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Mapping Hydrothermal Alteration Minerals Using
Landsat 8 and ASTER Data: A Case Study from the
Red Sea Hills, NE Sudan

Hydrothermal alteration minerals provide key indicators for mineral
exploration, particularly in arid and inaccessible regions where field surveys
are constrained. This study integrates remote sensing and GIS techniques to
map alteration zones in the Red Sea Hills, NE Sudan, using Landsat 8§ OLI
and ASTER datasets. Preprocessing included FLAASH atmospheric
correction and Minimum Noise Fraction (MNF) transformation to enhance
spectral integrity. For Landsat 8 OLI, diagnostic band ratios and density
slicing were applied to highlight ferric/ferrous iron oxides and hydroxyl-bearing
clays, followed by supervised Parallelepiped classification of Sabins’ band ratios
and Crosta transformations to delineate prospective alteration zones. ASTER
VNIR-SWIR data enabled higher resolution mapping through mineral indices and
Spectral Angle Mapper (SAM) classification against USGS spectral library
endmembers. These approaches revealed three principal hydrothermal alteration
zones: phyllic (muscovite, illite), argillic (kaolinite, alunite), and propylitic
(epidote, chlorite). Results demonstrate that Landsat 8 is effective for regional-
scale reconnaissance, but ASTER's superior spectral resolution provides more
accurate and mineralogically de-tailed alteration mapping. The study
underscores the value of ASTER data for early-stage exploration in structurally
complex, mineralized terranes such as the Red Sea Hills.

Keywords: Hydrothermal alteration; Remote sensing;, Mineral exploration;
Spectral indices;, SAM classification; ASTER; Landsat 8; OLI; Arabian-Nubian
Shield

Introduction

Remote sensing data from the multispectral Landsat 8 and the semi-hyperspectral
ASTER sensors play an important role in locating mineral deposits and in reducing
the costs associated with prospecting and exploration (Crosta and Moore, 1989;
Debba et al., 2005; Carrino et al., 2015; Amer, El Mezayen and Hasanein, 2016;
Alimohammadi, Alirezaei and Kontak, 2015). Although commercial mineral deposits
are limited in their genetic types and modes of occurrence, a wide range of geological
criteria and indicators have been established to support remote sensing techniques in
identifying these deposits. These indicators, observable in spaceborne and aerial
imagery, include lithological features, rock alteration patterns, structural controls, and
geobotanical evidence (Hunt, 1979; Hunt and Ashley, 1979; Gupta, 2017).

Hydrothermal deposits typically form at shallow crustal depths, ranging from
approximately 2 to 6 km below the surface. They are usually associated with extensive
hydrothermal alteration, which is zonal in nature. This zonation progresses outward
and upward from an inner potassic zone, characterized by intense alteration and
dominated by biotite and K-feldspar, into phyllic, argillic, and finally propylitic zones
(Mars and Rowan, 2006; Berger et al., 2014). The phyllic zone commonly consists of
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sericite and pyrite-rich rocks, while the ore zone includes disseminated chalcopyrite,
molybdenite, pyrite, and other sulfide minerals. Much of the ore is concentrated near
the boundary between the potassic and phyllic zones, often forming a cylindrical ore
shell. The argillic zone is composed of rocks enriched in alunite and kaolinite, whereas
the outer propylitic zone consists of weakly altered rocks with variable mineralogy,
including chlorite, epidote, and calcite (Spatz et al., 1995; Seedorff et al., 2005; Mars
and Rowan, 2006). These successive alteration zones, rich in characteristic minerals,
provide an essential reference for mapping hydrothermal alteration using both
Landsat 8 OLI and ASTER data (Pour et al., 2018; Pour et al., 2019).

In Sudan, several studies have successfully applied multispectral data from
Landsat TM, ETM+, and OLI sensors to delineate gossans, gold-bearing zones, and
as-sociated sulfide mineralization. These studies have been guided by the distinct
spectral signatures of gossans and alteration zones related to mineral deposits
(Abdelsalam et al., 2000; El Khidir, 2006; Zeinelabdein and Albiely, 2008; El Khidir
and Babikir, 2013). The Gabet Al Maadin area was selected as the study site due to
the availability of previous information, particularly from remote sensing
investigations using Landsat 8 and ASTER data. In addition, the region holds
significant economic importance as an active and prospective mining area.

In this study, Landsat 8 OLI data, processed using various digital image
processing algorithms and validated with spectral analysis of ASTER data, were used
to delineate and map the alteration zones of hydrothermal minerals associated with
gold-bearing sulfide deposits.

Geological Setting

The Red Sea Hills of Sudan form part of the Nubian Shield, which belongs to the
Arabian-Nubian Shield (ANS) of northeastern Africa and the western Arabian
Peninsula. The ANS extends along both sides of the Red Sea, from Egypt in the
northwest, the Sinai Peninsula in the north, and Saudi Arabia in the northeast, to
Ethiopia and Yemen in the southwest and southeast, respectively (Johnson, Kattan
and Al-Saleh, 2004; Johnson et al., 2011). The ANS is recognized as one of the major
orogenic belts formed during the Neoproterozoic assembly of Greater Gondwana. It
represents an accretionary orogenic belt composed predominantly of juvenile intra-
oceanic island arcs, oceanic islands, and microcontinental fragments (Stern, 1994).
The ANS evolved between 900 and 550 Ma as a result of the closure of the
Mozambique Ocean (800-650 Ma) and the subsequent collision between East and
West Gondwana (Stern, 1994; Stern, 2002).

Kroner et al. (1987) divided the Red Sea Hills into five geologically distinct
terranes, separated from each other by ophiolite-decorated suture zones. The study
area is located within the Gebeit Terrane (Kroner et al., 1987) (Figure 1), which
comprises arc-related, low-grade volcano-sedimentary sequences and syn-tectonic
igneous complexes in the area north of the Nakasib Suture (Vail, 1985; Klemenic and
Poole, 1988). Whole rock Rb/Sr isochron ages of approximately 720 Ma have been
reported for volcanic and plutonic rocks within the terrane (Fitches et al., 1983;
Almond and Ahmed, 1987).
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Figure 1. Terranes and suture zones of the Arabian—Nubian Shield, illustrating
the predominant ages of arc magmatism within each terrane and the location of
the study area
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Materials and Methods

Image Data and Data Preprocessing

Landsat 8 OLI Data
Landsat 8 was launched on an Atlas V rocket from Vandenberg Air Force
Base, California, USA, on February 11, 2013. It is the eighth satellite in the
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Landsat program, which has been continuously operated since the 1970s as a
joint initiative between the U.S. Geological Survey (USGS) and NASA (Roy et
al., 2014; Blondes et al., 2016). Landsat 8 carries two primary instruments: the
Operational Land Imager (OLI), which acquires data in nine spectral bands
spanning the visible, near-infrared (NIR), and shortwave infrared (SWIR)
regions (including a panchromatic band and a cirrus band), and the Thermal
Infrared Sensor (TIRS), which records two longwave thermal bands (Bands 10
and 11) (Wulder et al., 2008; Roy et al., 2014; Blondes et al., 2016).

In this study, a single optical multispectral Landsat 8 OLI scene was used,
corresponding to path 172, row 45, acquired on June 5, 2025. The dataset was
downloaded from the USGS Earth Resources Observation and Science (EROS)
Center website.

ASTER Data

The Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) is a multispectral sensor with high spatial, spectral, and radiometric
resolution (Abrams, Hook and Ramachandran, 2002). ASTER data are recorded
in 14 spectral bands using three subsystems: the Visible and Near Infrared
(VNIR) subsystem, consisting of three bands with wavelengths from 0.52 to 0.86
um at 15 m spatial resolution; the Shortwave Infrared (SWIR) subsystem,
comprising six bands with wavelengths from 1.6 to 2.43 um at 30 m spatial
resolution; and the Thermal Infrared (TIR) subsystem, which includes five bands
(Bands 10-14) spanning 8.125-11.65 pum at 90 m spatial resolution. The
instrument also has along-track stereo capability, and each ASTER scene covers
an area of 60 x 60 km?, making it particularly suitable for regional mapping
(Yamaguchi et al., 1999; Abrams, 2000; Yamaguchi et al., 2001; Abrams, Hook
and Ramachandran, 2002).

For this research, one ASTER scene was used. The dataset (Scene ID:
00303032008081257) was acquired on August 12, 2008, and downloaded from
the NASA Earthdata Search portal.

Software

Image processing was performed using ENVI (Environment for Visualizing
Images) version 5.3 and ArcGIS version 10.8, installed on a high-performance
computer. These software packages provided the necessary tools for
preprocessing, spectral analysis, and spatial data integration.
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Data Preprocessing

The Landsat 8 OLI data were geometrically corrected and georeferenced by
the USGS prior to download. The data are provided in the Universal Transverse
Mercator (UTM) coordinate system, zone 36N, based on the WGS84 datum,
with all units ex-pressed in meters. Atmospheric correction was carried out using
the FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes)
model (Fraser and Green, 1987). To improve signal quality and computational
efficiency, the Minimum Noise Fraction (MNF) transformation was applied,
enabling dimensionality reduction, noise segregation, and optimization for
subsequent image analysis (Cooley et al., 2002; Shnain et al., 2024).

Similarly, the ASTER data underwent atmospheric correction using the
FLAASH technique, followed by post-processing band math to remove negative
values. To enhance comparability, the six SWIR bands (30 m resolution) were
resampled to match the three VNIR bands (15 m resolution), resulting in a nine-
band semi-hyperspectral dataset with a uniform spatial resolution of 15 m
(Shnain et al., 2024).

Landsat 8 OLI data for mineral prospecting

Landsat 8 data are considered fundamental for mineral prospecting,
especially in remote or inaccessible regions. They are extremely useful during
the systematic exploration phase of mining and are widely applied to geological
mapping and mineral exploration worldwide (Safari, Maghsoudi and Pour, 2018;
Mwaniki, Moéller and Schellmann, 2015). The OLI spectral range (0.325-2.5
um) records solar-reflected light and includes several diagnostic absorption
features of alteration minerals. These features are related to vibrational
overtones, electronic transitions, charge transfer, and conduction processes
(Sabins and Lulla, 1987).

In this study, Landsat 8 OLI data were processed using two complementary
approaches: (i) the band ratio technique, and (ii) supervised classification
applied to Sabins’ band ratios and to the Feature Oriented Principal Component
Selection (FOPCS) method. Both approaches were used to delineate
hydrothermal alteration zones (Sabins and Lulla, 1987).

The band ratio process for mineral prospecting

Band ratioing is one of the most effective techniques for detecting alteration
minerals such as ferrous and ferric iron oxides, as well as hydroxyl-bearing
minerals (Sabins and Lulla, 1987; Zhang, Pazner and Duke, 2007). Band ratio
images are generated by dividing the digital number (DN) values of one spectral
band by those of another (Sabins, 1999; Lillesand, Kiefer and Chipman, 2015).
These images enhance spectral differences between minerals, minimize the
influence of topography and solar illumination, and highlight absorption features
associated with alteration. Gray-scale ratio images display pixels with the largest
differences in reflectance between two bands. Band ratios are therefore widely
used to emphasize iron oxide and clay or hydroxyl-bearing minerals, which are
critical indicators of hydrothermal alteration (Gupta, 2017) [6]. To further
enhance interpretation, density slicing was applied, converting the continuous




LoONO UL WN -

2025-6936-AJS —4 NOV 2025

tonal variations of the ratio images into discrete intervals corresponding to
specified DN ranges (Sabins and Lulla, 1987; Zhang, Pazner and Duke, 2007).

Supervised classification

Supervised classification is another powerful remote sensing technique for
mapping mineral alteration zones. It involves the selection of sample Regions of
Interest (ROIs) and the extraction of their spectral signatures across all bands.
These signatures are used to compute statistical parameters that guide
classification algorithms. In this study, the Parallelepiped classifier was used to
assign each pixel to the most probable class, enabling accurate and detailed
thematic mapping (Richards, 2022; Lillesand, Kiefer and Chipman, 2015).
Supervised classification was applied to false-color composite (FCC) images
generated from Sabins’ band ratios and from the FOPCS method to identify
hydrothermal alteration zones.

Sabins’ band ratio FCC image

The Sabins’ FCC image was produced by assigning the band ratios 6/7, 4/6,
and 4/2 to the red, green, and blue channels, respectively (Sabins, 1999). This
combination enhances the spectral expression of alteration minerals. The 6/7
ratio highlights clay-rich zones, since clay minerals show strong reflectance in
Band 6 (SWIR1) and low reflectance in Band 7 (SWIR2), which appear reddish
in the composite. The 4/2 ratio enhances iron oxide-bearing areas, reflecting the
absorption features in the blue region (Band 2) and the high reflectance in the
red region (Band 4). These spectral properties allow iron-bearing minerals to be
clearly distinguished (Pour and Hashim, 2012a; 2012b).

The Feature Oriented Principal Component Selection (FOPCS) process

The FOPCS method, also referred to as the Crosta technique, is a targeted
principal component analysis (PCA) approach that uses only a subset of bands
selected to emphasize spectral features of interest (Crosta, 1989; Loughlin, 1991;
Crosta et al., 2003). In this study, two band combinations were analyzed: the H-
image, designed to enhance hydroxyl-bearing and clay minerals, and the F-
image, intended to highlight iron oxide signatures. The eigenvector loadings of
the resulting principal components were carefully examined to determine which
components best represent the spectral properties of alteration minerals (Zhang,
Pazner and Duke, 2007).

ASTER data for mineral prospecting

ASTER data, with their high spatial and spectral resolution, provide
valuable coverage for identifying hydrothermal alteration minerals and
lithological units (Cooley et al., 2002). Hydrothermal alteration zones such as
phyllic, argillic, and propylitic can be distinguished by their characteristic
absorption features within ASTER’s spectral range. Specifically, the phyllic
alteration zone, dominated by illite and muscovite (sericite), is characterized by
a strong AI-OH absorption feature centered at 2.20 um, which coincides with
ASTER Band 6. The argillic zone, comprising kaolinite and alunite, shows a
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secondary Al-OH absorption feature at 2.17 um, corresponding to ASTER Band
5. The propylitic zone, characterized by chlorite and epidote, exhibits absorption
features near 2.35 um, coinciding with ASTER Band 8 (Mars and Rowan, 2006;
Pour et al., 2018; Testa et al., 2018).

In the present study, ASTER VNIR and SWIR data were analyzed using
two methods: mineral indices derived from band ratios and the Spectral Angle
Mapper (SAM) classifier. Both approaches were applied to detect illite,
muscovite, kaolinite, alunite, epidote, and chlorite, which are diagnostic
minerals of phyllic, argillic, and propylitic alteration zones.

Mineral indices

Mineral indices were calculated by applying specific band ratios that target
diagnostic absorption features of selected minerals Rowan and Mars, 2003;
Rowan et al., 2003). Preprocessing of the ASTER dataset included radiometric
calibration and atmospheric correction of VNIR and SWIR bands. Lithological
indices were also derived for the TIR bands, based on the distinct spectral
properties of various minerals and rock types (Ninomiya, 2003; Van der Meer et
al., 2012).

Three indices were particularly applied in this study:

Band 7

Band 6
Band7 Band7

Band 5 % Band 8
Band 4 Band 8

Band 5 \ Band 6

Muscovite Index =

Alunite Index =

Kaolinite Index =

Spectral Angle Mapper (SAM) Classifier

The SAM technique classifies pixels based on their spectral similarity to
known reference spectra (Rajendran et al., 2013). Each pixel’s spectral vector is
compared to library spectra of known minerals, and the similarity is quantified
by measuring the angle between the vectors. Smaller angles indicate greater
similarity. This procedure produces a spectral similarity map, in which each
pixel is classified according to its closest match from the spectral library. The
SAM output includes a classified image displaying the distribution of alteration
minerals and rule images showing the angular distance (in radians) between pixel
spectra and reference spectra (Kruse et al., 1993; Rowan and Mars, 2003; Van
der Meer et al., 2012).
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Figure 2. Two-dimensional illustration of spectral vectors r (reference spectrum)
and n (pixel spectrum), showing the spectral angle (a) between them

Band 2

Band 1
Source: Modified after (Kruse et al., 1993).

Results
Landsat 8 OLI data processing for mineral prospecting

Multispectral Landsat 8 OLI data were processed to delineate and map
alteration zones associated with mineralization. These zones are defined by the
presence of key alteration minerals, including ferric and ferrous iron oxides such
as hematite, goethite, and limonite, as well as clay and hydroxyl-bearing
minerals such as kaolinite, montmorillonite, illite, and alunite. The diagnostic
spectral features of these minerals serve as important indicators for identifying
potential mineral deposits within a multispectral remote sensing framework. To
avoid misinterpretation, alluvial wadi deposits were masked during the analysis,
since they often contain weathered, altered, and fragmented rock material whose
spectral signatures can obscure or distort the signals of the targeted alteration
minerals.

Band ratio images

Selective band ratios were applied to highlight hydrothermal alteration
zones. Ratios 4/2, 6/5, and 6/7 were specifically used to identify ferrous iron
oxides, ferric iron oxides, and hydroxyl-bearing minerals, respectively. A low-
pass filter was first applied to the ratio images to reduce noise. The resulting
grayscale images were further enhanced through density slicing, which
emphasized the spectral responses associated with the target minerals. Finally,
the density-sliced results were converted into vector classes, allowing the
delineation and mapping of distinct alteration zones.
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Ferrous iron oxides and ratio

Ferrous iron oxides are characterized by high reflectance in the red portion
of the spectrum (Band 4) and low reflectance in the blue region (Band 2) of
Landsat 8 OLI data. For this reason, the band ratio 4/2 was used to delineate
areas enriched in ferrous iron oxides. In the grayscale display, ferrous-rich areas
appear in light tones, while in the density-sliced output they are highlighted in
red (Figure 3a, b).

Figure 3. Band ratio 4/2 image used for mapping ferrous oxides: (a) grayscale
display, where high values appear as bright tones, (b) density-sliced display,
v‘géﬁrq high values are highlighted in red
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Ferric iron oxides band ratio

Ferric iron oxides show diagnostic absorption in the near-infrared region
(Band 5) and high reflectance in the shortwave infrared region (Band 6).
Consequently, the band ratio 6/5 effectively delineates ferric oxide-rich areas.
These appear in light tones in the grayscale image and are displayed in red hues
in the density-sliced image (Figure 4a, b).

Figure 4. Band ratio 6/5 image used for mapping ferric oxides: (a) grayscale
display, where high values ap-pear as bright tones; (b) density-sliced display,
where high values are highlighted in red
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Hydroxyl bearing band ratio

Hydroxyl-bearing alteration minerals, including clays, micas, and
amphiboles, exhibit distinct absorption features in the SWIR-2 region (Band 7)
due to the strong Al - OH and Mg-OH vibrational absorptions. At the same time,
they show high reflectance in the SWIR-1 region (Band 6). Accordingly, the
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band ratio 6/7 was used to identify hydroxyl-bearing mineral assemblages. In the
outputs, these zones appear in bright tones in the grayscale image and in red hues
in the density-sliced version (Figure 5a, b).

Figure 5. Band ratio 6/7 image used for mapping clay minerals: (a) grayscale
display, where high values appear as bright tones, (b) density-sliced display,
] ighlighted in red
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Source: Authors own elaboration

GIS spatial analysis

The band ratio images derived from ratios 4/2, 6/5, and 6/7 revealed three
distinct types of potential alteration zones. Each was extracted as a separate class
through density slicing and subsequently converted into vector format within a
GIS environment. As shown in Figure 6a, ferrous oxide zones are represented in
blue, ferric oxide zones in green, and clay-rich (hydroxyl-bearing) zones in red.
To identify the most prospective zones of hydrothermal alteration, a spatial
intersection analysis was carried out. This procedure highlighted the areas of

11
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overlap among the three classes, rep-resenting the zones with the highest
probability of being associated with hydrothermal mineralization. These priority
targets are displayed in yellow in Figure 6b.

Figure 6. (a) Alteration zones overlaid on the satellite image, showing high
values of the band ratio images: 6/7 for clay minerals (red), 4/2 for ferrous
oxides (blue), and 6/5 for ferric oxides (green). (b) Spatial intersection analysis
of the vectorized anomalous values from the band ratios, highlighting the
overlapping alteration zones in yellow
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In Supervised classification using the Parallelepiped method was applied to
identify hydrothermal alteration zones in both Sabins’ and Crosta FCC images.
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Sabins’ band ratio FCC image

The Sabins’ FCC image was generated by assigning the band ratios 6/7, 4/6,
and 4/2 to the red, green, and blue channels, respectively (Sabins and Lulla,
1987). The 6/7 ratio highlights clay-rich minerals, which show high reflectance
in Band 6 (SWIR1) and low reflectance in Band 7 (SWIR2), resulting in reddish
hues in the composite. Areas enriched in iron oxides are emphasized by the 4/2
ratio, which exploits strong absorption in Band 2 (blue) and high reflectance in
Band 4 (red), producing blue hues. The 4/6 ratio is particularly effective for
mapping ferrous iron oxides and appears in green hues. Collectively, the Sabins’
FCC image provides a clear delineation of hydrothermal alteration zones
associated with mineralization, which are represented by crimson -orange hues

(Figure 7).

Figure 7. Sabins’ FCC image showing alteration zones associated with
mineralization, displayed in crimson-orange hues, (b) classified alteration zones
derived from the Sabins’ band ratio image, displayed in red

36°4007E

270" 36°40'0
36°14'0°E 26°27'0°E 36°400°E
i _;' . N
: : A
: >~ 5/
£ . - ’
s P T i "
T s W R
w5 .l ¥ + ;-!U
C o ¢ o
X U 4,
i - d
- 1
. sl
Cax
. - . e
=z 5 * N ) ) LS4 !é" R
g £ + Jrew )
o
¥
H
2
t
.
.lt.
&
»
& ) i“‘
WN0E 3627 0E propiee

211Z0°N

21°640°N

Sabins Alteration

Source: Authors own elaboration

13

220N

21°1°20"N



coNO U D WN K

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

2025-6936-AJS —4 NOV 2025

Feature Oriented Principal Component Selection (FOPCS)

The Feature Oriented Principal Component Selection (FOPCS), also known
as the Crosta FCC method, is designed to emphasize only those spectral bands
that contain diagnostic absorption features of iron oxides and clay-bearing
minerals. For Landsat 8§ OLI data, the bands selected for mapping clay-bearing
minerals were Bands 2, 5, 6, and 7, whereas Bands 2, 4, 5, and 7 were chosen
for detecting iron oxides.

H image (The Hydroxyl bearing and clay minerals)

The H-image is produced from principal component analysis (PCA). In
general, PC1 accounts for overall albedo of the selected bands and thus contains
minimal spectral variability, while PC2 reflects the contrast between the NIR
and SWIR regions. In this study, eigenvector analysis (Table 1) indicated that
PC3 and PC4 were the most effective components for delineating zones enriched
in clay and hydroxyl-bearing minerals.

Table 1. Eigenvector statistics of principal components used for hydroxyl-
bearing mineral mapping (H-image, FOPCS method)

Eigenvector Band 2 Band 5 Band 6 Band 7
PC1 0.168356 0.432960 0.667114 0.582374
PC2 0.463554 0.725617 -0.169314 -0.479510
PC3 0.613774 -0.151658 -0.540803 0.554810
PC 4 0.616486 -0.512859 0.483553 -0.350851

Source: Authors own elaboration

In this case, PC4 exhibited the strongest contrast between Bands 6 and 7,
with Band 6 showing a strong positive loading and Band 7 a strong negative
loading. This contrast makes PC4 particularly sensitive to hydroxyl-bearing
minerals. To enhance the mapping of these minerals, which appear as dark pixels
in the PC4 image, the image was negated (255 - DN), followed by the application
of a low-pass filter to reduce noise. The resulting processed image is referred to
as the H-image.

F image (The iron oxides rich areas)

The FOPCS transformation applied to Bands 2, 4, 5, and 7 produced the F-
image. FEigenvector analysis (Table 2) indicated that either PC2 or PC4
effectively isolates iron oxide-rich zones due to the strong contrast observed
among the visible bands, which is diagnostic of ferric iron minerals.

Table 2. Eigenvector statistics of principal components used for iron oxide
mapping (F-image, FOPCS method)

Eigenvector Band 2 Band 4 Band 5 Band 7
PC1 0.224696 0.476917 0.536085 0.659298
PC2 0.312708 0.443982 0.389090 -0.744112
PC3 0.736766 0.214905 -0.632033 0.107361
PC4 -0.555789 0.727493 -0.402189 -0.009802

Source: Authors own elaboration
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PC4 exhibited the greatest contrast in eigenvector loadings between Bands
4 and 2, making it particularly effective for mapping ferric iron oxide minerals.
PC4 was therefore selected as the F-image, and a low-pass filter was applied to
reduce noise, resulting in the final F-image.

The Crosta composite image (FCC) was then generated by assigning the
hydroxyl-sensitive image (H-image) to the red channel, the iron oxide-sensitive
image (F-image) to the blue channel, and a mathematically combined image (H-
image + F-image) to the green channel. This composite effectively highlights
alteration zones enriched in both iron oxides and clay minerals, which appear in
whitish-yellow hues (Figure 8).

Figure 8. (@) Crosta FCC image showing alteration zones associated with
mineralization, displayed in whitish - yellow hues; (b) classified alteration zones
derived from the Crosta FCC image, displayed in red
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GIS spatial analysis

The alteration classes obtained from the supervised classification of both
Sabins’ and Crosta composites were converted into vector format for integration
within a GIS environment. A spatial intersection analysis was then performed on
the vectorized alteration zones, enabling the delineation of highly probable
alteration zones. These priority zones are highlighted in red in (Figure 9).

Figure 9. (a) Classified alteration zones derived from the Sabins’ and Crosta
methods overlaid on the FCC image; (b) alteration map generated through
spatial intersection of the Sabins’ and Crosta compo-sites, with the most
probable alteration zones displayed in red
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ASTER data processing for mineral prospecting

This section presents the application of two methods to ASTER VNIR-
SWIR data for mapping hydrothermally altered minerals: (i) spectral band ratio
indices and (ii) spectral analysis using the SAM classifier. These methods target
minerals such as illite, muscovite, kaolinite, alunite, epidote, and chlorite, which
display distinctive absorption and reflectance features, allowing the
identification and delineation of hydro-thermal alteration zones, including
phyllic, argillic, and propylitic zones.

Figure 10. False color composite (FCC) of ASTER bands 4, 6, and 8 displayed
in red, green, and blue channels, respectively, for the study area
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Mineral indices

Mineral indices were derived by applying spectral band ratios targeting the
diagnostic absorption features of selected minerals. The indices used in this
study include the Muscovite Index, the Alunite Index and the Kaolinite Index.

Muscovite Mapping

The Muscovite Index highlights the absorption feature at 2.20 pm (ASTER
Band 6), corresponding to Al-OH bearing minerals that define phyllic alteration
zones. In the grayscale index image, muscovite-rich areas appear as bright tones,
concentrated mainly in the upper left part of the study area and extending along
a NNE structural trend. Additional occurrences are observed in the central lower
region and near the upper right corner, also aligned with the main NNE trend.
The thresholded, color-coded image and its vectorized results highlight these
muscovite-rich zones in red, delineating phyllic alteration zones (Figure 11a, b).

17

21M20°N



coNO U D WN K

2025-6936-AJS —4 NOV 2025

Alunite Mapping

The Alunite Index delineates the argillic alteration zones containing alunite
and kaolinite minerals, which exhibit AL-O-H absorption features at 2.20 and
2.17 um (ASTER band 5), respectively. The Alunite Index image shows brighter
tone in the greyscale image distributed in the upper left corner of the image,
extending along with a NNE trend, the rest values are observed in the central
lower part with the main NNE trend of the study area see Figure 12 a. The
thresholding high value color coded image and vectorized results appear in blue
color mapping the phyllic alteration zones Figure 12 b.

Kaolinite Mapping

The Kaolinite Index delineates zones enriched in kaolinite, which define
argillic alteration. In the grayscale display, kaolinite-rich zones appear as bright
tones, concentrated in the upper left part of the study area and extending along
the NNE structural trend. Additional occurrences are observed in the central
upper and lower regions and near the upper right corner, all aligned with the
same structural trend. In the color-coded and vectorized image, kaolinite-rich
zones are mapped in green (Figure 13a, b).

Figure 11. /1 Muscovite Index derived from ASTER data: (a) band ratio image
(Band 7 / Band 6), highlighting muscovite-rich zones, (b) vectorized output of
mapped muscovite, displayed in red
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Figure 12. Alunite Index derived from ASTER data: (a) band ratio image ((Band
7/ Band 5) % (Band 7 / Band 8)), highlighting alunite-rich zones, (b) vectorized
output of mapped alunite, displayed in blue
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Figure 13. Kaolinite Index derived from ASTER data: (a) band ratio image
((Band 4 / Band 5) % (Band 8 / Band 6)), highlighting kaolinite-rich zones; (b)
vectorized output of mapped kaolinite, displayed in green
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GIS spatial analysis

The vectorized results of the mineral indices were integrated within a GIS
environment to highlight areas with overlapping phyllic and argillic alteration
zones, which serve as indicators of potential mineralization. The analysis
revealed that the upper left corner of the study area represents the most probable
zone for mineralization, owing to the strong concentration of alteration
signatures. Additional zones of high index values were also identified in the
central lower region and near the upper right corner of the study area, all aligned
with the dominant NNE structural trend (Figure 14).

Figure 14. (a) Overlay of combined phyllic and argillic alteration zones on the
FCCimage, (b) integrated results of phyllic and argillic alteration zones derived
from mineral indices, highlighting the most probable mineralized zones
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Spectral Angle Mapper (SAM) Classifier

The Spectral Angle Mapper (SAM) algorithm compares the spectral
signature of a target object with reference spectra obtained from standardized
laboratory spectral libraries, such as those provided by the USGS. In this study,
spectra of common hydrothermal alteration minerals associated with
mineralization, specifically illite, muscovite, kaolinite, alunite, epidote, and
chlorite, were selected from the USGS spectral library (Figure 15a). These
reference spectra were subsequently resampled to match the spectral resolution
and band configuration of the ASTER sensor (Figure 15b).
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Figure 15. (@) Laboratory spectra of hydrothermal alteration minerals from the

USGS spectral library used in this study, (b) the same reference spectra resampled

to match the spectral resolution and band configuration of ASTER bands
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Rule images were generated to highlight the surface distribution of the
selected spectra. The SAM algorithm applies a default threshold value, but in
this case thresh-olds behave differently because lower values indicate a higher
probability of a pixel belonging to the target class in the SAM rule image.
Therefore, manual adjustment of the threshold was performed based on visual
interpretation. The SAM-derived illite and muscovite images delineate phyllic
alteration zones, which are represented in red. These zones are concentrated in
the upper left corner of the study area and extend into the upper and central parts
of the region (Figure 16).
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Figure 16. SAM classifier results from ASTER data: (a) combined distribution of
illite and muscovite, displayed in red; (b) combined illite and muscovite overlaid on
the ASTER FCC image, highlighting phyllic alteration zones in red hues
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For kaolinite and alunite, the classified image highlights areas of high
values corresponding to argillic alteration zones. These zones are represented in
green and are mainly concentrated in the upper left corner of the study area, with
more limited occurrences observed in the central region (Figure 17).
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Figure 17. SAM classifier results from ASTER data: (a) combined distribution
of kaolinite and alunite, dis-played in green; (b) combined kaolinite and alunite
overlaid on the ASTER FCC image, highlighting argillic alteration zones in

green hues
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The SAM classification of epidote and chlorite was used to map propylitic
alteration zones. These zones are represented in blue and are primarily
concentrated in the left-central part of the study area (Figure 18).
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Figure 18. Figure 18. SAM classifier results from ASTER data: (a) combined
distribution of epidote and chlorite, displayed in blue, (b) combined epidote and
chlorite overlaid on the ASTER FCC image, high lighting propylitic alteration
zones in blue hues
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GIS Spatial Analysis

The SAM classification successfully mapped hydrothermal alteration
minerals, delineating phyllic, argillic, and propylitic zones. The resulting images
illustrate the spatial distribution of these zones based on the diagnostic
absorption features of their respective endmember minerals. The classified
pixels were exported as shapefiles representing the extent of each alteration type.
Spatial analysis was then conducted on these shapefiles to extract and delineate
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the most probable hydrothermal alteration zones associated with mineralization

(Figure 19a).

The results of the ASTER SAM spectral analysis revealed several probable
alteration zones within the study area. These zones are primarily concentrated in
the upper left corner, aligned with a NNE structural trend, with additional
occurrences in the central region and smaller, scattered zones in the upper middle

part of the area (Figure 19b).

Figure 19. Results of SAM classification applied to ASTER VNIR-SWIR data:
(a) alteration map showing phyllic (red), argillic (green), and propylitic (blue)
zones,; (b) ASTER FCC image (bands 4, 6, and 8 in RGB) overlaid with SAM-

derived alteration zones
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Discussion

The spectral characteristics of hydrothermal alteration zones were
investigated using both Landsat 8 OLI and ASTER data. For Landsat 8§ OLI,
band ratio techniques were applied, specifically ratios 4/2, 6/5, and 6/7, to
identify ferrous iron oxides, ferric iron oxides, and clay (hydroxyl-bearing)
minerals, respectively. The resulting grayscale and density-sliced images
delineated distinct alteration zones, which were further analyzed in a GIS
framework to highlight the most probable mineralized areas. Supervised
classification was also performed using the Parallelepiped classifier, with
training samples derived from alteration zones identified in the Sabins’ FCC
band ratio composite and the Crosta (FOPCS) method. The classified outputs
from both approaches were integrated in a GIS environment to extract the most
reliable alteration zones within the study area.

For ASTER data, VNIR and SWIR mineral indices were used to detect
phyllic alteration through the mapping of muscovite, and to identify argillic
alteration zones by detecting kaolinite and alunite. In addition, the SAM
classifier was applied to match the spectral signatures of indicator minerals with
reference spectra from the USGS spectral library. This process successfully
distinguished three main hydrothermal alteration zones: phyllic (illite and
muscovite), argillic (kaolinite and alunite), and propylitic (epidote and chlorite).

Overall, the results demonstrate that ASTER data provide superior
capabilities for hydrothermal mineral prospecting compared to Landsat 8§ OLI
data. The higher spectral resolution of ASTER allows more -effective
identification of diagnostic minerals and their spatial distribution. These findings
confirm that ASTER is a valuable tool in the early stages of mineral exploration,
offering a rapid, cost-effective, and reliable approach for identifying prospective
zones associated with hydrothermal alteration minerals.

Conclusions

Remote sensing and GIS techniques applied to the Gebeit Al Maadin area,
NE Su-dan, successfully delineated hydrothermal alteration zones using a range
of digital image processing methods. These results hold significant implications
for gold exploration in the region.

Landsat 8 OLI data, with spatial resolutions of 30 m (multispectral) and 15
m (panchromatic), and broad spectral coverage across the VNIR-SWIR regions,
proved suitable for regional-scale mapping and preliminary mineral prospecting.
However, it demonstrated limitations for more detailed mapping at medium or
local scales. In contrast, ASTER data, which also provide 15 m and 30 m spatial
resolutions, offer superior spectral resolution, particularly in the SWIR region.
This enhanced spectral capability enables ASTER not only to delineate alteration
zones but also to identify specific hydrothermal alteration minerals.

Alteration zones delineated using Landsat 8 OLI data appeared broader and
more spatially dispersed than those derived from ASTER analysis. In
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comparison, the narrower spectral bands of ASTER produced more precise
results, allowing clearer discrimination of mineralogical variations.
Consequently, alteration zones mapped using ASTER data were more accurate
and more readily integrated into spatial analysis, making ASTER a more
effective tool for mineral exploration.
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Abbreviations

Abbreviations used in this paper include:

OLI Operational Land Imager

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
ANS Arabian Nubian Shield

VNIR Visible / Near Infrared

SWIR Shortwave Infrared

TIR Thermal Infrared

TIRS Thermal Infrared Sensor
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USGS
UTM
WGS
ENVI
FLAASH
MNF
FOPCS
PCA
DN
ROI
FCC
NNE
SSW
SAM
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United State Geological Survey

Universal Transverse Mercator

World Geodetic System

Environment for Visualizing Images

Fast Line of sight Atmospheric Analysis of Spectral Hypercube
Minimum Noise Fraction

Feature Oriented Principal Component Selection
Principal Component Analysis

Digital Number

Regions Of Interest

False Color Composite

North Northeast

South Southwest

Spectral Angle Mapper
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