

1 Oversized Transport of EU States in the Era of 2 Artificial Intelligence 3

4 *Oversized transport in European countries is an essential component of
5 international logistics, playing a critical role in the transport of industrial
6 equipment, large structures or other goods that exceed the standard
7 dimensions and weight allowed for transport. These operations are regulated
8 by strict laws and involve detailed planning. In the European Union, this type
9 of transport is regulated by a combination of national legislation and
10 European directives, with the aim of ensuring road safety and protecting
11 infrastructure. Although each Member State has its own regulations and
12 procedures, there are common elements thanks to European harmonization.
13 Oversized transport has entered a new era with artificial intelligence, which
14 has led to a significant transformation in the way it is planned, managed and
15 executed. The impact of artificial intelligence on oversized transport is major,
16 from route planning, real-time monitoring and coordination of transport,
17 automation of authorization processes, to transport safety and risk reduction,
18 cost optimization and the use of drones for surveillance and robots for
19 secondary operations. Artificial intelligence is transforming oversized
20 transport into a safer, more efficient and more sustainable field, AI being an
21 essential tool to cope with the complexity of this type of transport, opening up
22 new perspectives for logistics and industry.*

23
24 **Keywords:** *Oversized transport, Artificial Intelligence, EU States,
25 digitalization, sustainable development goals.*

26 27 **Introduction**

28
29 Road transport constitutes a fundamental pillar of modern economies,
30 facilitating the intricate movement of goods and individuals from origin to
31 destination. Within this expansive domain, oversized transport represents a
32 specialized and inherently complex segment. This category encompasses the
33 movement of indivisible goods or the operation of vehicles that, even unladen,
34 exceed standard constructive masses and/or maximum permissible dimensions.
35 Such operations are characterized by stringent regulatory requirements and
36 significant operational complexities. As a specialized form of road freight
37 transport, oversized transport operations must adhere to general road transport
38 operator regulations, such as those stipulated by EU legislation (e.g., Regulation
39 EC 1071/2009, modified by Regulation (UE) 2020/1055), which mandate
40 criteria like effective and stable establishment, good repute, professional
41 competence, and financial capacity. Furthermore, specific conditions apply to
42 the handling of oversized loads, including specialized driver certifications and,
43 where legally mandated, the use of authorized escort vehicles or specialized
44 operators.

1 The European Union's oversized transport¹ landscape is currently
 2 undergoing rapid evolution. This is primarily driven by an escalating demand for
 3 the cross-border movement of large industrial components, specialized
 4 machinery, and critical infrastructure elements, essential for various sectors
 5 including energy, construction, and manufacturing. Concurrently, Artificial
 6 Intelligence (AI) has emerged as a disruptive technological force, demonstrating
 7 profound transformative potential across diverse industries. AI promises to
 8 revolutionize logistics by optimizing operational processes, significantly
 9 enhancing safety protocols, and substantially reducing associated costs.

10 This academic paper aims to provide an in-depth analysis of the intersection
 11 between oversized transport practices in EU Member States and the burgeoning
 12 capabilities of AI. The study will meticulously examine the current state of
 13 oversized transport, outlining its prevailing regulatory framework and inherent
 14 operational challenges. The efficient transport of oversized cargoes is
 15 indispensable for urban and industrial development, facilitating the movement
 16 of critical components for infrastructure, energy, and manufacturing sectors.
 17 However, its integration within increasingly dense and sustainability-focused
 18 urban environments presents significant challenges, particularly concerning
 19 existing transport infrastructure and environmental objectives². Subsequently, it
 20 will delve into the specific applications of AI within this context, exploring both
 21 the promising opportunities and the formidable challenges associated with
 22 integrating AI-driven solutions into this highly regulated and operationally
 23 demanding domain.

24
 25

26 Literature Review

27

28 The academic discourse on transport and logistics has increasingly focused
 29 on the intersection of technological innovation and regulatory frameworks.
 30 Traditional research on oversized transport³ has primarily concentrated on
 31 engineering challenges, infrastructure limitations, and the complexities of
 32 national permitting procedures⁴. Studies by organizations such as the
 33 International Road Transport Union (IRU) have consistently highlighted the
 34 administrative burdens and fragmentation of regulations across European
 35 borders as significant impediments to efficient oversized transport operations⁵.
 36 These challenges often lead to increased costs, delays, and a heightened risk of
 37 non-compliance.

¹Bădescu & Purcar (2017) In *MATEC Web Conf. Volume 121*, “Trends in New Industrial Revolution”, <https://doi.org/10.1051/matecconf/201712106001>

²Petru & Krivda, (2021), 13, 5524. <https://doi.org/10.3390/su13105524>

³Bahram, Haibo & Lutfu (2023) *Logistics*, 7, 98. <https://doi.org/10.3390/logistics7040098>

⁴European Commission. *Transport policy: Road transport - Weights and dimensions*. Available online: https://transport.ec.europa.eu/transport-themes/road-transport/weights-and-dimensions_en (Accessed for general EU regulatory context).

⁵IRU (International Road Transport Union). *Challenges of Abnormal Loads Transport in Europe*. [Search for reports or articles on IRU website related to special transports and administrative barriers]. Available online: <https://www.iru.org/> (Provides insights into cross-border complexities).

1 The advent of Artificial Intelligence has catalysed a new wave of research
 2 across various transport modalities. In general logistics, AI is being explored for
 3 its potential in route optimization, demand forecasting, warehouse management,
 4 and autonomous vehicle operation⁶. Specifically, in the broader context of
 5 intelligent transport systems (ITS), AI algorithms are recognized for their
 6 capacity to process vast datasets from sensors, cameras, and telematics devices
 7 to manage traffic flow, predict congestion, and enhance urban mobility⁷. The
 8 European Commission's Digital Transport and Logistics Forum (DTLF)
 9 emphasizes the importance of digitalization and data sharing for improving
 10 freight transport efficiency across the EU⁸.

11 However, the application of AI specifically to oversized transport, a niche
 12 yet critical segment, remains an area requiring more dedicated academic
 13 attention. While general AI applications in smart transport⁹ (e.g., smart parking,
 14 traffic optimization in urban settings) have been extensively studied¹⁰, the
 15 unique complexities of oversized loads – such as specific infrastructure
 16 constraints (bridge capacities, tunnel clearances), stringent safety requirements,
 17 and highly individualized permitting processes – present distinct challenges and
 18 opportunities for AI integration. Existing literature often overlooks the intricate
 19 relationship between oversized cargo transport and the principles of sustainable
 20 urban infrastructure, failing to comprehensively analyse how the unique
 21 demands of oversized loads—including their dimensions, weight, and specific
 22 routing requirements—conflict with or can be harmonized with urban¹¹
 23 sustainability goals, such as reduced emissions, optimized traffic flow, and
 24 minimized infrastructure wear¹².

25 Existing literature on AI in governance and public service highlights the
 26 potential for automation in administrative processes, such as permit issuance and
 27 compliance checks¹³. However, these studies also caution about the ethical,
 28 legal, and social implications of AI, including issues of liability, data privacy,

⁶KPMG. *Driving change: How AI is transforming the transport industry*. Available online: <https://kpmg.com/xx/en/home/insights/2023/10/driving-change-how-ai-is-transforming-the-transport-industry.html> (Accessed for AI applications in route optimization and logistics).

⁷European Parliament Think Tank (EPRI). *Artificial intelligence and transport: New challenges for EU law*. Available online: [https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI\(2020\)642838](https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2020)642838) (Analyses legal and ethical challenges of AI in transport).

Also, see <https://digital-strategy.ec.europa.eu/ro/policies/digitalisation-mobility>

⁸European Commission's Digital Transport and Logistics Forum (DTLF). Search for reports and best practice guides on the digitalization of freight transport in the EU. Available online: https://transport.ec.europa.eu/transport-themes/digitalisation-transport-and-logistics_en (Relevant for EU-level digital initiatives in transport).

⁹Petru & Krivda (2020)

¹⁰ENISA (European Union Agency for Cybersecurity). *Cybersecurity in the Transport Sector*. Available online: <https://www.enisa.europa.eu/publications/cybersecurity-in-the-transport-sector> (Provides insights into cybersecurity risks in connected transport infrastructures).

¹¹Szczucka-Lasota (2017) Series Transport, vol 97: 157-165. DOI: <https://doi.org/10.20858/sjstst.2017.97.14>

¹²Petru & Krivda (2021) 13, 5524

¹³Deloitte. *AI in Government: The Future of Public Service*. Available online: <https://www2.deloitte.com/us/en/insights/focus/cognitive-technologies/ai-in-government-future-public-service.html> (Accessed for AI in automating administrative processes and digital permits).

1 algorithmic bias, and job displacement¹⁴. The European Parliament Think Tank
 2 (EPRS) and ENISA (European Union Agency for Cybersecurity) have
 3 underscored the urgent need for robust regulatory frameworks and cybersecurity
 4 measures to govern AI applications in safety-critical sectors like transport¹⁵.

5 This paper aims to bridge the gap in the literature by specifically analysing
 6 how AI's capabilities can be adapted to the unique demands of oversized
 7 transport within the fragmented regulatory landscape of the EU, while critically
 8 assessing the associated opportunities and challenges.

9

10

11 **Methodology**

12

13 This paper employs a qualitative, analytical, and systemic review
 14 methodology to examine the integration of Artificial Intelligence into oversized
 15 transport within EU Member States. The research approach is structured as
 16 follows:

17

18

19 *Literature review and synthesis*

20

21

- 22 • An extensive review of academic literature was conducted using
 23 scientific databases
- 24 • Reports and policy documents from key international organizations (e.g.,
 25 European Commission, OECD, IRU, World Economic Forum, UNECE,
 26 ENISA) were analysed to understand the current regulatory landscape,
 27 technological trends, and policy recommendations.
- 28 • The synthesis of this literature aimed to identify prevailing challenges in
 29 oversized transport, existing AI applications in broader transport sectors,
 30 and the specific opportunities and risks of applying AI to oversized
 31 logistics.

32

33

34 *Conceptual framework development*

35

36

37

38

39

- 40 • Based on the literature review, a conceptual framework was developed
 41 to map the potential applications of AI across the lifecycle of an
 42 oversized transport operation (planning, permitting, execution,
 43 monitoring, maintenance).
- 44 • This framework also integrates the socio-technical dimensions,
 45 considering the interplay between technological advancements, human
 46 factors, regulatory environments, and societal impacts.

47

48

49 *Challenges and opportunities assessment*

¹⁴Journal of Transport Geography / Transportation Research Part C: Emerging Technologies. (Academic journals for research on AI applications in logistics, heavy transport, and traffic management). [Example: ScienceDirect](#) or [SpringerLink](#) (Search for relevant articles).

¹⁵ENISA. *Cybersecurity in the Transport Sector*. Deloitte. *AI in Government: The Future of Public Service*.

- A critical assessment of the identified opportunities (e.g., safety, efficiency, cost reduction, sustainability) and challenges (e.g., regulatory lag, infrastructure investment, cybersecurity, data governance, ethical concerns) was performed. This involved analysing the interdependencies between these factors and their potential implications for EU Member States.
- The assessment draws upon existing academic critiques and policy debates surrounding AI implementation in complex public and private sectors.

10 Policy-oriented recommendations formulation

12 Drawing from the analytical findings and best practices identified in the
13 literature, a set of actionable policy recommendations was formulated. These
14 recommendations are designed to guide EU Member States and relevant
15 stakeholders in strategically leveraging AI to overcome current challenges and
16 foster a more robust, safe, and sustainable oversized transport ecosystem.

17 This methodology ensures a comprehensive and structured approach to
18 understanding the complex dynamics of AI integration in oversized transport,
19 providing a robust foundation for the discussions and conclusions presented.

23 Oversized transport in the EU: current framework and challenges

25 Oversized transport operations within the European Union are governed by
26 a multi-layered regulatory architecture. This framework comprises overarching
27 EU Directives and Regulations, which establish harmonized principles for
28 general vehicle weights and dimensions, complemented by specific national
29 legislation enacted by each Member State. The primary objectives of this
30 intricate regulatory system are to ensure paramount road safety, safeguard
31 critical infrastructure, and minimize disruptions to general traffic flow.

33 EU regulatory framework

35 **General Directives:** The European Union sets forth broad principles
36 concerning vehicle weights and dimensions. However, it strategically grants
37 Member States a degree of flexibility in regulating exceptional transports. This
38 approach allows for the incorporation of national adaptations that account for
39 unique infrastructure characteristics, diverse geographical conditions, and
40 specific local requirements. This ensures that while a common baseline exists,
41 the practicalities of diverse national contexts are accommodated¹⁶.

42 **National legislation:** Each EU Member State maintains its distinct and
43 detailed procedures governing the authorization of oversized transports. These
44 national regulations encompass specific requirements for designated routes, the

¹⁶European Commission. *Transport policy: Road transport - Weights and dimensions*.

1 mandatory use of escort vehicles, and various traffic restrictions (e.g., limitations
 2 on specific hours, days, or under certain weather conditions). This national
 3 discretion frequently results in a fragmented and time-consuming process for
 4 obtaining cross-border permits, often necessitating approvals from multiple
 5 national, regional, and local authorities, thereby creating significant
 6 administrative complexities¹⁷.

7 Within this national legislative landscape, it is crucial to acknowledge the
 8 strategic direction set by individual Member States. For instance, Romania's
 9 National Strategy for Intelligent Transport Systems (2022-2030), approved by
 10 Government Decision No. 877/2022 on the approval of the National Strategy on
 11 Intelligent Transport Systems for the period 2022-2030¹⁸, outlines a clear
 12 commitment to digitalizing transport infrastructure and services. While not
 13 exclusively focused on oversized transport, this strategy's objectives – such as
 14 enhancing road safety, improving traffic flow efficiency, and promoting data
 15 exchange and interoperability – directly influence the environment in which
 16 oversized transport operates and pave the way for AI integration.

17
 18 *Key challenges in EU oversized transport*
 19

20 **Complex route planning:** The planning of oversized transport routes
 21 demands a meticulous, often manual, analysis of numerous infrastructure
 22 constraints. These include, but are not limited to, bridge capacities, tunnel
 23 clearances, the geometry of sharp turns, the presence of overhead obstacles (such
 24 as power lines or low-hanging structures), and the load-bearing resistance of
 25 road surfaces. This complexity is particularly pronounced for international
 26 routes that traverse diverse infrastructural landscapes¹⁹.

27 **Fragmented permit acquisition:** The process of obtaining Special
 28 Transport Authorizations (STAs) across the EU is widely recognized as
 29 bureaucratic, protracted, and costly. Significant variations in regulatory
 30 requirements, application procedures, and processing times among Member
 31 States impose substantial administrative burdens and lead to considerable delays
 32 for cross-border operations, hindering the efficiency of the single market²⁰.

33 **Safety concerns:** The inherent physical characteristics of oversized vehicles
 34 – their immense size and reduced manoeuvrability – intrinsically elevate the
 35 risks of accidents. This necessitates the implementation of exceptionally
 36 stringent safety measures, specialized training for drivers, and, in many cases,
 37 mandatory professional escorts to manage traffic and mitigate potential hazards.

38 **Infrastructure impact:** The passage of oversized transports contributes
 39 disproportionately to the accelerated wear and tear of road networks and bridge

¹⁷IRU (International Road Transport Union). *Challenges of Abnormal Loads Transport in Europe*.

¹⁸National Strategy on Intelligent Transport Systems for the period 2022-2030. Approved by Government Decision no. 877/2022, published in the Official Gazette of Romania, Part I, no. 894 of September 8, 2022 [Strategia Națională privind sistemele de transport inteligente pentru perioada 2022-2030. Aprobată prin Hotărârea Guvernului nr. 877/2022, publicată în Monitorul Oficial al României, Partea I, nr. 894 din 8 septembrie 2022.]

¹⁹European Commission. *Transport policy: Road transport - Weights and dimensions*.

²⁰IRU (International Road Transport Union). *Challenges of Abnormal Loads Transport in Europe*.

1 structures. This necessitates continuous and rigorous monitoring of
 2 infrastructure integrity, proactive maintenance schedules, and, in certain
 3 instances, temporary structural reinforcements to accommodate exceptionally
 4 heavy loads. The integration of oversized cargo transport within increasingly
 5 dense and sustainability-focused urban environments presents significant
 6 challenges, particularly concerning existing transport infrastructure and
 7 environmental objectives, including infrastructure limitations (e.g., bridge
 8 capacities, narrow streets) and environmental impacts²¹.

9 **High operational costs:** These specialized transports incur substantially
 10 higher operational costs compared to standard freight movements. These costs
 11 stem from the intricate planning requirements, significant permit fees, expenses
 12 associated with escort services, elevated fuel consumption due to vehicle size
 13 and speed limitations, and extended transit times resulting from regulatory
 14 complexities and operational constraints.

15 **Limited real-time information:** A pervasive challenge is the lack of
 16 comprehensive, real-time data concerning infrastructure conditions, unforeseen
 17 temporary road closures, or unexpected obstacles across multiple national
 18 jurisdictions. This information deficit impedes dynamic route adjustments and
 19 proactive risk management²².

20

21

22 **Oversized transport in Greece, Romania, Germany and Poland – comparative 23 study**

24

25 Oversized transport is carried out differently depending on the legislative,
 26 infrastructural and administrative particularities of each Member State of the
 27 European Union. In the following, we analyze the situation in three
 28 representative countries: Greece, Romania and Germany, highlighting the
 29 common challenges and innovative solutions adopted in the context of the digital
 30 transition and the use of artificial intelligence (AI).

31

32

I. Greece – Difficult topography and slow digitalization

33

34

35 Greece, characterized by a predominantly mountainous topography and a
 36 road network composed largely of narrow national roads, faces major difficulties
 37 with regard to oversized transport. The road infrastructure is not always adapted
 38 to such transport, and the island networks further complicate logistics.

39

40

41 The challenges for this activity are multiple: lack of corridors dedicated to
 42 special transport; insufficiently digitalized port infrastructure for handling large
 43 loads; lack of digital interoperability between regional agencies. Recent
 44 developments in this area are important for the development of this sector. The
 45 most significant are: the Hellenic Road Authority has launched a digital portal
 46 for the authorization of special transport, but the system is not yet integrated at

²¹Petru & Krivda, 2021, 13, 5524. <https://doi.org/10.3390/su13105524>

²²Ramūnas & Artūras (2012) No 1: 51–56, DOI 10.2478/v10244-012-0005-9

1 national level; pilot projects in collaboration with the Technical University of
2 Athens use artificial intelligence to simulate oversized routes in mountainous
3 areas.

4

5

6 **Oversize transport in Greece – status, challenges and prospects**

7

8 Background Greece, due to its geographical position in South-East Europe
9 and its predominantly mountainous terrain, faces specific challenges in the field
10 of oversize transport. The country has a major port on the Mediterranean Sea
11 (Piraeus), which is a major hub for maritime freight transport, and road and rail
12 connectivity to the interior of the continent is vital for European and Balkan
13 trade.

14 Infrastructure and transport conditions:

15

- 16 - Mountain roads and islands: The difficult terrain imposes strict
17 restrictions on oversized transport, especially on roads in mountainous
18 areas (e.g. the Pindus Mountains or the Peloponnese area), where sharp
19 curves and steep slopes limit the size and weight of vehicles.
- 20 - Lack of extensive motorways: The motorway network is still under
21 development, which means that a large part of special transport uses
22 national or regional roads, with traffic and infrastructure limitations.
- 23 - Combined maritime transport: Greece partially compensates for road
24 limitations through the intensive use of combined maritime and river
25 transport (roll-on/roll-off and oversized containers), especially in the
26 transport of heavy industrial equipment and components for the energy
27 industry.

28

29 Regulations and permits:

30

- 31 - Permits for oversized transport are issued by the Ministry of
32 Infrastructure and Transport in cooperation with local authorities and the
33 traffic police.
- 34 - The process is generally bureaucratic and lengthy, with approval times
35 that can exceed 7 days.
- 36 - In 2023, Greece launched a digital pilot project for electronic issuance of
37 permits, which includes a digital simulation component of routes to
38 verify compatibility with road infrastructure and bridges.

39 **The major challenges** of this activity are:

40

- 41 - Insufficiently adapted infrastructure: The lack of dedicated corridors for
42 special transport and old infrastructure hinder fast and safe transport.
- 43 - Natural limitations: Island and mountainous areas impose severe
44 restrictions, often requiring complex logistical solutions (e.g. ferry
45 transfers).

- 1 - Limited institutional cooperation: Fragmentation of competences between
2 local and central authorities slows down the approval and planning process.
3
4

5 **Perspectives and innovations**
6

7 Greece is trying to integrate artificial intelligence and digital solutions to
8 optimize the route and shorten the approval time.

9 The use of Digital Twins is being explored to simulate the impact of
10 oversized transport on infrastructure, preventing damage and increasing safety.
11 This technology is closely linked to European initiatives to digitize transport
12 corridors (TEN-T), where Greece is investing heavily to become a logistics
13 gateway between Asia and Central Europe.

14 Highway and expressway network development projects also include
15 investments in special infrastructure for oversized transport, especially near
16 ports and industrial centers.

17

18 **II. Romania**
19

20 Romania occupies a key geostrategic position within the European and
21 Eurasian transport corridors, being located at the crossroads of trade routes
22 linking Central and Western Europe with the Balkans, Ukraine, the Black Sea
23 and Central Asia.

24 Oversized transport is vital for development of the energy sector (wind,
25 hydro, nuclear power plants), large infrastructure projects (bridges, refineries,
26 factories), defense and heavy equipment industries. However, Romania faces
27 multiple systemic deficiencies that hinder efficiency and competitiveness in this
28 area.

29

30

31 **Road infrastructure and its limitations**
32

33

34

35 The major problems in Romania are:

36

37

38

39

40

41

42

43

44

45

46

- Lack of continuous motorways: Although there are motorway sections (A1, A2, A3), they are fragmented and poorly connected to each other, which forces oversized transport to use national roads, which are often inadequate.
- Old bridges with restrictions: Many bridges in the national network have tonnage and height limitations, which impose long and expensive detours.
- Passing through urban areas: The lack of detour options forces oversized transport to transit large localities, exposing themselves to risks and delays.
- Lack of specialized corridors: There are currently no logistics corridors specifically dedicated to oversized transport, except for ad-hoc routes established by CNAIR for specific projects (e.g. transport to Cernavodă or refineries).

- Regulations and bureaucracy: Transport authorization is done through CNAIR, through the SEAST platform (Electronic System for Issuing Special Transport Authorizations). Although the platform is functional, in many cases the process is: slow (5–10 days for approval), fragmented (requires approvals from local authorities, traffic police, county road administrators), non-automated (lack of automatic route or infrastructure evaluation).

The identified problems in this activity are: lack of interoperability between SEAST and infrastructure, traffic or technical approval databases, lack of a real-time tracking system for requests and transports.

Examples and Case Studies

A. Transports for the Cernavodă nuclear power plant: some of the most complex oversized transports in Romania were organized to bring nuclear components; routes were planned manually, with extensive escort and temporary infrastructure repairs.

B. Wind farms in Dobrogea: transport of turbine blades (length > 60 m) was hampered by narrow roads and unstable bridges; in many cases alternative solutions were used, such as river transport combined with road transport.

C. Constanța Port expansion project: oversized transports through the port were delayed due to the lack of an efficient road connection between the terminals and the national network.

Artificial Intelligence in oversized transport – potential and initiatives

Although Romania is at an early stage in terms of the use of AI in logistics, specific initiatives have emerged in collaboration with the private sector:

- Romanian logistics start-ups (e.g. CargoPlanning, Trans.EU Romania) are testing algorithms for route optimization and clearance calculation based on satellite maps and GPS data.
- Pilot project in the Pitești industrial area: simulation with a “digital twin” of an oversized transport for the Dacia plant, in collaboration with the Politehnica University of Bucharest (2023).
- International collaborations: some Romanian companies involved in pan-European projects (through Horizon Europe) are testing AI modules for transport time predictability and infrastructure risk analysis.

Recommendations for Romania

- 1 1. Complete digitalization of the SEAST platform and its integration with:
2 traffic police systems, CNAIR geospatial databases, county road
3 networks.
- 4 2. Creation of permanent oversized logistics corridors, with adapted
5 infrastructure and digital signage, at least on the following axes:
6 Constanța – Bucharest – Pitești – Arad; Giurgiu – Bucharest – Ploiești –
7 Brașov – Târgu Mureș.
- 8 3. Partnerships between technical universities and authorities for the
9 development of AI tools applied to oversized transport planning.
- 10 4. Financing through PNRR or Cohesion Funds for the modernization of
11 critical infrastructure (bridges, access ramps, roundabouts dedicated to
12 special transport).

14 **III. Germany – European leader in digitalization and regulation**

16 Germany is considered one of the models of good practice in the field of
17 oversized transport. Thanks to a modern infrastructure and a solid digital
18 framework, Germany efficiently manages highly complex transports.

19 Solutions and best practices are done by VEMAGS platform (Verfahren für
20 die Erteilung von Ausnahmegenehmigungen gemäß StVO) – national digital
21 system for online authorizations, integrated with local authorities and police.
22 Also, they have adapted infrastructure – federal roads and motorways designed
23 to allow the transport of up to 150 tons without route deviation. Germany is using
24 AI for predictive modeling – projects in partnership with the Fraunhofer Institute
25 to optimize routes and reduce fuel consumption. Also, use integration with rail
26 and ship logistics systems, with AI-assisted planning.

27 **IV. Poland – An expanding regional logistics hub**

30 Poland has become a strategic hub for European logistics in recent years,
31 located at the crossroads of transport corridors connecting Eastern Europe with
32 Germany, the Baltic countries and Scandinavia. This geographical position favors
33 the development of oversized transport²³, especially for industrial components²⁴,
34 energy equipment and construction materials for large infrastructure projects.

35 Challenges for this field:

- 36 • Regional bureaucracy: Special transport permits are still issued by local
37 or regional road authorities, leading to variations in time and procedures.
- 38 • Data aggregation: Lack of an integrated national data system on road
39 infrastructure adapted to oversized transport.
- 40 • Tensions in international transit: Poland handles a high volume of
41 transport from Belarus and Lithuania, leading to congestion at customs
42 points and busy routes.

²³Macioszek (2019) 109-117, DOI:[10.20858/sjsutst.2019.102.9](https://doi.org/10.20858/sjsutst.2019.102.9)

²⁴Ślawomir (2022) 136-152. DOI: 10.14254/jsdltl.2023.8-2.10.

1 Poland's initiatives and innovations in this field:

- 2
- 3 e-Koncesje project: A digital system for issuing special permits for
4 oversized transport, currently in the testing phase (2024). The platform
5 uses artificial intelligence elements to automatically check the eligibility
6 of routes based on vehicle dimensions.
 - 7 Collaboration with the Warsaw University of Technology: Polish
8 researchers are working on risk simulation models for oversized
9 transport, using digital twins and satellite data.
 - 10 Infrastructure investments: Construction and modernization of
11 “oversized logistics corridors” between Gdańsk, Warsaw, Katowice and
12 the German border, connected to intermodal terminals.
 - 13 Public-private collaboration: Companies such as PKP Cargo and Orlen
14 Logistics are integrating AI for multimodal transport planning –
15 combining road, rail and river – especially for energy transport.

16

17 Also, having a strategic positioning, Poland is investing significantly in its
18 transformation into an AI-ready logistics hub, aiming to become a leader in
19 Central Europe for special transport. However, digital fragmentation and
20 differences between regional administrations continue to be an obstacle to the
21 uniform implementation of AI-based solutions.

22

23

24 **Comparative conclusions country degree of digitalization and**
25 **infrastructure for oversize transport (2025)**

26

Country	Digitalization Level	Adapted Infrastructure	Authorization Time	AI & Digital Twins Use
Greece	Low / Developing	Medium – Limited in mountainous areas and islands.	High (≥ 7 days)	Pilot: Route simulation and sensor-based monitoring for old bridges.
Romania	Developing	Deficit in key areas; new corridors (A1, A7) are being adapted.	High (≥ 10 days)	Pilot: GPS-based planning and flyover technologies for critical bridges.
Germany	Advanced	Expanded & Modernized with detailed tonnage databases.	Low (1–2 days)	Active: Real-time route optimization and Digital Twins for structures.
Poland	Rapidly Progressing	Accelerated Expansion of highway networks and logistics hubs.	Medium (3–6 days)	Active: AI-driven planning and integrated e-

Country	Digitalization Level	Adapted Infrastructure	Authorization Time	AI & Digital Twins Use
				authorization systems.

1

2 This comparison highlights a significant technological and administrative
 3 gap between EU member states in the heavy-lift and oversize transport sector:

4

- 5 • Digital Leaders (Germany, Poland): These countries have successfully
 6 integrated digital tools into their logistics chains. Germany utilizes
 7 Digital Twins to simulate structural stress on bridges under extreme
 8 loads, allowing for rapid approvals. Poland has drastically reduced
 9 bureaucracy through e-authorization systems (like the SENT system),
 10 significantly shortening wait times.
- 11 • Transitioning States (Greece, Romania): While these nations are
 12 receiving substantial EU funding for infrastructure, they remain in the
 13 early stages of digital integration.
 - 14 ○ In Greece, the focus is on 3D route simulations to navigate difficult
 15 coastal and mountainous terrain.
 - 16 ○ In Romania, there is a shift toward digital data planning for national
 17 strategic projects, but administrative bottlenecks remain a challenge.

18

19 The future of oversize transport relies as much on digital mapping as it does
 20 on physical infrastructure. Without a unified digital database of bridge capacities
 21 and road dimensions, countries like Greece and Romania will continue to face
 22 higher logistics costs due to administrative delays.

23

24

25 **The role of Artificial Intelligence in transforming oversized transport in 26 the EU**

27

28 Artificial Intelligence presents a suite of innovative solutions capable of
 29 addressing many of the entrenched challenges within the oversized transport
 30 sector. By leveraging AI, significant advancements in optimization, predictability,
 31 and safety can be achieved.

32

33 *AI for route optimization and logistics planning*

34

35 The role of AI in this field is high:

36 Intelligent routing algorithms: AI-powered algorithms possess the capacity to
 37 analyse vast and complex datasets. These datasets include detailed Geographic
 38 Information Systems (GIS) data, real-time traffic conditions, dynamic weather
 39 forecasts, and granular infrastructure constraints (e.g., temporary bridge weight
 40 limits, structural integrity data). This analytical capability enables the identification
 41 of optimal routes that are not only the safest and most efficient but also fully
 42 compliant with all relevant regulations, thereby minimizing detours and optimizing

1 fuel consumption²⁵. These strategic approaches, including intelligent routing, are
2 crucial technological solutions to mitigate conflicts between oversized transport
3 demands and urban sustainability goals, such as optimized traffic flow²⁶.

4 Advanced simulations: AI-driven simulation models can accurately predict the
5 multifaceted impact of oversized transport convoys on overall traffic flow and
6 critical infrastructure. This predictive capability empowers operators and regulatory
7 authorities to anticipate potential bottlenecks, structural stresses, or congestion
8 points, facilitating proactive adjustments and mitigation strategies before the actual
9 journey commences.

10
11 *AI for streamlining authorization processes*
12

13 Regarding this authorization process, AI can be used for:

- 14
- 15 - Automated compliance checks: AI systems can significantly enhance the
16 efficiency of permit acquisition by automating the verification of permit
17 applications against intricate national and EU regulations. These systems
18 can rapidly cross-reference vehicle specifications, proposed routes, and
19 legal requirements, thereby reducing manual review times, minimizing
20 human error, and accelerating the approval process²⁷.
 - 21 - Cross-border permit facilitation: A harmonized, EU-level AI system
22 holds the potential to fundamentally streamline the acquisition of permits
23 for multi-country routes. By enabling automated data sharing and
24 validation between national authorities, such a system could drastically
25 reduce administrative burdens, cut down on delays, and lower costs
26 associated with international oversized transports.
 - 27 - Predictive permitting: Leveraging historical data, AI can analyse past
28 permit processing times to generate accurate predictions for future
29 applications. This predictive capability assists operators in more precise
30 planning and scheduling of their oversized transport operations.

31
32 **AI for enhanced safety and monitoring**
33

34 The advantages of AI in this sector are given by:

- 35
- 36 - Real-time obstacle detection: AI-powered computer vision systems,
37 integrated with vehicle-mounted cameras and LiDAR sensors, can
38 continuously monitor the oversized vehicle's dimensions in real-time
39 relative to its immediate surroundings. This includes detecting potential

²⁵KPMG. *Driving change: How AI is transforming the transport industry*. Available online: <https://kpmg.com/xx/en/home/insights/2023/10/driving-change-how-ai-is-transforming-the-transport-industry.html> (Accessed for AI applications in route optimization and logistics).

²⁶Petru & Krivda, 2021, 13, 5524. <https://doi.org/10.3390/su13105524>

²⁷European Parliament Think Tank (EPRS). *Artificial intelligence and transport: New challenges for EU law*. Available online: [https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI\(2020\)642838](https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2020)642838) (Analyses legal and ethical challenges of AI in transport).

1 collisions with overhead cables, bridge structures, roadside obstacles, or
 2 other vehicles, providing immediate alerts to the driver or autonomously
 3 guiding the vehicle.

- 4 - Predictive risk assessment: AI can analyse comprehensive telematics
 5 data, driver behaviour patterns, and dynamic road conditions to identify
 6 high-risk road segments or anticipate potential hazards, providing
 7 proactive warnings.
- 8 - Advanced driver-assistance systems (ADAS): AI can significantly
 9 enhance existing ADAS features, such as adaptive cruise control, lane-
 10 keeping assist, and emergency braking. These systems can be
 11 specifically tailored to the unique dynamics and operational requirements
 12 of oversized vehicles, providing critical support to drivers.
- 13 - Drone surveillance: AI-equipped drones offer real-time aerial monitoring
 14 capabilities of the convoy and its surrounding environment. This
 15 technology can provide invaluable assistance to escort vehicles and
 16 traffic police, particularly during complex manoeuvres, in areas with
 17 limited visibility, or across challenging terrains²⁸.

18 *AI for predictive maintenance and operational efficiency*

19 AI can be used successfully for:

- 20 - Vehicle health monitoring: AI algorithms can analyse continuous data
 21 streams from sensors embedded within oversized vehicles (e.g., engine
 22 performance, tire pressure, braking system integrity). This enables the
 23 prediction of potential mechanical failures before they occur, facilitating
 24 proactive maintenance, minimizing costly breakdowns, and significantly
 25 reducing vehicle downtime.
- 26 - Infrastructure integrity monitoring: AI can process data from sensors
 27 strategically installed on critical infrastructure components (e.g., bridges,
 28 viaducts, road surfaces). This allows for the early detection of stress,
 29 fatigue, or damage caused by heavy loads, enabling timely repairs,
 30 extending the lifespan of infrastructure, and preventing catastrophic
 31 failures. This aligns with the need for dynamic infrastructure assessment
 32 to minimize infrastructure wear²⁹.
- 33 - Fuel optimization: AI can dynamically adjust vehicle operating
 34 parameters and suggest optimal driving behaviours based on real-time
 35 factors such as load weight, specific route characteristics, and prevailing
 36 traffic conditions. This leads to substantial improvements in fuel
 37 efficiency and reduced operational costs.

38
 39
 40
 41
 42

²⁸ENISA (European Union Agency for Cybersecurity). *Cybersecurity in the Transport Sector*. Available online: <https://www.enisa.europa.eu/publications/cybersecurity-in-the-transport-sector> (Provides insights into cybersecurity risks in connected transport infrastructures).

²⁹Petru & Krivda, (2021), 13, 5524. <https://doi.org/10.3390/su13105524>

1 **Discussion of findings and general arguments**

2

3 The analysis reveals a compelling case for the strategic integration of AI
 4 into the EU's oversized transport sector. The findings underscore that AI is not
 5 merely an incremental improvement but a transformative technology capable of
 6 fundamentally reshaping operational paradigms and addressing long-standing
 7 systemic inefficiencies.

8 However, this AI must be used under human oversight.

9

10 *Enhanced safety and risk mitigation*

11

12 The most significant argument for AI integration lies in its potential to
 13 drastically improve safety. By moving beyond reactive measures, AI's predictive
 14 capabilities for route hazards, infrastructure stress, and driver fatigue can prevent
 15 accidents before they occur. The ability to conduct real-time obstacle detection
 16 and provide advanced driver assistance, as highlighted up, offers a new layer of
 17 protection that manual processes cannot match. This aligns with the broader
 18 goals of intelligent transport systems to create safer road environments³⁰.

19

20 *Economic efficiencies and competitiveness*

21

22 The current fragmented permit acquisition process and complex route
 23 planning are major cost drivers. AI's capacity to automate compliance checks,
 24 facilitate cross-border permitting, and optimize routes directly translates into
 25 substantial cost reductions and improved operational efficiency. These
 26 efficiencies can enhance the competitiveness of EU transport operators, allowing
 27 them to offer more reliable and cost-effective services, thereby strengthening the
 28 single market. This also supports the economic dimension of sustainable
 29 development by fostering innovation and growth³¹.

30

31 *Advancing environmental sustainability*

32

33 Oversized transports, due to their size and weight, have a considerable
 34 environmental footprint. AI-driven fuel optimization and intelligent routing can
 35 significantly reduce fuel consumption and associated emissions. By minimizing
 36 detours and optimizing speed profiles, AI contributes directly to the EU's Green
 37 Deal objectives and various Sustainable Development Goals, particularly SDG
 38 13 (Climate Action) and SDG 11 (Sustainable Cities and Communities)³². This
 39 directly supports urban sustainability goals, such as reduced emissions³³.

³⁰European Parliament Think Tank (EPRS). *Artificial intelligence and transport: New challenges for EU law*. Available online: [https://www.europarl.europa.eu/thinktank/en/document/EPRI_BRI_\(2020\)642838](https://www.europarl.europa.eu/thinktank/en/document/EPRI_BRI_(2020)642838) (Analyses legal and ethical challenges of AI in transport).

³¹World Economic Forum. *The Future of Mobility*. Available online: <https://www.weforum.org/reports/the-future-of-mobility/> (Includes sections on innovation, emerging technologies, and sustainability in transport).

³²Idem

³³Petru & Krivda, (2021), 13, 5524. <https://doi.org/10.3390/su13105524>

1

2 *Addressing regulatory and governance gaps*

3

4 While AI offers solutions, it also exposes critical gaps in the existing
 5 regulatory framework. The fundamental challenge of liability for AI-driven
 6 decisions, data governance, and ethical considerations is amplified in the context
 7 of cross-border oversized transport. The "regulatory lag" – the slower pace of
 8 legislative adaptation compared to technological evolution – demands urgent
 9 attention. A key argument is that without a harmonized and agile legal
 10 framework, the full potential of AI cannot be realized, and its deployment might
 11 even be hindered or lead to unintended consequences³⁴.

12

13 *The imperative of interoperability and data quality*

14

15 The effectiveness of AI systems hinges on high-quality, standardized, and
 16 interoperable data from diverse sources. The current lack of seamless data
 17 exchange across national systems within the EU poses a significant barrier. This
 18 underscores the need for substantial investment in digital infrastructure and the
 19 development of common data standards to enable the full benefits of AI, as
 20 emphasized by Digital Transport and Logistics Forum³⁵.

21

22 *Socio-economic considerations*

23

24 The integration of AI will undoubtedly impact the workforce, particularly
 25 drivers and administrative personnel. Addressing concerns about job
 26 displacement through proactive reskilling and upskilling initiatives is crucial for
 27 social acceptance and a just transition. Furthermore, ensuring public trust in AI
 28 systems, especially in safety-critical operations, requires transparency and robust
 29 ethical guidelines.

30 In essence, the findings suggest that AI holds immense promise for
 31 revolutionizing oversized transport in the EU by addressing its core challenges
 32 of safety, efficiency, and environmental impact. However, realizing this
 33 potential is contingent upon a concerted effort to overcome significant
 34 regulatory, infrastructural, and socio-economic hurdles through strategic
 35 investment, harmonized policy-making, and collaborative governance. The
 36 necessity of integrated urban planning³⁶ and policy frameworks that balance
 37 economic development needs with environmental protection and infrastructure

³⁴ENISA (European Union Agency for Cybersecurity). *Cybersecurity in the Transport Sector*. Available online: <https://www.enisa.europa.eu/publications/cybersecurity-in-the-transport-sector> (Provides insights into cybersecurity risks in connected transport infrastructures).

³⁵European Commission's Digital Transport and Logistics Forum (DTLF). Search for reports and best practice guides on the digitalization of freight transport in the EU. Available online: https://transport.ec.europa.eu/transport-themes/digitalisation-transport-and-logistics_en (Relevant for EU-level digital initiatives in transport).

³⁶Szczucka-Lasota (2017): 157-165. DOI: <https://doi.org/10.20858/sjsutst.2017.97.14>

1 resilience is paramount, advocating for smart, adaptive solutions to ensure the
 2 sustainable accommodation of oversized transport within future cities³⁷.

3 And, as I previously argued, this AI system must be constantly supervised
 4 and verified by the human factor.

5

6

7 Recommendations for EU Member States

8

9 **⊕ Develop a Harmonized EU AI-in-Transport Framework:** It is imperative
 10 to establish clear, flexible, and future-proof regulations at the EU level. This
 11 framework must comprehensively address critical AI-specific issues such as
 12 liability in autonomous operations, robust data governance protocols, stringent
 13 cybersecurity standards, and seamless interoperability requirements specifically
 14 tailored for oversized transport.

15 **⊕ Invest in Digital Infrastructure:** Prioritize and allocate substantial funding
 16 for the accelerated deployment of advanced 5G networks, the widespread
 17 implementation of smart sensor technologies, and the creation of integrated data
 18 platforms along key European transport corridors. These infrastructures must be
 19 specifically designed and optimized to support the unique and demanding needs
 20 of oversized logistics.

21 **⊕ Foster Public-Private Partnerships (PPPs):** Actively encourage and
 22 facilitate robust collaboration between public authorities, private transport
 23 companies, cutting-edge technology developers, and leading academic
 24 institutions. This collaborative approach should aim to co-create innovative AI
 25 solutions, share the associated risks, and equitably distribute the benefits across
 26 the entire ecosystem.

27 **⊕ Standardization and Interoperability:** Drive the development and
 28 adoption of common technical standards for AI and Internet of Things (IoT)
 29 systems within the transport sector. This is crucial to ensure seamless data
 30 exchange, operational continuity, and efficient cross-border movements of
 31 oversized loads across diverse national systems.

32 **⊕ Capacity Building and Training:** Implement comprehensive and
 33 continuous training programs targeting transport operators, specialized drivers,
 34 administrative staff, and regulatory bodies. These programs should aim to equip
 35 all personnel with the necessary digital literacy, AI operational skills, and a deep
 36 understanding of the new technological paradigms.

37 **⊕ Pilot Projects and Research:** Provide dedicated funding and robust support
 38 for pilot projects that rigorously test and validate AI solutions for oversized
 39 transport in real-world conditions across various EU Member States. This
 40 approach will facilitate iterative learning, enable rapid adaptation of best
 41 practices, and build a strong evidence base for wider deployment.

42 **⊕ Promote Data Sharing and Governance:** Establish secure, transparent,
 43 and standardized mechanisms for sharing relevant data (e.g., real-time
 44 infrastructure data, traffic conditions, weather patterns) between public and

³⁷Petru & Krivda, (2021), 13, 5524. <https://doi.org/10.3390/su13105524>

1 private entities. Crucially, these mechanisms must be underpinned by stringent
 2 data privacy and security protocols to build trust and ensure responsible data
 3 utilization.

4

5 By proactively addressing these recommendations, EU Member States can
 6 collectively harness the transformative power of AI to make oversized transport
 7 not only safer and more efficient but also significantly more sustainable,
 8 solidifying Europe's leadership in intelligent mobility.

9

10

Conclusions

12

13 The integration of Artificial Intelligence into oversized transport within the
 14 European Union represents a profoundly promising frontier for significantly
 15 enhancing safety, efficiency, and sustainability. While the challenges associated
 16 with this integration are considerable, particularly those pertaining to regulatory
 17 adaptation, digital infrastructure development, and cybersecurity, the
 18 demonstrable potential benefits unequivocally warrant sustained investment and
 19 collaborative efforts from all stakeholders.

20

21

References

23

- 24 Bahram A, Haibo W, Lutfu S. (2023) The Last-Mile Delivery of Heavy, Bulky,
 25 Oversized Products: Literature Review and Research Agenda. *Logistics*, 7, 98.
 26 <https://doi.org/10.3390/logistics7040098>
- 27 Bădescu M, Purcar C M (2017) Considerations on oversized transportation in the
 28 UE(Community). In *MATEC Web Conf. Volume 121*, 8th International Conference
 29 on Manufacturing Science and Education – MSE 2017 “Trends in New Industrial
 30 Revolution”, <https://doi.org/10.1051/matecconf/201712106001>
- 31 Deloitte. *AI in Government: The Future of Public Service*. Available online: <https://www2.deloitte.com/us/en/insights/focus/cognitive-technologies/ai-in-government-future-public-service.html> (Accessed for AI in automating administrative processes
 32 and digital permits).
- 33 ENISA (European Union Agency for Cybersecurity). *Cybersecurity in the Transport
 34 Sector*. Available online: <https://www.enisa.europa.eu/publications/cybersecurity-in-the-transport-sector> (Provides insights into cybersecurity risks in connected
 35 transport infrastructures).
- 36 European Commission's Digital Transport and Logistics Forum (DTLF). Search for
 37 reports and best practice guides on the digitalization of freight transport in the EU.
 38 Available online: https://transport.ec.europa.eu/transport-themes/digitalisation-transport-and-logistics_en (Relevant for EU-level digital initiatives in transport).
- 39 European Commission. *Transport policy: Road transport - Weights and dimensions*.
 40 Available online: https://transport.ec.europa.eu/transport-themes/road-transport-weights-and-dimensions_en (Accessed for general EU regulatory context).
- 41 European Parliament Think Tank (EPRS). *Artificial intelligence and transport: New
 42 challenges for EU law*. Available online: <https://www.europarl.europa.eu/thinktank/>

- 1 [en/document/EPRS_BRI\(2020\)642838](https://en/document/EPRS_BRI(2020)642838) (Analyses legal and ethical challenges of AI
2 in transport).
- 3 IRU (International Road Transport Union). *Challenges of Abnormal Loads Transport*
4 *in Europe*. [Search for reports or articles on IRU website related to special
5 transports and administrative barriers]. Available online: <https://www.irq.org/>
6 (Provides insights into cross-border complexities).
- 7 Journal of Transport Geography / Transportation Research Part C: Emerging Technologies.
8 (Academic journals for research on AI applications in logistics, heavy transport, and
9 traffic management). [Example: ScienceDirect](#) or [SpringerLink](#) (Search for relevant
10 articles).
- 11 KPMG. *Driving change: How AI is transforming the transport industry*. Available
12 online: <https://kpmg.com/xx/en/home/insights/2023/10/driving-change-how-ai-is->
13 [transforming-the-transport-industry.html](https://kpmg.com/xx/en/home/insights/2023/10/driving-change-how-ai-is-transforming-the-transport-industry.html) (Accessed for AI applications in route
14 optimization and logistics).
- 15 Macioszek E (2019) Conditions of oversize cargo transport, *Scientific Journal of*
16 *Silesian University of Technology Series Transport* 102: 109-117, DOI: [10.20858/](https://doi.org/10.20858/sjsutst.2019.102.9)
17 [sjsutst.2019.102.9](https://doi.org/10.20858/sjsutst.2019.102.9)
- 18 National Strategy on Intelligent Transport Systems for the period 2022-2030. Approved by
19 Government Decision no. 877/2022, published in the Official Gazette of Romania, Part
20 I, no. 894 of September 8, 2022 [Strategia Națională privind sistemele de transport
21 inteligente pentru perioada 2022-2030. Aprobată prin Hotărârea Guvernului nr.
22 877/2022, publicată în Monitorul Oficial al României, Partea I, nr. 894 din 8 septembrie
23 2022].
- 24 Masłowski D, Dendera-Gruszka M, Giera J, Kulińska E, Olejnik K, Szumidłowska J
25 (2024) Risks and Challenges of Oversized Transport in the Energy Industry.
26 *Energies* (19961073) vol. 17 Issue 24: 6444.
- 27 Petru J, Krivda V (2021) The Transport of Oversized Cargoes from the Perspective of
28 Sustainable Transport Infrastructure in Cities. *Sustainability*, 13(10), 5524; <https://doi.org/10.3390/su13105524>
- 29 Petru J, Krivda V (2020) *The usage of UAV in the transport of oversized cargoes*, GIS
30 Ostrava 2020 – UAV in Smart City and Smart Region, Ostrava
- 31 Ramūnas P, Artūras P (2012) Heavyweight and oversized cargo transportation, risk
32 management. *Transport and Telecommunication* Volume 13, No 1: 51–56 (Transport
33 and Telecommunication Institute, Lomonosova 1, Riga, LV-1019, Latvia), DOI 10.2478/
34 v10244-012-0005-9
- 35 Sławomir J. Comprehensive analysis of oversized cargo transportation market in Poland
36 (2001-2022): Trends, regulations, and industry dynamics. *Journal of Sustainable*
37 *Development of Transport and Logistics* 8(2): 136-152. DOI: 10.14254/jsdtl.20
38 23.8-2.10.
- 39 Szczucka-Lasota B (2017) City logistics: influence of oversized road transport on urban
40 development. *Scientific Journal of Silesian University of Technology*. Series
41 Transport, vol 97: 157-165. DOI: <https://doi.org/10.20858/sjsutst.2017.97.14>
- 42 World Economic Forum. *The Future of Mobility*. Available online: <https://www.weforum.org/reports/the-future-of-mobility/> (Includes sections on innovation, emerging
43 technologies, and sustainability in transport).
- 44 UNECE (United Nations Economic Commission for Europe). *Automated Driving and*
45 *Cybersecurity in Road Transport*. Search for relevant publications on UNECE
46 website concerning regulatory frameworks for automated vehicles and cybersecurity.
47 Available online: <https://unece.org/transport/publications> (Provides a broader
48 international perspective on autonomous systems). <https://digital-strategy.ec.europa.eu/policies/digitalisation-mobility>