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1 

Mapping Hydrothermal Alteration Minerals Using 1 
Landsat 8 and ASTER Data: A Case Study from the 2 

Red Sea Hills, NE Sudan 3 
 4 

Hydrothermal alteration minerals provide key indicators for mineral 5 
exploration, particularly in arid and inaccessible regions where field surveys 6 
are constrained. This study integrates remote sensing and GIS techniques to 7 
map alteration zones in the Red Sea Hills, NE Sudan, using Landsat 8 OLI 8 
and ASTER datasets. Preprocessing included FLAASH atmospheric 9 
correction and Minimum Noise Fraction (MNF) transformation to enhance 10 
spectral integrity. For Landsat 8 OLI, diagnostic band ratios and density 11 
slicing were applied to highlight ferric/ferrous iron oxides and hydroxyl-bearing 12 
clays, followed by supervised Parallelepiped classification of Sabins’ band ratios 13 
and Crosta transformations to delineate prospective alteration zones. ASTER 14 
VNIR-SWIR data enabled higher resolution mapping through mineral indices and 15 
Spectral Angle Mapper (SAM) classification against USGS spectral library 16 
endmembers. These approaches revealed three principal hydrothermal alteration 17 
zones: phyllic (muscovite, illite), argillic (kaolinite, alunite), and propylitic 18 
(epidote, chlorite). Results demonstrate that Landsat 8 is effective for regional-19 
scale reconnaissance, but ASTER’s superior spectral resolution provides more 20 
accurate and mineralogically de-tailed alteration mapping. The study 21 
underscores the value of ASTER data for early-stage exploration in structurally 22 
complex, mineralized terranes such as the Red Sea Hills. 23 
 24 
Keywords: Hydrothermal alteration; Remote sensing; Mineral exploration; 25 
Spectral indices; SAM classification; ASTER; Landsat 8; OLI; Arabian-Nubian 26 
Shield 27 

 28 
 29 
Introduction 30 

 31 
Remote sensing data from the multispectral Landsat 8 and the semi-hyperspectral 32 

ASTER sensors play an important role in locating mineral deposits and in reducing 33 
the costs associated with prospecting and exploration (Crósta and Moore, 1989; 34 
Debba et al., 2005; Carrino et al., 2015; Amer, El Mezayen and Hasanein, 2016; 35 
Alimohammadi, Alirezaei and Kontak, 2015). Although commercial mineral deposits 36 
are limited in their genetic types and modes of occurrence, a wide range of geological 37 
criteria and indicators have been established to support remote sensing techniques in 38 
identifying these deposits. These indicators, observable in spaceborne and aerial 39 
imagery, include lithological features, rock alteration patterns, structural controls, and 40 
geobotanical evidence (Hunt, 1979; Hunt and Ashley, 1979; Gupta, 2017). 41 

Hydrothermal deposits typically form at shallow crustal depths, ranging from 42 
approximately 2 to 6 km below the surface. They are usually associated with extensive 43 
hydrothermal alteration, which is zonal in nature. This zonation progresses outward 44 
and upward from an inner potassic zone, characterized by intense alteration and 45 
dominated by biotite and K-feldspar, into phyllic, argillic, and finally propylitic zones 46 
(Mars and Rowan, 2006; Berger et al., 2014). The phyllic zone commonly consists of 47 
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sericite and pyrite-rich rocks, while the ore zone includes disseminated chalcopyrite, 1 
molybdenite, pyrite, and other sulfide minerals. Much of the ore is concentrated near 2 
the boundary between the potassic and phyllic zones, often forming a cylindrical ore 3 
shell. The argillic zone is composed of rocks enriched in alunite and kaolinite, whereas 4 
the outer propylitic zone consists of weakly altered rocks with variable mineralogy, 5 
including chlorite, epidote, and calcite (Spatz et al., 1995; Seedorff et al., 2005; Mars 6 
and Rowan, 2006). These successive alteration zones, rich in characteristic minerals, 7 
provide an essential reference for mapping hydrothermal alteration using both 8 
Landsat 8 OLI and ASTER data (Pour et al., 2018; Pour et al., 2019). 9 

In Sudan, several studies have successfully applied multispectral data from 10 
Landsat TM, ETM+, and OLI sensors to delineate gossans, gold-bearing zones, and 11 
as-sociated sulfide mineralization. These studies have been guided by the distinct 12 
spectral signatures of gossans and alteration zones related to mineral deposits 13 
(Abdelsalam et al., 2000; El Khidir, 2006; Zeinelabdein and Albiely, 2008; El Khidir 14 
and Babikir, 2013). The Gabet Al Maadin area was selected as the study site due to 15 
the availability of previous information, particularly from remote sensing 16 
investigations using Landsat 8 and ASTER data. In addition, the region holds 17 
significant economic importance as an active and prospective mining area. 18 

In this study, Landsat 8 OLI data, processed using various digital image 19 
processing algorithms and validated with spectral analysis of ASTER data, were used 20 
to delineate and map the alteration zones of hydrothermal minerals associated with 21 
gold-bearing sulfide deposits. 22 

 23 
 24 

Geological Setting 25 
 26 

The Red Sea Hills of Sudan form part of the Nubian Shield, which belongs to the 27 
Arabian-Nubian Shield (ANS) of northeastern Africa and the western Arabian 28 
Peninsula. The ANS extends along both sides of the Red Sea, from Egypt in the 29 
northwest, the Sinai Peninsula in the north, and Saudi Arabia in the northeast, to 30 
Ethiopia and Yemen in the southwest and southeast, respectively (Johnson, Kattan 31 
and Al-Saleh, 2004; Johnson et al., 2011). The ANS is recognized as one of the major 32 
orogenic belts formed during the Neoproterozoic assembly of Greater Gondwana. It 33 
represents an accretionary orogenic belt composed predominantly of juvenile intra-34 
oceanic island arcs, oceanic islands, and microcontinental fragments (Stern, 1994). 35 
The ANS evolved between 900 and 550 Ma as a result of the closure of the 36 
Mozambique Ocean (800-650 Ma) and the subsequent collision between East and 37 
West Gondwana (Stern, 1994; Stern, 2002). 38 

Kröner et al. (1987) divided the Red Sea Hills into five geologically distinct 39 
terranes, separated from each other by ophiolite-decorated suture zones. The study 40 
area is located within the Gebeit Terrane (Kröner et al., 1987) (Figure 1), which 41 
comprises arc-related, low-grade volcano-sedimentary sequences and syn-tectonic 42 
igneous complexes in the area north of the Nakasib Suture (Vail, 1985; Klemenic and 43 
Poole, 1988). Whole rock Rb/Sr isochron ages of approximately 720 Ma have been 44 
reported for volcanic and plutonic rocks within the terrane (Fitches et al., 1983; 45 
Almond and Ahmed, 1987). 46 
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Figure 1. Terranes and suture zones of the Arabian–Nubian Shield, illustrating 1 
the predominant ages of arc magmatism within each terrane and the location of 2 
the study area 3 

 4 
Source: Modified after (Abdelsalam, 2010) 5 
Materials and Methods 6 
 7 
Image Data and Data Preprocessing 8 
 9 
Landsat 8 OLI Data 10 

Landsat 8 was launched on an Atlas V rocket from Vandenberg Air Force 11 
Base, California, USA, on February 11, 2013. It is the eighth satellite in the 12 
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Landsat program, which has been continuously operated since the 1970s as a 1 
joint initiative between the U.S. Geological Survey (USGS) and NASA (Roy et 2 
al., 2014; Blondes et al., 2016). Landsat 8 carries two primary instruments: the 3 
Operational Land Imager (OLI), which acquires data in nine spectral bands 4 
spanning the visible, near-infrared (NIR), and shortwave infrared (SWIR) 5 
regions (including a panchromatic band and a cirrus band), and the Thermal 6 
Infrared Sensor (TIRS), which records two longwave thermal bands (Bands 10 7 
and 11) (Wulder et al., 2008; Roy et al., 2014; Blondes et al., 2016). 8 

In this study, a single optical multispectral Landsat 8 OLI scene was used, 9 
corresponding to path 172, row 45, acquired on June 5, 2025. The dataset was 10 
downloaded from the USGS Earth Resources Observation and Science (EROS) 11 
Center website. 12 
 13 
ASTER Data 14 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer 15 
(ASTER) is a multispectral sensor with high spatial, spectral, and radiometric 16 
resolution (Abrams, Hook and Ramachandran, 2002). ASTER data are recorded 17 
in 14 spectral bands using three subsystems: the Visible and Near Infrared 18 
(VNIR) subsystem, consisting of three bands with wavelengths from 0.52 to 0.86 19 
µm at 15 m spatial resolution; the Shortwave Infrared (SWIR) subsystem, 20 
comprising six bands with wavelengths from 1.6 to 2.43 µm at 30 m spatial 21 
resolution; and the Thermal Infrared (TIR) subsystem, which includes five bands 22 
(Bands 10-14) spanning 8.125-11.65 µm at 90 m spatial resolution. The 23 
instrument also has along-track stereo capability, and each ASTER scene covers 24 
an area of 60 × 60 km², making it particularly suitable for regional mapping 25 
(Yamaguchi et al., 1999; Abrams, 2000; Yamaguchi et al., 2001; Abrams, Hook 26 
and Ramachandran, 2002). 27 

For this research, one ASTER scene was used. The dataset (Scene ID: 28 
00303032008081257) was acquired on August 12, 2008, and downloaded from 29 
the NASA Earthdata Search portal. 30 
 31 
Software 32 

Image processing was performed using ENVI (Environment for Visualizing 33 
Images) version 5.3 and ArcGIS version 10.8, installed on a high-performance 34 
computer. These software packages provided the necessary tools for 35 
preprocessing, spectral analysis, and spatial data integration. 36 
 37 
  38 
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Data Preprocessing 1 
The Landsat 8 OLI data were geometrically corrected and georeferenced by 2 

the USGS prior to download. The data are provided in the Universal Transverse 3 
Mercator (UTM) coordinate system, zone 36N, based on the WGS84 datum, 4 
with all units ex-pressed in meters. Atmospheric correction was carried out using 5 
the FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) 6 
model (Fraser and Green, 1987). To improve signal quality and computational 7 
efficiency, the Minimum Noise Fraction (MNF) transformation was applied, 8 
enabling dimensionality reduction, noise segregation, and optimization for 9 
subsequent image analysis (Cooley et al., 2002; Shnain et al., 2024). 10 

Similarly, the ASTER data underwent atmospheric correction using the 11 
FLAASH technique, followed by post-processing band math to remove negative 12 
values. To enhance comparability, the six SWIR bands (30 m resolution) were 13 
resampled to match the three VNIR bands (15 m resolution), resulting in a nine-14 
band semi-hyperspectral dataset with a uniform spatial resolution of 15 m 15 
(Shnain et al., 2024). 16 
 17 
Landsat 8 OLI data for mineral prospecting 18 

Landsat 8 data are considered fundamental for mineral prospecting, 19 
especially in remote or inaccessible regions. They are extremely useful during 20 
the systematic exploration phase of mining and are widely applied to geological 21 
mapping and mineral exploration worldwide (Safari, Maghsoudi and Pour, 2018; 22 
Mwaniki, Möller and Schellmann, 2015). The OLI spectral range (0.325–2.5 23 
μm) records solar-reflected light and includes several diagnostic absorption 24 
features of alteration minerals. These features are related to vibrational 25 
overtones, electronic transitions, charge transfer, and conduction processes 26 
(Sabins and Lulla, 1987). 27 

In this study, Landsat 8 OLI data were processed using two complementary 28 
approaches: (i) the band ratio technique, and (ii) supervised classification 29 
applied to Sabins’ band ratios and to the Feature Oriented Principal Component 30 
Selection (FOPCS) method. Both approaches were used to delineate 31 
hydrothermal alteration zones (Sabins and Lulla, 1987). 32 

 33 
The band ratio process for mineral prospecting 34 

Band ratioing is one of the most effective techniques for detecting alteration 35 
minerals such as ferrous and ferric iron oxides, as well as hydroxyl-bearing 36 
minerals (Sabins and Lulla, 1987; Zhang, Pazner and Duke, 2007). Band ratio 37 
images are generated by dividing the digital number (DN) values of one spectral 38 
band by those of another (Sabins, 1999; Lillesand, Kiefer and Chipman, 2015). 39 
These images enhance spectral differences between minerals, minimize the 40 
influence of topography and solar illumination, and highlight absorption features 41 
associated with alteration. Gray-scale ratio images display pixels with the largest 42 
differences in reflectance between two bands. Band ratios are therefore widely 43 
used to emphasize iron oxide and clay or hydroxyl-bearing minerals, which are 44 
critical indicators of hydrothermal alteration (Gupta, 2017) [6]. To further 45 
enhance interpretation, density slicing was applied, converting the continuous 46 
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tonal variations of the ratio images into discrete intervals corresponding to 1 
specified DN ranges (Sabins and Lulla, 1987; Zhang, Pazner and Duke, 2007). 2 

 3 
Supervised classification 4 

Supervised classification is another powerful remote sensing technique for 5 
mapping mineral alteration zones. It involves the selection of sample Regions of 6 
Interest (ROIs) and the extraction of their spectral signatures across all bands. 7 
These signatures are used to compute statistical parameters that guide 8 
classification algorithms. In this study, the Parallelepiped classifier was used to 9 
assign each pixel to the most probable class, enabling accurate and detailed 10 
thematic mapping (Richards, 2022; Lillesand, Kiefer and Chipman, 2015). 11 
Supervised classification was applied to false-color composite (FCC) images 12 
generated from Sabins’ band ratios and from the FOPCS method to identify 13 
hydrothermal alteration zones. 14 
 15 
Sabins’ band ratio FCC image 16 

The Sabins’ FCC image was produced by assigning the band ratios 6/7, 4/6, 17 
and 4/2 to the red, green, and blue channels, respectively (Sabins, 1999). This 18 
combination enhances the spectral expression of alteration minerals. The 6/7 19 
ratio highlights clay-rich zones, since clay minerals show strong reflectance in 20 
Band 6 (SWIR1) and low reflectance in Band 7 (SWIR2), which appear reddish 21 
in the composite. The 4/2 ratio enhances iron oxide-bearing areas, reflecting the 22 
absorption features in the blue region (Band 2) and the high reflectance in the 23 
red region (Band 4). These spectral properties allow iron-bearing minerals to be 24 
clearly distinguished (Pour and Hashim, 2012a; 2012b). 25 
 26 
The Feature Oriented Principal Component Selection (FOPCS) process 27 

The FOPCS method, also referred to as the Crosta technique, is a targeted 28 
principal component analysis (PCA) approach that uses only a subset of bands 29 
selected to emphasize spectral features of interest (Crósta, 1989; Loughlin, 1991; 30 
Crósta et al., 2003). In this study, two band combinations were analyzed: the H-31 
image, designed to enhance hydroxyl-bearing and clay minerals, and the F-32 
image, intended to highlight iron oxide signatures. The eigenvector loadings of 33 
the resulting principal components were carefully examined to determine which 34 
components best represent the spectral properties of alteration minerals (Zhang, 35 
Pazner and Duke, 2007). 36 
 37 
ASTER data for mineral prospecting 38 

ASTER data, with their high spatial and spectral resolution, provide 39 
valuable coverage for identifying hydrothermal alteration minerals and 40 
lithological units (Cooley et al., 2002). Hydrothermal alteration zones such as 41 
phyllic, argillic, and propylitic can be distinguished by their characteristic 42 
absorption features within ASTER’s spectral range. Specifically, the phyllic 43 
alteration zone, dominated by illite and muscovite (sericite), is characterized by 44 
a strong Al-OH absorption feature centered at 2.20 µm, which coincides with 45 
ASTER Band 6. The argillic zone, comprising kaolinite and alunite, shows a 46 
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secondary Al-OH absorption feature at 2.17 µm, corresponding to ASTER Band 1 
5. The propylitic zone, characterized by chlorite and epidote, exhibits absorption 2 
features near 2.35 µm, coinciding with ASTER Band 8 (Mars and Rowan, 2006; 3 
Pour et al., 2018; Testa et al., 2018). 4 

In the present study, ASTER VNIR and SWIR data were analyzed using 5 
two methods: mineral indices derived from band ratios and the Spectral Angle 6 
Mapper (SAM) classifier. Both approaches were applied to detect illite, 7 
muscovite, kaolinite, alunite, epidote, and chlorite, which are diagnostic 8 
minerals of phyllic, argillic, and propylitic alteration zones. 9 

 10 
Mineral indices 11 

Mineral indices were calculated by applying specific band ratios that target 12 
diagnostic absorption features of selected minerals Rowan and Mars, 2003; 13 
Rowan et al., 2003). Preprocessing of the ASTER dataset included radiometric 14 
calibration and atmospheric correction of VNIR and SWIR bands. Lithological 15 
indices were also derived for the TIR bands, based on the distinct spectral 16 
properties of various minerals and rock types (Ninomiya, 2003; Van der Meer et 17 
al., 2012). 18 

Three indices were particularly applied in this study: 19 
 20 

Muscovite Index =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 7
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 6

  21 

Alunite Index =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 7
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 5

×
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 7
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 8

  22 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 4
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 5

×
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 8
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 6

 23 

 24 
Spectral Angle Mapper (SAM) Classifier 25 

The SAM technique classifies pixels based on their spectral similarity to 26 
known reference spectra (Rajendran et al., 2013). Each pixel’s spectral vector is 27 
compared to library spectra of known minerals, and the similarity is quantified 28 
by measuring the angle between the vectors. Smaller angles indicate greater 29 
similarity. This procedure produces a spectral similarity map, in which each 30 
pixel is classified according to its closest match from the spectral library. The 31 
SAM output includes a classified image displaying the distribution of alteration 32 
minerals and rule images showing the angular distance (in radians) between pixel 33 
spectra and reference spectra (Kruse et al., 1993; Rowan and Mars, 2003; Van 34 
der Meer et al., 2012). 35 
 36 
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Figure 2. Two-dimensional illustration of spectral vectors r (reference spectrum) 1 
and n (pixel spectrum), showing the spectral angle (a) between them 2 

 3 
Source: Modified after (Kruse et al., 1993). 4 
 5 
 6 
Results 7 
 8 
Landsat 8 OLI data processing for mineral prospecting 9 

 10 
Multispectral Landsat 8 OLI data were processed to delineate and map 11 

alteration zones associated with mineralization. These zones are defined by the 12 
presence of key alteration minerals, including ferric and ferrous iron oxides such 13 
as hematite, goethite, and limonite, as well as clay and hydroxyl-bearing 14 
minerals such as kaolinite, montmorillonite, illite, and alunite. The diagnostic 15 
spectral features of these minerals serve as important indicators for identifying 16 
potential mineral deposits within a multispectral remote sensing framework. To 17 
avoid misinterpretation, alluvial wadi deposits were masked during the analysis, 18 
since they often contain weathered, altered, and fragmented rock material whose 19 
spectral signatures can obscure or distort the signals of the targeted alteration 20 
minerals. 21 

 22 
Band ratio images 23 

Selective band ratios were applied to highlight hydrothermal alteration 24 
zones. Ratios 4/2, 6/5, and 6/7 were specifically used to identify ferrous iron 25 
oxides, ferric iron oxides, and hydroxyl-bearing minerals, respectively. A low-26 
pass filter was first applied to the ratio images to reduce noise. The resulting 27 
grayscale images were further enhanced through density slicing, which 28 
emphasized the spectral responses associated with the target minerals. Finally, 29 
the density-sliced results were converted into vector classes, allowing the 30 
delineation and mapping of distinct alteration zones. 31 
  32 
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Ferrous iron oxides and ratio 1 
Ferrous iron oxides are characterized by high reflectance in the red portion 2 

of the spectrum (Band 4) and low reflectance in the blue region (Band 2) of 3 
Landsat 8 OLI data. For this reason, the band ratio 4/2 was used to delineate 4 
areas enriched in ferrous iron oxides. In the grayscale display, ferrous-rich areas 5 
appear in light tones, while in the density-sliced output they are highlighted in 6 
red (Figure 3a, b). 7 
 8 
Figure 3. Band ratio 4/2 image used for mapping ferrous oxides: (a) grayscale 9 
display, where high values appear as bright tones; (b) density-sliced display, 10 
where high values are highlighted in red 11 

 12 

 13 
Source: Authors own elaboration 14 
 15 
  16 
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Ferric iron oxides band ratio 1 
Ferric iron oxides show diagnostic absorption in the near-infrared region 2 

(Band 5) and high reflectance in the shortwave infrared region (Band 6). 3 
Consequently, the band ratio 6/5 effectively delineates ferric oxide-rich areas. 4 
These appear in light tones in the grayscale image and are displayed in red hues 5 
in the density-sliced image (Figure 4a, b). 6 
 7 
Figure 4. Band ratio 6/5 image used for mapping ferric oxides: (a) grayscale 8 
display, where high values ap-pear as bright tones; (b) density-sliced display, 9 
where high values are highlighted in red 10 

 11 

 12 
Source: Authors own elaboration 13 
 14 
Hydroxyl bearing band ratio 15 

Hydroxyl-bearing alteration minerals, including clays, micas, and 16 
amphiboles, exhibit distinct absorption features in the SWIR-2 region (Band 7) 17 
due to the strong Al - OH and Mg-OH vibrational absorptions. At the same time, 18 
they show high reflectance in the SWIR-1 region (Band 6). Accordingly, the 19 
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band ratio 6/7 was used to identify hydroxyl-bearing mineral assemblages. In the 1 
outputs, these zones appear in bright tones in the grayscale image and in red hues 2 
in the density-sliced version (Figure 5a, b). 3 

 4 
Figure 5. Band ratio 6/7 image used for mapping clay minerals: (a) grayscale 5 
display, where high values appear as bright tones; (b) density-sliced display, 6 
where high values are highlighted in red 7 

 8 

 9 
Source: Authors own elaboration 10 
 11 
GIS spatial analysis 12 

The band ratio images derived from ratios 4/2, 6/5, and 6/7 revealed three 13 
distinct types of potential alteration zones. Each was extracted as a separate class 14 
through density slicing and subsequently converted into vector format within a 15 
GIS environment. As shown in Figure 6a, ferrous oxide zones are represented in 16 
blue, ferric oxide zones in green, and clay-rich (hydroxyl-bearing) zones in red. 17 
To identify the most prospective zones of hydrothermal alteration, a spatial 18 
intersection analysis was carried out. This procedure highlighted the areas of 19 
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overlap among the three classes, rep-resenting the zones with the highest 1 
probability of being associated with hydrothermal mineralization. These priority 2 
targets are displayed in yellow in Figure 6b. 3 

 4 
Figure 6. (a) Alteration zones overlaid on the satellite image, showing high 5 
values of the band ratio images: 6/7 for clay minerals (red), 4/2 for ferrous 6 
oxides (blue), and 6/5 for ferric oxides (green). (b) Spatial intersection analysis 7 
of the vectorized anomalous values from the band ratios, highlighting the 8 
overlapping alteration zones in yellow 9 

 10 

 11 
Source: Authors own elaboration 12 
 13 
Supervised classification 14 

 15 
In Supervised classification using the Parallelepiped method was applied to 16 

identify hydrothermal alteration zones in both Sabins’ and Crosta FCC images. 17 
  18 
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Sabins’ band ratio FCC image 1 
The Sabins’ FCC image was generated by assigning the band ratios 6/7, 4/6, 2 

and 4/2 to the red, green, and blue channels, respectively (Sabins and Lulla, 3 
1987). The 6/7 ratio highlights clay-rich minerals, which show high reflectance 4 
in Band 6 (SWIR1) and low reflectance in Band 7 (SWIR2), resulting in reddish 5 
hues in the composite. Areas enriched in iron oxides are emphasized by the 4/2 6 
ratio, which exploits strong absorption in Band 2 (blue) and high reflectance in 7 
Band 4 (red), producing blue hues. The 4/6 ratio is particularly effective for 8 
mapping ferrous iron oxides and appears in green hues. Collectively, the Sabins’ 9 
FCC image provides a clear delineation of hydrothermal alteration zones 10 
associated with mineralization, which are represented by crimson -orange hues 11 
(Figure 7). 12 

 13 
Figure 7. Sabins’ FCC image showing alteration zones associated with 14 
mineralization, displayed in crimson-orange hues; (b) classified alteration zones 15 
derived from the Sabins’ band ratio image, displayed in red 16 

 17 

 18 
Source: Authors own elaboration 19 
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Feature Oriented Principal Component Selection (FOPCS) 1 
The Feature Oriented Principal Component Selection (FOPCS), also known 2 

as the Crosta FCC method, is designed to emphasize only those spectral bands 3 
that contain diagnostic absorption features of iron oxides and clay-bearing 4 
minerals. For Landsat 8 OLI data, the bands selected for mapping clay-bearing 5 
minerals were Bands 2, 5, 6, and 7, whereas Bands 2, 4, 5, and 7 were chosen 6 
for detecting iron oxides. 7 
 8 
H image (The Hydroxyl bearing and clay minerals) 9 

The H-image is produced from principal component analysis (PCA). In 10 
general, PC1 accounts for overall albedo of the selected bands and thus contains 11 
minimal spectral variability, while PC2 reflects the contrast between the NIR 12 
and SWIR regions. In this study, eigenvector analysis (Table 1) indicated that 13 
PC3 and PC4 were the most effective components for delineating zones enriched 14 
in clay and hydroxyl-bearing minerals. 15 
 16 
Table 1. Eigenvector statistics of principal components used for hydroxyl-17 
bearing mineral mapping (H-image, FOPCS method) 18 

Eigenvector Band 2 Band 5 Band 6 Band 7 
PC 1 0.168356 0.432960 0.667114 0.582374 
PC 2 0.463554 0.725617 -0.169314 -0.479510 
PC 3 0.613774 -0.151658 -0.540803 0.554810 
PC 4 0.616486 -0.512859 0.483553 -0.350851 

Source: Authors own elaboration 19 
 20 

In this case, PC4 exhibited the strongest contrast between Bands 6 and 7, 21 
with Band 6 showing a strong positive loading and Band 7 a strong negative 22 
loading. This contrast makes PC4 particularly sensitive to hydroxyl-bearing 23 
minerals. To enhance the mapping of these minerals, which appear as dark pixels 24 
in the PC4 image, the image was negated (255 - DN), followed by the application 25 
of a low-pass filter to reduce noise. The resulting processed image is referred to 26 
as the H-image. 27 
 28 
F image (The iron oxides rich areas) 29 

The FOPCS transformation applied to Bands 2, 4, 5, and 7 produced the F-30 
image. Eigenvector analysis (Table 2) indicated that either PC2 or PC4 31 
effectively isolates iron oxide-rich zones due to the strong contrast observed 32 
among the visible bands, which is diagnostic of ferric iron minerals. 33 
 34 
Table 2. Eigenvector statistics of principal components used for iron oxide 35 
mapping (F-image, FOPCS method) 36 

Eigenvector Band 2 Band 4 Band 5 Band 7 
PC 1 0.224696 0.476917 0.536085 0.659298 
PC 2 0.312708 0.443982 0.389090 -0.744112 
PC 3 0.736766 0.214905 -0.632033 0.107361 
PC 4 -0.555789 0.727493 -0.402189 -0.009802 

Source: Authors own elaboration 37 
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 1 
PC4 exhibited the greatest contrast in eigenvector loadings between Bands 2 

4 and 2, making it particularly effective for mapping ferric iron oxide minerals. 3 
PC4 was therefore selected as the F-image, and a low-pass filter was applied to 4 
reduce noise, resulting in the final F-image. 5 

The Crosta composite image (FCC) was then generated by assigning the 6 
hydroxyl-sensitive image (H-image) to the red channel, the iron oxide-sensitive 7 
image (F-image) to the blue channel, and a mathematically combined image (H-8 
image + F-image) to the green channel. This composite effectively highlights 9 
alteration zones enriched in both iron oxides and clay minerals, which appear in 10 
whitish-yellow hues (Figure 8). 11 
 12 
Figure 8. (a) Crosta FCC image showing alteration zones associated with 13 
mineralization, displayed in whitish - yellow hues; (b) classified alteration zones 14 
derived from the Crosta FCC image, displayed in red 15 

 16 

 17 
Source: Authors own elaboration 18 

19 
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GIS spatial analysis 1 
The alteration classes obtained from the supervised classification of both 2 

Sabins’ and Crosta composites were converted into vector format for integration 3 
within a GIS environment. A spatial intersection analysis was then performed on 4 
the vectorized alteration zones, enabling the delineation of highly probable 5 
alteration zones. These priority zones are highlighted in red in (Figure 9). 6 
 7 
Figure 9. (a) Classified alteration zones derived from the Sabins’ and Crosta 8 
methods overlaid on the FCC image; (b) alteration map generated through 9 
spatial intersection of the Sabins’ and Crosta compo-sites, with the most 10 
probable alteration zones displayed in red 11 

 12 

 13 
Source: Authors own elaboration 14 
 15 
  16 
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ASTER data processing for mineral prospecting 1 
 2 

This section presents the application of two methods to ASTER VNIR-3 
SWIR data for mapping hydrothermally altered minerals: (i) spectral band ratio 4 
indices and (ii) spectral analysis using the SAM classifier. These methods target 5 
minerals such as illite, muscovite, kaolinite, alunite, epidote, and chlorite, which 6 
display distinctive absorption and reflectance features, allowing the 7 
identification and delineation of hydro-thermal alteration zones, including 8 
phyllic, argillic, and propylitic zones. 9 

 10 
Figure 10. False color composite (FCC) of ASTER bands 4, 6, and 8 displayed 11 
in red, green, and blue channels, respectively, for the study area 12 

 13 
Source: Authors own elaboration 14 
 15 
Mineral indices 16 

 17 
Mineral indices were derived by applying spectral band ratios targeting the 18 

diagnostic absorption features of selected minerals. The indices used in this 19 
study include the Muscovite Index, the Alunite Index and the Kaolinite Index. 20 
 21 
Muscovite Mapping 22 

The Muscovite Index highlights the absorption feature at 2.20 μm (ASTER 23 
Band 6), corresponding to Al-OH bearing minerals that define phyllic alteration 24 
zones. In the grayscale index image, muscovite-rich areas appear as bright tones, 25 
concentrated mainly in the upper left part of the study area and extending along 26 
a NNE structural trend. Additional occurrences are observed in the central lower 27 
region and near the upper right corner, also aligned with the main NNE trend. 28 
The thresholded, color-coded image and its vectorized results highlight these 29 
muscovite-rich zones in red, delineating phyllic alteration zones (Figure 11a, b). 30 
  31 
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Alunite Mapping 1 
The Alunite Index delineates the argillic alteration zones containing alunite 2 

and kaolinite minerals, which exhibit AL-O-H absorption features at 2.20 and 3 
2.17 μm (ASTER band 5), respectively. The Alunite Index image shows brighter 4 
tone in the greyscale image distributed in the upper left corner of the image, 5 
extending along with a NNE trend, the rest values are observed in the central 6 
lower part with the main NNE trend of the study area see Figure 12 a. The 7 
thresholding high value color coded image and vectorized results appear in blue 8 
color mapping the phyllic alteration zones Figure 12 b. 9 

 10 
Kaolinite Mapping 11 

The Kaolinite Index delineates zones enriched in kaolinite, which define 12 
argillic alteration. In the grayscale display, kaolinite-rich zones appear as bright 13 
tones, concentrated in the upper left part of the study area and extending along 14 
the NNE structural trend. Additional occurrences are observed in the central 15 
upper and lower regions and near the upper right corner, all aligned with the 16 
same structural trend. In the color-coded and vectorized image, kaolinite-rich 17 
zones are mapped in green (Figure 13a, b). 18 
 19 
Figure 11. 11 Muscovite Index derived from ASTER data: (a) band ratio image 20 
(Band 7 / Band 6), highlighting muscovite-rich zones; (b) vectorized output of 21 
mapped muscovite, displayed in red 22 

 23 
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 1 
Source: Authors own elaboration 2 
 3 
Figure 12. Alunite Index derived from ASTER data: (a) band ratio image ((Band 4 
7 / Band 5) × (Band 7 / Band 8)), highlighting alunite-rich zones; (b) vectorized 5 
output of mapped alunite, displayed in blue 6 

 7 
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 1 
Source: Authors own elaboration 2 
 3 
Figure 13. Kaolinite Index derived from ASTER data: (a) band ratio image 4 
((Band 4 / Band 5) × (Band 8 / Band 6)), highlighting kaolinite-rich zones; (b) 5 
vectorized output of mapped kaolinite, displayed in green 6 

 7 
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 1 
Source: Authors own elaboration 2 
 3 
GIS spatial analysis 4 

The vectorized results of the mineral indices were integrated within a GIS 5 
environment to highlight areas with overlapping phyllic and argillic alteration 6 
zones, which serve as indicators of potential mineralization. The analysis 7 
revealed that the upper left corner of the study area represents the most probable 8 
zone for mineralization, owing to the strong concentration of alteration 9 
signatures. Additional zones of high index values were also identified in the 10 
central lower region and near the upper right corner of the study area, all aligned 11 
with the dominant NNE structural trend (Figure 14). 12 
 13 
Figure 14. (a) Overlay of combined phyllic and argillic alteration zones on the 14 
FCC image; (b) integrated results of phyllic and argillic alteration zones derived 15 
from mineral indices, highlighting the most probable mineralized zones 16 

 17 
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 1 
Source: Authors own elaboration 2 
 3 
Spectral Angle Mapper (SAM) Classifier 4 

 5 
The Spectral Angle Mapper (SAM) algorithm compares the spectral 6 

signature of a target object with reference spectra obtained from standardized 7 
laboratory spectral libraries, such as those provided by the USGS. In this study, 8 
spectra of common hydrothermal alteration minerals associated with 9 
mineralization, specifically illite, muscovite, kaolinite, alunite, epidote, and 10 
chlorite, were selected from the USGS spectral library (Figure 15a). These 11 
reference spectra were subsequently resampled to match the spectral resolution 12 
and band configuration of the ASTER sensor (Figure 15b). 13 
 14 
  15 
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Figure 15. (a) Laboratory spectra of hydrothermal alteration minerals from the 1 
USGS spectral library used in this study; (b) the same reference spectra resampled 2 
to match the spectral resolution and band configuration of ASTER bands 3 

 4 

 5 
Source: Authors own elaboration 6 
 7 

Rule images were generated to highlight the surface distribution of the 8 
selected spectra. The SAM algorithm applies a default threshold value, but in 9 
this case thresh-olds behave differently because lower values indicate a higher 10 
probability of a pixel belonging to the target class in the SAM rule image. 11 
Therefore, manual adjustment of the threshold was performed based on visual 12 
interpretation. The SAM-derived illite and muscovite images delineate phyllic 13 
alteration zones, which are represented in red. These zones are concentrated in 14 
the upper left corner of the study area and extend into the upper and central parts 15 
of the region (Figure 16). 16 
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Figure 16. SAM classifier results from ASTER data: (a) combined distribution of 1 
illite and muscovite, displayed in red; (b) combined illite and muscovite overlaid on 2 
the ASTER FCC image, highlighting phyllic alteration zones in red hues 3 

 4 

 5 
Source: Authors own elaboration 6 
 7 

For kaolinite and alunite, the classified image highlights areas of high 8 
values corresponding to argillic alteration zones. These zones are represented in 9 
green and are mainly concentrated in the upper left corner of the study area, with 10 
more limited occurrences observed in the central region (Figure 17). 11 
 12 
  13 
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Figure 17. SAM classifier results from ASTER data: (a) combined distribution 1 
of kaolinite and alunite, dis-played in green; (b) combined kaolinite and alunite 2 
overlaid on the ASTER FCC image, highlighting argillic alteration zones in 3 
green hues 4 

 5 

 6 
Source: Authors own elaboration 7 

 8 
The SAM classification of epidote and chlorite was used to map propylitic 9 

alteration zones. These zones are represented in blue and are primarily 10 
concentrated in the left-central part of the study area (Figure 18). 11 
 12 
  13 
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Figure 18. Figure 18. SAM classifier results from ASTER data: (a) combined 1 
distribution of epidote and chlorite, displayed in blue; (b) combined epidote and 2 
chlorite overlaid on the ASTER FCC image, high lighting propylitic alteration 3 
zones in blue hues 4 

 5 

 6 
Source: Authors own elaboration 7 
 8 
GIS Spatial Analysis 9 

The SAM classification successfully mapped hydrothermal alteration 10 
minerals, delineating phyllic, argillic, and propylitic zones. The resulting images 11 
illustrate the spatial distribution of these zones based on the diagnostic 12 
absorption features of their respective endmember minerals. The classified 13 
pixels were exported as shapefiles representing the extent of each alteration type. 14 
Spatial analysis was then conducted on these shapefiles to extract and delineate 15 
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the most probable hydrothermal alteration zones associated with mineralization 1 
(Figure 19a). 2 

The results of the ASTER SAM spectral analysis revealed several probable 3 
alteration zones within the study area. These zones are primarily concentrated in 4 
the upper left corner, aligned with a NNE structural trend, with additional 5 
occurrences in the central region and smaller, scattered zones in the upper middle 6 
part of the area (Figure 19b). 7 
 8 
Figure 19. Results of SAM classification applied to ASTER VNIR-SWIR data: 9 
(a) alteration map showing phyllic (red), argillic (green), and propylitic (blue) 10 
zones; (b) ASTER FCC image (bands 4, 6, and 8 in RGB) overlaid with SAM-11 
derived alteration zones 12 

 13 

 14 
Source: Authors own elaboration 15 
  16 
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Discussion 1 
 2 

The spectral characteristics of hydrothermal alteration zones were 3 
investigated using both Landsat 8 OLI and ASTER data. For Landsat 8 OLI, 4 
band ratio techniques were applied, specifically ratios 4/2, 6/5, and 6/7, to 5 
identify ferrous iron oxides, ferric iron oxides, and clay (hydroxyl-bearing) 6 
minerals, respectively. The resulting grayscale and density-sliced images 7 
delineated distinct alteration zones, which were further analyzed in a GIS 8 
framework to highlight the most probable mineralized areas. Supervised 9 
classification was also performed using the Parallelepiped classifier, with 10 
training samples derived from alteration zones identified in the Sabins’ FCC 11 
band ratio composite and the Crosta (FOPCS) method. The classified outputs 12 
from both approaches were integrated in a GIS environment to extract the most 13 
reliable alteration zones within the study area. 14 

For ASTER data, VNIR and SWIR mineral indices were used to detect 15 
phyllic alteration through the mapping of muscovite, and to identify argillic 16 
alteration zones by detecting kaolinite and alunite. In addition, the SAM 17 
classifier was applied to match the spectral signatures of indicator minerals with 18 
reference spectra from the USGS spectral library. This process successfully 19 
distinguished three main hydrothermal alteration zones: phyllic (illite and 20 
muscovite), argillic (kaolinite and alunite), and propylitic (epidote and chlorite). 21 

Overall, the results demonstrate that ASTER data provide superior 22 
capabilities for hydrothermal mineral prospecting compared to Landsat 8 OLI 23 
data. The higher spectral resolution of ASTER allows more effective 24 
identification of diagnostic minerals and their spatial distribution. These findings 25 
confirm that ASTER is a valuable tool in the early stages of mineral exploration, 26 
offering a rapid, cost-effective, and reliable approach for identifying prospective 27 
zones associated with hydrothermal alteration minerals. 28 

 29 
 30 

Conclusions 31 
 32 

Remote sensing and GIS techniques applied to the Gebeit Al Maadin area, 33 
NE Su-dan, successfully delineated hydrothermal alteration zones using a range 34 
of digital image processing methods. These results hold significant implications 35 
for gold exploration in the region. 36 

Landsat 8 OLI data, with spatial resolutions of 30 m (multispectral) and 15 37 
m (panchromatic), and broad spectral coverage across the VNIR-SWIR regions, 38 
proved suitable for regional-scale mapping and preliminary mineral prospecting. 39 
However, it demonstrated limitations for more detailed mapping at medium or 40 
local scales. In contrast, ASTER data, which also provide 15 m and 30 m spatial 41 
resolutions, offer superior spectral resolution, particularly in the SWIR region. 42 
This enhanced spectral capability enables ASTER not only to delineate alteration 43 
zones but also to identify specific hydrothermal alteration minerals. 44 

Alteration zones delineated using Landsat 8 OLI data appeared broader and 45 
more spatially dispersed than those derived from ASTER analysis. In 46 
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comparison, the narrower spectral bands of ASTER produced more precise 1 
results, allowing clearer discrimination of mineralogical variations. 2 
Consequently, alteration zones mapped using ASTER data were more accurate 3 
and more readily integrated into spatial analysis, making ASTER a more 4 
effective tool for mineral exploration. 5 

 6 
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Abbreviations used in this paper include: 43 
OLI Operational Land Imager 
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer 
ANS Arabian Nubian Shield 
VNIR Visible / Near Infrared 
SWIR Shortwave Infrared 
TIR Thermal Infrared 
TIRS Thermal Infrared Sensor 
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USGS United State Geological Survey 
UTM Universal Transverse Mercator 
WGS World Geodetic System 
ENVI Environment for Visualizing Images 
FLAASH Fast Line of sight Atmospheric Analysis of Spectral Hypercube 
MNF Minimum Noise Fraction 
FOPCS Feature Oriented Principal Component Selection 
PCA Principal Component Analysis 
DN Digital Number 
ROI Regions Of Interest 
FCC False Color Composite 
NNE North Northeast 
SSW South Southwest 
SAM Spectral Angle Mapper 
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