearings —
 45 "radure" — a term derived from *rado*, from the Latin *rarus* (sparse), which

⁶Corte Costituzionale, n. 66 SENTENZA 5 - 24 febbraio 1992.

1 typically refers to a patch of open land within a wooded area where trees grow
 2 more sparsely. In the context of reclaimed land, however, the term is not used in
 3 its literal sense but rather as a conceptual reference to the idea of void.
 4 “Emptiness” has always been a necessary condition for humans to inhabit the
 5 land — to interact with the surrounding environment and to locate themselves
 6 concerning the natural and built world.⁷

7 Thus, the agricultural landscape reclamation can be read through the
 8 analysis of the alternation between full and empty spaces, between clearings and
 9 rows. These two figures, shaped according to the body of water and its evolution,
 10 embody two effective strategies for intervening within these complex territories.
 11 In fact, according to the urgent re-modulation of water infrastructures, numerous
 12 possibilities can be created for new amphibious landscapes that can absorb
 13 threats while simultaneously strengthening their own functioning and identity.
 14
 15

16 **Re-Inhabiting the Friulian Deserts**

17 The case selected for a critical discussion on the potential for environmental
 18 enhancement and restoration of the agricultural reclamation landscape is the
 19 Lower Friuli Plain in the Friuli Venezia Giulia region of Italy. This area is
 20 bordered on three sides by bodies of water: the Tagliamento River to the west,
 21 the Isonzo River to the east, and the Marano and Grado lagoons to the south.
 22 Both its environmental and anthropogenic connotations render it fertile ground
 23 for developing strategies that involve enhancing natural restoration strategies
 24 and recovering amphibious archaeology and architectural heritage. This case
 25 study survey aims to highlight the potential of reinterpreting this territory not
 26 only as a productive machine but, above all, as an ecological infrastructure,
 27 serving as a strategic catalyst for biodiversity and creating a viable alternative to
 28 urban life.
 29

30
 31 *Water infrastructure. Re-drawing and controlling the territory through the*
 32 *design of water paths*
 33

34 As in many Italian contexts, the first attempts at land reclamation in the
 35 “Bassa Friulana” area date back to Roman times, when hydraulic works were
 36 carried out to drain the water and allow access to the port of Aquileia, a Roman
 37 colony founded in 181 BC. However, the Roman hydraulic structures were
 38 abandoned and deteriorated in the late Middle Ages due to enemy invasions of
 39 the territory. Land reclamation resumed at the end of the 1500s thanks to Antonio
 40 Savorgnan, a Friulian aristocrat, who promoted the construction of multiple
 41 canals for water drainage in the Torviscosa areas to use the land for rice
 42 cultivation. Other short-range interventions were carried out by the Venetians,

⁷The clearing has been associated with the origins of habitation since the 1st century BC, as told in the myth of Vitruvius Pollio. It is said that in a clearing in the forest, previously isolated and wild people gathered around the embers of a fire and from this social gathering emerged political institutions, human language and the construction of permanent shelters.

1 who were mainly interested in supplying Venice. In 1700, under the Austro-
2 Hungarian Empire, new attempts were made to reclaim the areas of Aquileia and
3 the surrounding land, but these were interrupted due to the high costs of the
4 operations. In 1876, a consortium was formed between the Province of Udine
5 and 24 municipalities to ensure water for domestic, civic, and irrigation use in
6 central Friuli. However, high costs and inexperience led to the project's failure.
7 With the advent of World War I, the few existing irrigation structures were
8 destroyed, and the canals were converted into trenches. The landscape we see
9 today is the result of land reclamation projects promoted by the Italian fascist
10 regime and subsequent transformations, which took almost fifty years.

11 Currently, the Friuli reclamation system is managed by the Consorzio di
12 Bonifica (Reclamation Consortium) and is based on a dense network of canals
13 that collect spring and rainwater, conveying it to pumping stations, which in turn
14 discharge it into the sea or other waterways. The proper functioning and
15 efficiency of the system depend on two variables: the amount of water entering
16 the network and the rate at which it enters.

17 The capacity of water flowing into the drainage channels depends on the
18 size of the drained area, the amount of rainfall, the presence of pumping stations,
19 and the infiltration capacity of the soil (sandy soils absorb more water than
20 clayey and impermeable soils). The system is designed to handle an inflow of
21 several tens of cubic meters of water per second at peak times.

22 The speed at which water flows into the network depends on various factors: the
23 slope of the channels (which, being mainly flat, favor a slower flow), the
24 absorption capacity of the soil, and the abundance of precipitation. Given the
25 same slope, cultivated soil offers greater resistance to the advance of water,
26 vegetated soil offers high but lower resistance, while impermeable soil offers
27 little resistance to water, which ends up in the network more quickly. The flow
28 of water into the network also depends on the cleanliness of the channels,
29 maintenance, and the capacity of the pumping systems. Under optimal
30 conditions, the water could be drained in a few hours, but during extreme events,
31 it could take days.

32 Although such actions support the system and safeguard the territory, they cause
33 significant damage from a biological and environmental perspective, disrupting
34 the ecological network of wildlife.

35
36 *The ecological infrastructure: an archipelago of disconnected amphibious*
37 *landscapes between fresh water, salt water and “deserts”*

38 This section examines the interaction between water, vegetation, and
39 anthropogenic pressures in the Bassa Pianura Friulana, with a focus on its
40 emblematic landscapes, characterized by two key aspects. The first concerns the
41 close dependence on the presence of water, both in quantitative terms (humidity,
42 groundwater, precipitation) and qualitative terms (freshwater vs. salty water).
43 The second concerns the often conflicting interaction of two opposing forces:
44 the "natural" one, which persists in the form of long strands or "wilderness" areas
45 – paradoxically confined and limited by human beings' actions – and the

1 anthropogenic force, which stratifies within and in tension with it, logics of
2 control and exploitation. The distribution and variety of plant species reflect this
3 relationship with water, which is based on two fundamental principles. The first,
4 quantitative, includes water dynamics – water availability in the soil,
5 groundwater depth, and atmospheric humidity. The second, qualitative, concerns
6 the relationship between fresh and brackish water, which meet and mix at various
7 points in this area. Water, shaping both conditions, provides a diverse range of
8 landscapes—lagoons, riparian areas, marshes, forests, and agricultural areas—
9 which are now threatened by climate change and require urgent protection
10 strategies.

11 The Marano and Grado lagoon is a unique landscape: a system of wetlands
12 located between the mouths of the Isonzo and Tagliamento rivers, 32 km long
13 and about 5 km wide. This transition area between land and sea, between fresh
14 and brackish water, is characterized by tidal flats, islands, and emerging areas.
15 Tides are the leading shaping agent of this environment. The shallow depth and
16 the inflow of fresh water from numerous rivers (Stella, Turgnano, Cormor,
17 Zellina, Corno, Aussa, and Natissa) cause water level fluctuations of up to 100
18 cm, creating valuable brackish wetlands. However, this land-water landscape,
19 crucial for its role in connecting different ecological habitats, nowadays is
20 threatened. In fact, the rise of sea level is causing progressive erosion of the
21 coast, shifting the lagoon's shoreline further inland. These changes are
22 simplifying the very lagoon's morphology: the salt marshes are shrinking, the
23 seabed (*velme*) is deepening, the secondary channels are disappearing, and the
24 main channels are silting up. These transformations are provoking a more
25 generalized displacement of the water masses, slowing down flows and, thus,
26 increasing sedimentation. These mutations are being studied by various
27 disciplines (geomorphology, sedimentology, hydrodynamic modeling) to
28 develop management and adaptation policies capable of safeguarding the natural
29 heritage and traditional anthropogenic uses.

30 The inland landscapes, fed by freshwater, also present significant
31 challenges. In fact, due to their positioning along river morphologies, the riparian
32 and marshland landscapes of the "Bassa Pianura" river system are facing critical
33 hydraulic safety challenges. Bounded between the "line of resurgence" and the
34 upper Adriatic coast, the vegetational formations follow the predominantly
35 linear course of the waterways and are distributed according to the availability
36 of water, giving shape to three main types: in soils with good water availability,
37 shrubby floodplain willow groves; in constantly waterlogged soils, floodplain
38 willow groves of white willow, southern elm-ash groves of river terraces and
39 springs; and, in soils characterized by water stagnation or a constantly moving
40 horizontal aquifer, marsh willow groves of white willow and black alder. The
41 conservation and restoration of these landscapes are essential for two intertwined
42 reasons. Firstly, riparian vegetation serves as a consistent barrier to erosion and
43 runoff from riverbanks, acting as a natural hydraulic protection device.
44 Furthermore, they can be interpreted as ecological corridors at a territorial scale,
45 permitting the movement and life of a large number of multi-species inhabitants.

1 For these reasons, restoring its continuity and introducing ecological crossing
 2 systems for wildlife is crucial.

3 Another essential ecological element is the forest, particularly the lowland
 4 forest known as *silva lulanica*. These formations feature oak-hornbeam forests,
 5 composed of a group of tree species, including white hornbeam, elm, southern
 6 ash, poplar, and alder, which are distributed across the territory according to the
 7 soil's water availability. Thus, in the vicinity of stagnant or minimally moving
 8 water, there are marsh alder groves of black alder and/or marsh ash groves of
 9 southern ash and possibly small groups of poplars, primarily black. In contrast,
 10 where the water table is low, we find oak-hornbeam forests, which can become
 11 depleted in white hornbeam, where the water table is shallower. The historical
 12 reconstruction of the original configuration of the lowland forests, as depicted
 13 by the Paiero map (1965), shows a significant extension of this landscape, whose
 14 surface area is now minimal and fragmented. Its extension peaked during the
 15 Middle Ages when the unhealthy and poorly defensible plain was still sparsely
 16 inhabited. Then, the Republic of Venice began to exploit the forests for the
 17 Arsenale (Susmel 1974, 1994) and to supply the timber needed for the expanding
 18 cities. Finally, the 20th-century land reclamation campaign disrupted this
 19 landscape, replacing a vast part of its surface with agricultural crops. Today, only
 20 a few isolated strands and fragments remain as evidence of this archaic and
 21 amphibious landscape described by Virgil and Pliny the Elder. In fact, it consists
 22 of 700 hectares dispersed within an archipelago of disconnected areas: the Bosco
 23 dei Larghi (municipalities of San Giorgio di Nogaro and Carlino), the Bosco
 24 Ronchi di Sass (municipality of Torviscosa), the Baredi woods, Bando and Coda
 25 di Manin (Muzzana del Turgnano), the Boscat (municipalities of Castions di
 26 Strada, and Terzo di Aquileia), the Bosco Sacile (municipalities of Carlino and
 27 San Giorgio di Nogaro) and the Bosco dei Leoni (Aquileia). As with riparian
 28 vegetation, the *silva lulanica* also requires a systematic plan for the ecological
 29 reconnection of fragments to increase its environmental value.

30

31 **Figure 7. Topographic map of the Lombard-Venetian provinces and of the former**
 32 **duchies, 1865**

33

34

1 **Figure 8.** Picture of the Bosco Sacile, taken from the website of Fondazione Natura

2
3 (<https://www.fondazionenatura7.it/news/alla-scoperta-del-meraviglioso-bosco-sacile-di->
4 carlino-ud/>)
5

6 In contrast to the natural mosaic's variety, the agricultural landscape—
7 shaped by technological progress—has undergone progressive simplification.
8 Originally rich in diversified crops (fodder, cereals, vineyards, and orchards),
9 today it is dominated by corn, barley, wheat, and soybeans, reflecting an
10 intensified production logic. Important strategies could also be applied in this
11 context. One notable example is given by the transitional landscape formed by
12 alder groves, dominated by species of the genus *Alnus*. This landscape has been
13 introduced by humans due to their rapid growth, the value of their timber, and
14 their ability to improve soil quality through nitrogen fixation. Today, these trees
15 are planted both along the edges and within cultivated fields, often expanding in
16 areas where agricultural activity has decreased or been abandoned. The strategy
17 of displacing temporary colonization of former agrarian lands by these
18 anthropogenic forests could serve as a means to create vegetation barriers that
19 buffer the interface between human-modified and natural environments. Indeed,
20 even young and human-planted forests contribute by providing shaded areas and
21 enhancing water cycles, thereby fostering more favorable conditions in terms of
22 humidity and temperature. This, in turn, prepares the ground for the eventual
23 colonization by more "natural" vegetation.

24 This brief overview of the landscapes of the Bassa Pianura Friulana
25 highlights a vibrant and varied system characterized by two main features: the
26 clearing, in the form of agricultural fields, and the row, located on the edges of
27 fields and along canals. These two elements, interspersed among the fragments
28 of the *silva lulanica* and the bodies of water that cross the territory, represent
29 the starting point for new interventions capable of enhancing and strengthening
30 the existing environmental system.

31
32 *The settlement system of the Friuli reclamation*
33

1 Friuli, due to its strategic geographical position, has long been a crossroads
 2 of peoples and cultures, which have shaped different approaches to managing
 3 agricultural land and, consequently, various settlement models: Roman colonies,
 4 rural villages, the system of isolated Venetian villas, and the model of *case*
 5 *coloniche* — rural houses built in the open countryside to enable agricultural
 6 laborers to manage newly cultivable land.

7 The land reclamation efforts led to the creation of new rural settlements
 8 inhabited by the families who had carried out the soil improvement works. While
 9 the reclamation projects were financed by the State, their execution was
 10 entrusted to the *scariolanti*, laborers who moved soil with wheelbarrows, raised
 11 embankments, dug canals, and filled in swamps. Typically, *scariolanti* worked
 12 in crews of 20 to 30 men, each group assigned a plot of about 50 hectares. They
 13 were paid daily, based on the cubic meters of earth moved. At the end of the
 14 project, as compensation for their work, they were granted a plot of land and a
 15 dwelling known as a *casa colonica*. This reward enabled many laborers to free
 16 themselves from the constraints of *mezzadria*, a form of sharecropping that
 17 bound them to landowners. *Mezzadria*, from the Latin meaning "one who divides
 18 in half," was an ancient agricultural contract in which the harvest was divided
 19 equally between the landowner (who did not work the land) and the sharecropper
 20 (who cultivated it but owned no land). The settlers thus cultivated the land for
 21 themselves, with the obligation to pay a percentage to the Reclamation
 22 Consortium and maintain the efficiency of the hydraulic network.

23 Although there is no bibliographic evidence to support this theory, it is
 24 believed that the *casa colonica* building typology drew upon existing rural
 25 architectural traditions in the area.

26 Specifically, three main rectangular-plan configurations can be identified:
 27

- 28 1. A model composed of three elements, two end blocks used as a stable
 29 and a hayloft, separated by the central residential volume, usually on two
 30 or three floors.
- 31 2. A row-house configuration consisting solely of residential units on three
 32 levels.
- 33 3. A hybrid model including living spaces along with the stable and hayloft.

35 Across all three typologies, certain elements recur: wooden doors and
 36 windows, internal staircases made of concrete, and floors built with hollow clay
 37 blocks supported by beams and load-bearing walls. Roof trusses were typically
 38 not exposed, as ceilings were often installed with wooden laths and straws. The
 39 gabled roofs, with minimal overhang from the external walls, were covered with
 40 alternating rows of concave and convex terracotta tiles to facilitate rainwater
 41 drainage. Where present, haylofts featured large openings filled in with exposed
 42 brick arranged in a cross pattern to allow ventilation.

43 The steady abandonment of rural landscapes in favor of small and large
 44 cities — driven by economic and work-related factors — has led to the
 45 depopulation of these structures, whose distinctive features remain clearly
 46 visible in the countryside.

1 It is, therefore, essential to devise strategies for recovering this rural
2 architectural heritage through projects of restoration and rehabilitation, oriented
3 toward a new settlement model that mediates between countryside and city and
4 meets the needs of 21st-century society.

5

6

7 **Toward New Balances: Shiftings and Reorganization of the Bassa Pianura
8 Friulana Through Clearings and Rows**

9

10 After investigating the distinctive features of the Friulian landscape — a
11 fertile ground for study and exploration — and exploring the elements already
12 present in the area, the intention is to reflect on how to systematize them, moving
13 toward targeted interventions that address specific vulnerabilities affecting the
14 region: both environmental-climatic and settlement-related. From an ecological
15 perspective, considering this is a landscape constantly shaped by the interaction
16 and separation of saltwater and freshwater, the presence of fragile ecosystems
17 with a delicate balance must not be overlooked.

18 At the same time, from a settlement standpoint, it is essential to rethink a
19 model that responds to the needs of contemporary society — to repopulate the
20 land and recover abandoned buildings.

21 The exploratory analysis of the characteristic landscapes of the area has
22 revealed a condition of significant fragility, marked on one hand by increasing
23 fragmentation due to human activities, and on the other by the threats posed by
24 climate change, which is steadily eroding its morphologies and habitats. To
25 initiate a process of environmental repair and enhancement — in line with the
26 goals outlined in the European Nature Restoration Regulation — it seems
27 valuable to consider how the two most recurring features in the aerial imagery of
28 this territory, rows and clearing, can be reinterpreted as operational tools. On one
29 hand, rows, due to their potential for temporal and spatial development (through
30 extensions or bifurcations), can support interventions aimed at environmental
31 reconnection and ecological continuity. On the other hand, glades — large open
32 spaces that host agricultural soils, sometimes abandoned, and rural settlements
33 — can be reimagined with a dual purpose: as supports for hydraulic defense,
34 through the creation of flood retention basins and floodable zones, and as starting
35 points for experimenting with new sustainable forms of dwelling.

36 Starting from a reflection on the alternation of full and empty spaces —
37 connected to water management and agricultural practices — the aim is to outline
38 possible intervention strategies to rethink the landscape of the Bassa Pianura
39 Friulana, strengthening its ecological system while proposing new settlement
40 models adapted to contemporary needs.

41

42

43

1 **Figure 9.** D’Oria, M. (2025), *The Bassa Pianura Friulana landscape: an*
 2 *alternation of clearings and rows of trees*

3
 4

5 *The body of water: water patterns and floodable clearings*

6
 7 Sustainable water management is the starting point for developing future
 8 strategies in a complex territory that has been historically shaped by its water
 9 resources. Interventions on this resource and on the infrastructure that regulates
 10 its flow can be divided into two levels, corresponding to distinct scales of action.

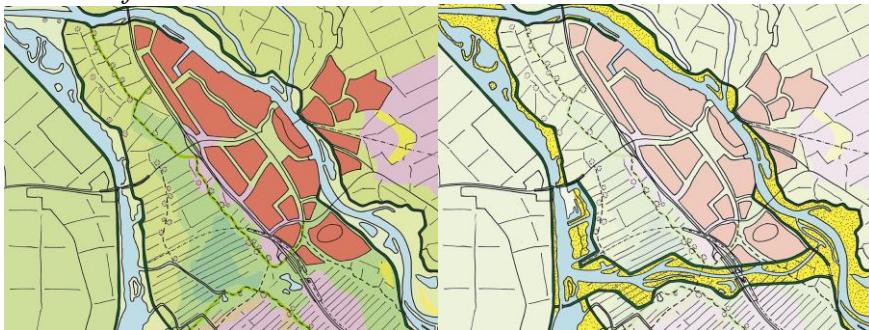
11 At a local level, operations can be identified that aim to maintain the
 12 hydraulical structures scattered throughout the territory. The goal is to improve
 13 their efficiency and make their operation more responsive to environmental and
 14 housing needs. However, these specific interventions must be part of a broader
 15 strategic vision that can embrace the entire territory in its heterogeneity,
 16 recognizing it as a single, multifaceted landscape to be treated systematically.
 17 Among the most significant local actions is the creation of storage basins to
 18 collect excess water, which is then redistributed to agricultural fields. At the
 19 same time, the introduction of high-efficiency irrigation systems—such as
 20 sprinkler irrigation or micro-irrigation—significantly reduces water consumption
 21 while improving agronomic performance. These interventions require the
 22 modernization of existing water infrastructure, accompanied by ongoing
 23 maintenance of the supply network, to minimize losses and optimize overall
 24 resource management. The adoption of more advanced technologies, in addition
 25 to guaranteeing significant water savings, helps reduce energy consumption,
 26 pesticide use, and weed proliferation, thereby promoting the conservation of
 27 native species.

28 Again, on a specific scale, it is possible to implement measures aimed at
 29 protecting fauna, particularly fish. These include the installation of systems that
 30 facilitate the ascent of fauna from the canals, the construction of fish ladders,

1 and the alternate mowing of the banks. The latter practice, which implicates
2 cutting the grass on only one side of the canal to allow vegetation to grow freely
3 on the other side for a year, promotes biodiversity and provides shelter for
4 numerous animal species, thereby contributing to their survival and
5 conservation.

6 Another level of intervention, which is decidedly more complex but
7 necessary for activating an integrated and coordinated operation, is the territorial
8 level, which rethinks the entire system by integrating water infrastructure, the
9 landscape mosaic, and human settlement.

10 A possible territorial strategy that has an even more significant impact on
11 the landscape involves conceiving the entire area of the Lower Friuli Plain as a
12 green and blue infrastructure: an ecological system capable of simultaneously
13 operating on the flood resilience and natural reparation through capitalizing the
14 benefits of working with urban green-spaces and naturalised water-flows. From
15 this perspective, the clearing is reinterpreted as a buffer water mirror —a
16 hydraulic expansion field capable of absorbing excess water, especially in rural
17 contexts —and becomes a key element in the design of a resilient landscape.


18 This vision is rooted in an approach that rejects the idea of absolute control
19 over nature, as advocated by Gilles Clément, who invites us to consider the
20 landscape as a 'planetary garden' to be accompanied rather than dominated. In
21 this sense, clearings are configured as spaces of ecological freedom, consistent
22 with the concept of tiers paysage, marginal or unproductive areas that take on
23 new centrality in a post-anthropocentric logic.

24 An emblematic example of this strategy is the Dutch program *Room for the*
25 *River*, developed by the Dutch government in 2007 in response to the severe
26 floods of the 1990s. The plan includes over 30 interventions along the country's
27 main rivers (Rhine, Meuse, Waal, and IJssel) through a process called de-
28 poldering, aimed at containing water and transforming river areas into adaptive
29 and multifunctional landscapes. Depoldering, the process of moving a dyke
30 along a river outwards so that the river has room to flood during periods of high
31 water, has successfully allowed for water to quickly discharge from the rivers
32 into the sea and ensured the safety of more than four million people. One of the
33 most significant projects is *Room for the River IJssel Delta*, developed by
34 H+N+S Landscape Architects in the historic center of the city of Kampen, where
35 the IJssel River narrows to form an urban "bottleneck."

36

37

1 **Figure 10-11.** *H+N+S Landscape Architects, Diagrams of the project's strategy.*
 2 On the left is the site before the intervention; on the right is the area after the
 3 creation of the new wetlands

4
 5
 6 **Figure 12.** *H+N+S Landscape Architects, Aerial vision of the site after the intervention*

7
 8
 9 To ensure the safe flow of water in the event of flooding, a new river branch,
 10 the Reevediep, has been designed, which crosses the IJsseldelta, flanking the city
 11 on both sides. The canal, approximately 6 kilometers long and 500 meters wide
 12 on average, gradually widens downstream, serving as a natural flood control
 13 basin. This primary hydraulic intervention has also been expressed through
 14 architectural and landscaping solutions: a summer dam acts as a threshold for
 15 incoming water; the new IJsseldijk features a bridge with sloping pillars that
 16 emphasize the direction of the flow. A small migration channel below improves
 17 water quality and ecological connectivity.

18
 19 The design of the floodable landscape is based on the original morphologies:
 20 the lower areas are home to new reed beds and wetlands, while the higher areas
 21 are used for natural grazing. The design does not impose a static form but leaves

1 room for the spontaneous evolution of the landscape: a living, responsive,
 2 performative device, as James Corner defines it. In this context, the clearing
 3 establishes itself as an interface between technology and nature, where
 4 hydraulic, ecological, and anthropogenic processes intertwine and co-evolve.

5 On average, every five years, the water of the IJssel exceeds the threshold
 6 of the canal and floods the area. Targeted interventions along the banks of the
 7 Drontermeer have included the replacement of the old Zuiderzeedijk and the
 8 creation of new reed beds, which serve as strategic habitats for birdlife, including
 9 the bittern, an endangered species. At the mouth of the Reovediep, there are also
 10 plans to build a new village, designed in line with the logic of adaptive landscape,
 11 capable of coexisting with water rather than fearing it.

12 Another key project within the *Room for the River Program* is the
 13 *Noordwaard polder*, developed by West 8 in collaboration with IPV Delft. By
 14 lowering its dike, the area is reconfigured to allow controlled inundation,
 15 functioning as a dedicated water detention zone. This intervention involved a
 16 substantial re-infrastructure of the territory: over four million cubic meters of
 17 earth were moved, 50 structures were demolished, and the construction of 30
 18 kilometers of quays and dykes, 45 kilometers of creeks, 29 alluvial fans, 33
 19 bridges, 60 hydraulic structures, and 12 pumping stations was undertaken. Two
 20 elements are particularly crucial for both the project: the bridges and the
 21 pumping stations. The bridges, favoring the community engagement with this
 22 new de-poldered landscape, serve also as dikes, resting areas for birds. In
 23 contrast, the 12 pumping stations are the most visually prominent elements in
 24 the area. They serve a range of functions, from supporting agriculture to
 25 maintaining dike integrity.

26
 27 **Figure 13-14.** West 8, *Diagrams of the project's strategy. On the left is the*
 28 *individuation of the new floodable areas; on the right is the area after the*
 29 *creation of the new wetlands and bridges*

30
 31

1 **Figure 15. West 8, Aerial vision of the site after the intervention**2
3

4 Ultimately, the Dutch experience provides a fundamental reference point for
 5 rethinking the clearings of the Bassa Friulana not as margins or waste but as
 6 active elements of a widespread ecological and hydraulic infrastructure capable
 7 of responding to climate change and relaunching a new balance between
 8 landscape, nature, and society.

9 The clearing is, thus, reinterpreted not a void but an infrastructural figure
 10 that mediates between rural and urban areas, between water management and
 11 biodiversity production. Pierre Donadieu, with his concept of hybrid territories,
 12 also emphasizes the importance of multifunctional spaces that combine
 13 agriculture, ecology, and livability systemically.

14

15 *Consolidating and repairing existing landscapes by outlining the structure of*
 16 *territorial ecological corridors*

17

18 The reinterpretation of clearings, as we have seen, embodies an effective
 19 strategy to strengthen the territory's hydraulic protection. At the same time, it
 20 favors the introduction of environmental variations—such as increased humidity
 21 or the presence of stagnant water—creating ideal conditions for protecting
 22 biodiversity. The other morphological element that diffuses within the
 23 agricultural landscape is the rows. These continuously punctuate and give
 24 rhythm to the landscape, structuring its shape and marking the boundaries of
 25 fields, as well as accompanying the layout of canals. Their configuration is based
 26 on repetition, a principle that is expressed both in space – following the planting
 27 patterns – and in time, according to the growth cycles of plant organisms, which
 28 require extended periods to take root and develop. In their repetition, the rows
 29 thus become devices capable of activating progressive transformations of the

1 landscape, anticipating future changes, as demonstrated by Michel Desvigne's
 2 projects. In these 'intermediate naturalities' – landscapes in the making – the row
 3 takes the form of an actual agent of gradual metamorphosis. These elements can
 4 be used strategically to build territorial ecological corridors. By intervening in
 5 existing discontinuities, strengthening the riparian system, and extending
 6 existing rows and hedges, a new green infrastructure can be outlined that acts as
 7 a backbone for the spread of natural elements in the agricultural landscape.

8 An emblematic example of this strategy is the PLAT studio project in
 9 Kunshan (China), launched in 2017. The *Miaojing River Central Water Corridor*,
 10 originally an aqueduct connecting the Kueilai Lake basin to the historic center,
 11 has been transformed into a central axis for the development of Kunshan West's
 12 green infrastructure. The river corridor, accompanied by dense tree planting –
 13 repetitions of the row element – serves a dual function: protecting the river from
 14 surface runoff and defining a large ecological corridor equipped for public use.

15
 16 **Figure 16-17. PLAT, Aerial views of the project**

17
 18
 19 A second significant project by PLAT is *Forest Park*, located between
 20 Shanghai and Suzhou, within Kunshan — a settlement historically marked by an
 21 intense relationship between humans and water, as revealed by a capillary
 22 network of urban canals. However, modernization and the construction of heavy
 23 infrastructure have compromised this hydraulic structure, which is now at the
 24 center of the regeneration project. In fact, the establishment of the new Kunshan
 25 West Technology Center has led to an increase in the resident population,
 26 making it urgent to renew the integration between green and blue infrastructure,
 27 urbanization, and mobility. The design strategy involved the delimitation of a
 28 1,163-hectare area of forest wetland, which was conceived as a green island in
 29 the expanding urban context, anticipating and preserving space for nature. This
 30 aligns with the precautionary principle in urban ecological planning, which
 31 advocates for the conservation of ecological space amid urban growth. The
 32 previous western access of the park was redesigned, introducing a gateway to a
 33 network of pedestrian and bicycle paths that wind through active and passive
 34 recreational spaces. Biodiversity improvement and rainwater runoff management
 35 are addressed through a selected variety of plant species. The project, developed
 36 in collaboration with hydrologists and local authorities, aims to combine
 37 accessibility, ecology, and quality of public space.

1 The rows represent an element that, due to its ability to extend across large
 2 areas of land, can facilitate the definition of a network of ecological corridors
 3 capable of connecting the currently interrupted and fragmented natural areas in
 4 the area.

5

6 **Figure 18-19. PLAT, Views of the project**

7

8

9 *Rethinking ways of living and recovering amphibious archaeology*

10

11 Intervening in reclaimed areas also involves recovering and enhancing water
 12 and vegetation networks to improve permeability, water retention, and
 13 environmental quality, thereby transforming old hydraulic artifacts into
 14 ecological spaces that are integrated into the urban and rural systems. This vision
 15 promotes a virtuous coexistence between nature and human settlement, fostering
 16 climate resilience through adaptive management that considers the variability
 17 and complexity of territorial systems.

18 The countryside that extends between the abandoned buildings can be
 19 understood as a clearing, a "void," where humans once needed to settle to
 20 cultivate the agricultural land. Today, human intervention is no longer essential
 21 for managing fields, as new technologies do not require the constant presence of
 22 agricultural workers. The settlement models that followed the reclamation works
 23 have adapted to anthropic design; however, the evolution of technologies has
 24 undermined this model, leading to the abandonment of large rural buildings in
 25 the open countryside. The large "clearings" where the colonists settled have been
 26 depopulated, leaving behind only the "void."

27 Some of the colonial homes in the area have been converted into B&Bs,
 28 restaurants, or new residences, but it is necessary to consider strategic
 29 interventions in the territory. Would it be possible to think of new ecovillage
 30 models that could be established in their vicinity?

31 In 1991, Mr. and Mrs. Robert and Diana Gilman published the research
 32 paper "Ecovillages and Sustainable Communities,"⁸ in which the term
 33 "ecovillage" was first used to describe pioneering experiments in sustainable
 34 communities. Although it was an ideal ecovillage, it was crucial to establish
 35 definitions and baselines for the success of the experiments that would emerge
 36 later. The aim is to rethink how the principles associated with the village
 37 settlement model—such as cohabitation and self-sufficiency—should be
 38 reinterpreted in today's context.

⁸Gilman D. & R., "Ecovillages and Sustainable Communities: A Report for Gaia Trust", Gaia Trust seminar in Denmark, 1991

1 A valuable reference is the "Quattro Passi" "co-neighborhood, designed by
 2 the architectural firm Tamassociati and located in Villorba, in the province of
 3 Treviso (Italy). The complex consists of eight housing units and a collective
 4 house (which, in the context of reclamation, could involve the recovery of a rural
 5 building). The total built surface is approximately 650 square meters, situated
 6 between a residential center and open countryside in an area characterized by
 7 lush vegetation and high environmental quality. For this reason, cars are parked
 8 on the perimeter of the complex, entirely pedestrian and bicycle-friendly.

9 The collective house, located near the north entrance, is a multifunctional
 10 building designed to meet various collective needs. It features a large
 11 multipurpose room connected to a fully equipped kitchen, making it suitable for
 12 hosting events such as parties, meetings, study sessions, and social gatherings
 13 among residents. The structure also features an outdoor porch for open-air
 14 activities, a DIY workshop, a guest room, and a food storage area to support
 15 collective purchasing. The surrounding outdoor space features a garden
 16 equipped with play areas for children and teenagers, as well as a shared vegetable
 17 garden, promoting social interaction and connection with nature.

18 From a technical standpoint, the collective house hosts a centralized
 19 infrastructure that supplies energy to the entire residential complex.

20 The homes are heated via a biomass thermal power plant, integrated with
 21 solar thermal systems for domestic hot water and photovoltaic panels that
 22 provide electricity to the buildings. This system is combined with a high-
 23 performance building envelope, constructed using precision-engineered clay
 24 blocks for load-bearing walls (*Porotherm Bio Plan 30-25/19.9* by Wienerberger)
 25 to optimize energy efficiency and minimize the building's environmental impact.

26
 27 **Figure 20.** Tamassociati, *Quattro Passi eco-neighborhood*

28
 29
 30 The Villorba residential complex is also notable for its adoption of the co-
 31 housing model, which places a strong emphasis on the social quality of life. At

1 the heart of this housing approach lies the principle of sharing, where a small
2 group of families chooses to live together based on a shared vision and common
3 rules, designing and building spaces tailored to their specific needs. In addition
4 to private dwellings, which are customized for each family, numerous shared
5 spaces offer a conscious response to the isolation typical of contemporary urban
6 environments. This configuration promotes livability, encourages interpersonal
7 relationships, and represents an innovative and economically sustainable model
8 of living.

9

10

11 Future Perspectives: Re-Starting from Clearings and Rows

12

13 The landscape of land reclamation embodies a context rich in meanings,
14 where nature, culture, and human settlement intertwine in a dynamic yet fragile
15 balance. The geomorphological, hydraulic, and ecological complexity of this
16 territory, combined with the historical stratification of agricultural and
17 settlement practices, offers stimulating paths to rethink land and water
18 management strategies and housing models, which are urgently needed to face
19 the current condition marked by environmental crises, climate change, and the
20 abandonment of rural areas. Therefore, the alternation of rows and clearings,
21 archetypal elements of the agricultural landscape, should be adopted not only as
22 an object of interpretation but also as a practical design tool capable of guiding
23 regeneration and adaptation interventions that seek a new balance between
24 ecological sustainability, environmental resilience, and quality of life. Rows,
25 understood as linear green infrastructures, can contribute to the environmental
26 reconnection of the territory, supporting biodiversity and forming ecological
27 corridors. Clearings, on the other hand, offer space for new functions, such as
28 water management basins and multifunctional agricultural fields, as well as
29 places to experiment with innovative and sustainable forms of living.

30 Experiences such as the 'Quattro Passi' eco-neighborhood demonstrate how
31 it is possible to imagine settlement models based on principles of cohabitation,
32 shared use of resources, and integration between buildings, nature, and
33 communities. The adoption of low-impact environmental technologies,
34 centralization of energy systems, the multifunctionality of shared spaces, and the
35 enhancement of green spaces are elements that could also be effectively applied
36 within reclaimed areas.

37 Restoring existing buildings, reactivating abandoned rural settlements, and
38 integrating new forms of settlement in harmony with the agricultural and
39 hydraulic landscape morphology is a challenge but also an opportunity to
40 imagine a new rurality. A rurality that is not a nostalgic return to the past but a
41 laboratory for a more equitable and sustainable future integrated with natural
42 cycles. In this sense, land reclamation is not only a legacy to be preserved but
43 also a project platform from which to start building a new balance between man,
44 water, and territory.

45

46

1 **References**

2

3 AA.VV., "Bassa friulana. Tre secoli di bonifica", edited by Consorzio di bonifica Bassa
4 friulana, Udine 1991.

5 Atelier Fiers Paysages. (2021). *Projet Loire & Paysages Humides*. < <https://fierspaysages.fr> >

6

7 ARPA FVG - Agenzia Regionale per la Protezione dell'Ambiente del Friuli Venezia
8 Giulia (may 2023). "Il mare e i ghiacci", in Segnali dal clima in FVG. Cambiamenti
9 - impatti - azioni, ARPA FVG.

10 Berque, A. (1995). *Le paysage et l'éthique*, Gallimard.

11 Bianco F. (1994), *Le terre del Friuli: la formazione dei paesaggi agrari in Friuli tra il*
12 *XV e il XIX secolo*, Cierre, Verona.

13 Castillo-Vinuesa, E., & Ocaña, M. (edited by)(2023). *Foodscapes – Spanish Pavilion*
14 *at the Venice Architecture Biennale*. Ministerio de Transportes, Movilidad y
15 Agenda Urbana, Spain.

16 Clément, G. (2004). *Manifeste du Tiers Paysage*, Éditions de l'Imprimeur.

17 Colombo M. (2000). *Acque, canali e bonifiche: l'organizzazione idraulica del Friuli*
18 *Venezia Giulia*, EUT, Trieste.

19 Corner, J., Bick Hirsch, A. (2014). *The Landscape Imagination: Collected Essays of*
20 *James Corner 1990-2010*, Princeton Architectural Press.

21 Cosgrove, D., & Daniels, S. (1988). *The Iconography of Landscape*. Cambridge
22 University Press.

23 Delfanti, L. (2017). *La bonifica in Friuli Venezia Giulia: storia e prospettive*, Archivio
24 di Studi Friulani.

25 Del Favero, R., Dreossi, G., Vanone, G. (1998). *La vegetazione forestale e la*
26 *selvicoltura nella Regione Friuli Venezia Giulia*, Regione Autonoma Friuli
27 Venezia Giulia, Direzione regionale delle foreste.

28 Donadieu, P. (2005). *Le paysage, un projet d'avenir*, Éditions Parenthèses.

29 European Commission. (2023). *Nature Restoration Law*. Official Journal of the European
30 Union. From< <https://ec.europa.eu/environment/nature/restoration-law> >

31 Fontana A. (2006), *Evoluzione geomorfologica della bassa pianura friulana*, Edizioni
32 del Museo Friulano di Storia Naturale di Udine, Udine.

33 Desvigne, M. (2019). *Intermediate Natures*, Birkhäuser.

34 Galluzzi, P., & Magli, S. (2010). *Il paesaggio agrario*. Laterza.

35 Gilman D. & R., (1991). *Ecovillages and Sustainable Communities: A Report for Gaia*
36 *Trust*, Gaia Trust seminar in Denmark.

37 Koolhaas, R., & AMO, (2020). *Countryside, The Future*, Taschen.

38 H+N+S Landscape Architects. (n.d.). *Room for the River IJssel Delta*. From: <<https://www.hnsland.nl/en/projects/room-river-ijssel-delta/hnsland.nl+1hnsland.nl+1>>

39

40 IBA Emscher Park (2000). *Emscher Landscape Park: Regenerating an Industrial*
41 *Region*.IBA Emscher Park official site <www.iba-emscherpark.de>

42 Ingold, T. (2000). *The Perception of the Environment: Essays on Livelihood, Dwelling*
43 *and Skill*, Routledge.

44 IPV Delft. (n.d.). Noordwaard. From: < <https://ipvdelft.com/projects/noordwaard/ipv>
45 [delft.com+1west8.com+1](https://ipvdelft.com+1west8.com+1)>

46 Landezine International Landscape Award. (n.d.). Reeediep: a new river in the
47 IJsseldelta. From: <<https://landezine-award.com/reeediep-a-new-river-in-the-ijsseldelta/west8.com+2landezine-award.com+2landezine-award.com+2>>

48

49

1 Maniacco T. (1985). *Storia del Friuli: il lavoro dei campi, la tradizione e le radici della*
 2 *cultura contadina, le rivolte, il dramma dell'emigrazione e la nascita dell'identità*
 3 *di una regione il cui flusso scorre dentro i fiumi del tempo*, Newton Compton,
 4 Roma.

5 Mezzetti, M. (2005). *Paesaggi di bonifica: trasformazioni e valorizzazioni*, FrancoAngeli.

6 Monbiot, G. (2013). *Feral: Searching for Enchantment on the Frontiers of Rewilding*,
 7 Penguin.

8 Mosbach, C., Rahm, P., & Liu, R. (2020). *Taichung Central Park*. Project
 9 documentation. From: <<http://philipperahm.com/centralpark>>

10 Orff, K. (2016). *Toward an Urban Ecology*, The Monacelli Press.

11 Oriolo, G., Del Favero, R., Siardi, E., Dreossi, G., Vanone, G., (2010). *Tipologia dei*
 12 *boschi ripariali e palustri del Friuli Venezia Giulia*, Centro Stampa Regione
 13 Autonoma Friuli Venezia Giulia.

14 Prenc F., “Catasti romani e viabilità della bassa Friulana”, in: Cultura in Friuli II.
 15 Settimana della cultura Friulana 7-17 maggio 2015, Udine, Società Filologica
 16 Friulana, 2016.

17 *The Nature Restoration Regulation*, Luxembourg, Publications Office of the European
 18 Union, 2025.

19 Turri E., (2014) , *Semiolegia del paesaggio italiano*, Marsilio Editori, Venezia.

20 Weller, R. (2017). *Atlas for the End of the World*, University of Pennsylvania.

21 West 8 (2008). *Flevoland Polders: A New Landscape for the Netherlands*. From:
 22 <<https://www.west8.com/press-releases/the-depoldering-of-noordwaard-is-complete/west8.com+3west8.com+3west8.com+3>>

23 West 8. *The Bridges and Pumping Stations of Noordwaard Win Landezine International*
 24 *Landscape Award*. From: <<https://www.west8.com/the-bridges-and-pumping-stations-of-noordwaard-win-landezine-international-landscape-award/landezine-award.com+2west8.com+2landezine-award.com+2>>

25 West 8. *Noordwaard Polder*. From: <<https://www.west8.com/projects/bridges-and-pumping-stations-of-noordwaard/west8.com+2west8.com+2west8.com+2>>

26 Van der Woud, A. (1994). *The Making of the Dutch Landscape: An Historical*
 27 *Geography of the Netherlands*, Seminar Press Limited.

28 Venuto, F. (2005). *Agricoltura e villa nelle campagne friulane. Possidenti, operatori e*
 29 *sperimentazioni colturali dall'età veneta all'annessione al regno d'Italia*, Umberto
 30 Allemandi, Torino.

31 Volpi, F., (2001). *Martin Heidegger, Essere e tempo*, Longanesi, Milano.

32 Zagari, F. (2000). *Paesaggio e progetto*, Laterza.

33 Zucchini R., “Bonifiche idrauliche e sviluppo agrario in Friuli: tra storia e cambiamenti
 34 climatici” in *Rivista di Geografia Storica*, n.11(1), 2010.

35

36

37

38

39

40

41

42

43

44

45

46

47

48