

1 The Greenhouse in Space (GHIS) as STEM 2 Educational Experience

3
4 *In 2011, the section Human Spaceflight (HSF) of the European Space Agency
5 (ESA) proposed the instructional project Greenhouse in Space (GHIS).
6 Addressed to young teens (ages 12 to 14), the GHIS aimed at comparing the
7 growth of the *Arabidopsis thaliana* on Earth, at different latitudes and without
8 sunlight, and in space (micro-g environment). The plants were seeded
9 contemporarily, in standard miniature greenhouses, by around eight-hundred
10 European schoolers, by the crew of the isolation experiment Mars500
11 (Moscow), and by the Italian astronaut Paolo Nespoli within the MagISstra
12 mission on the International Space Station (ISS). Despite a potentially
13 hazardous accident occurring on the ISS, the GHIS became a successful STEM
14 experience, enthusiastically accomplished in sundry schools. Its heritage about
15 microgravity plant research was formidable also outside Europe, notably in the
16 US National Aeronautics and Space Administration (NASA). We illustrate how
17 GHIS was implemented in numerous hands-on laboratories via learning-by-
18 doing, and how such massive participation persuaded the space agencies to
19 pursue further educational ventures and partnerships. We focus on the GHIS
20 activity of 25 Italian pupils from the Scientific High School "Giovanni Battista
21 Grassi" in Latina (seat of the Planetarium "Livio Gratto"). The key reference is
22 a talk delivered in the 98th annual congress of the Italian Physical Society at the
23 University of Naples (September 17–21, 2012) together with a poster
24 presentation in the international conference GIREP-EPEC 2011 at the
25 University of Jyväskylä in Finland (August 1–5, 2011).*

26
27 **Keywords:** GHIS, ISS, ESA, HSF, EPO, NASA, ASI, STEM, HOL, ESD, ICT,
28 SEND, TRL, secondary school, educational project, learning by doing, citizen
29 science.

31 32 Introduction

33
34 In 2009, under the innovative management of the Italian astrophysicist
35 *Simonetta Di Pippo*¹, the ESA's Directorate of Human Spaceflight devised the
36 Greenhouse in Space (acronym GHIS) as both an inspiring scientific experiment
37 and a valid educational opportunity and launched the preparatory campaign
38 "Feeding our Future: Nutrition on Earth and in Space" by spreading multi-
39 language lesson notes via DVDs targeted to European secondary schools. The
40 GHIS was inaugurated in February 2011 (Figure 1) by the European Space
41 Agency – Human Spaceflight (ESA–HSF for brevity) and summarized as follows:
42 "The Greenhouse in Space is an educational project by ESA involving
43 schoolchildren aged between 12 and 14 and ESA astronaut Paolo Nespoli at the
44 International Space Station growing the same plants in similar small greenhouses

¹<https://bit.ly/494CHis>.

1 for several months. The project started on 17 February 2011 with an event in four
2 locations in Europe:

3

4 • Cité de l'espace in Toulouse France;
5 • ESA European Astronaut Centre, Cologne, Germany;
6 • ESA ESRIN, Frascati, Italy;
7 • Ciência Viva in Lisbon Portugal.

8

9 The students were connected to each other and to the ISS to speak with Paolo
10 Nespoli, who planted and watered the first seeds live. Paolo is now using his
11 specially-developed greenhouse in space to grow plants and make observations of
12 the life cycle of a flowering plant. The schoolchildren are able to follow this with
13 their own experiment on the ground, using a similar greenhouse and the same
14 species of plant." (from ESA website²).

15

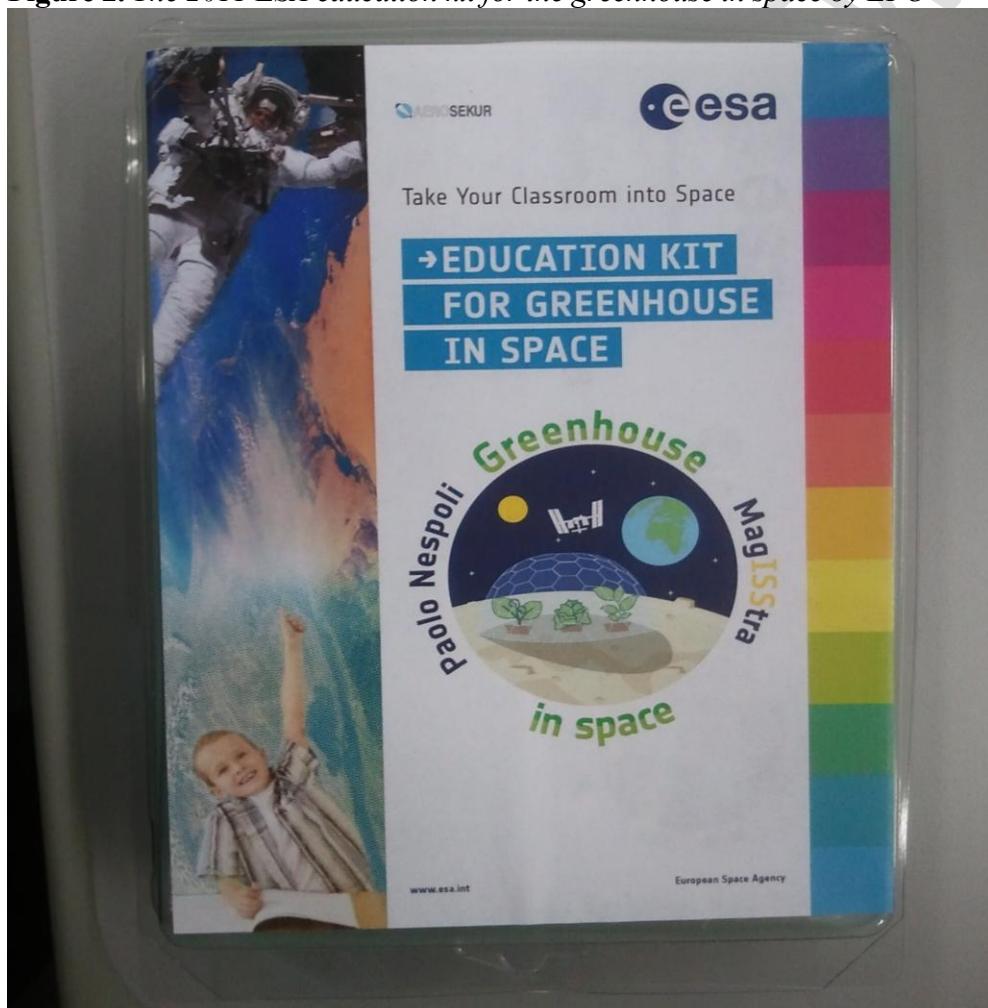
16 **Figure 1.** The 2011 official logo of the Greenhouse in Space

17

18 Source: <https://bit.ly/3B6Tymb>.

19

20 Approximately 800 European schoolers, including pupils with Special
21 Education Needs and Disabilities (SEND), joined the *GHIS* through STEM
22 instructional projects based on Hands-On Laboratory (HOL) which reinforced the
23 Education for Sustainable Development (ESD) for the critical role of plants in any
24 ecosystems. The *GHIS* also fostered the Information & Communication
25 Technologies (ICT) because students and teachers attended a live in-flight call
26 with Paolo Nespoli³, and they were invited to send their photos and talk to each


²<https://bit.ly/3TLHixl>.

³ <https://bit.ly/44ichaD>.

1 other on a Facebook page as well as by emailing the Human Spaceflight education
 2 team (Gras-Velázquez 2016). Here we give a synopsis of the initiative, from the
 3 first announcement (February 3, 2011) to the closing event (May 25, 2011), with
 4 mentions to the pioneering programme "Feeding our Future" and to the ESA
 5 missions *MagIStra* and *Mars500*. Later we describe the contribution from the
 6 Scientific High School "G.B. Grassi" of Latina (Italy), famous for its Planetarium
 7 (Bonacci 2011a), whose pupils seeded, watered and observed an *Arabidopsis*
 8 *thaliana* growing in the mini greenhouse (Fig. 2) supplied by the well-established⁴
 9 Education Payload Operations (EPO). Most of the material about that trailblazing
 10 STEM activity comes from a topical talk (Bonacci 2012) and a poster presentation
 11 (Bonacci 2011b). The legal framework and up-to-date literature are retrieved from
 12 current institutional and sectorial websites.

13

14 **Figure 2.** The 2011 ESA education kit for the greenhouse in space by EPO

15

16 *Source:* <https://bit.ly/4eFltcz>.

17

⁴ <https://bit.ly/4jBridA>.

1 **The forerunner ESA programme "Feeding our Future"**
2

3 In 2009, the European Space Agency – Human Spaceflight launched the
4 preparatory campaign "Feeding our Future: Nutrition on Earth and in Space",
5 examining food as a vital part of life on Earth and in space. In the ESA's
6 explanatory page⁵, the HSF clarified that the programme, available in 13
7 languages (namely: Český, Dansk, Deutsch, English, Español, Ελληνικά, Français,
8 Italiano, Nederlands, Norsk, Português, Suomi, Svenska) and presented by ESA
9 Life Scientist *Nicole Sentse*, "shows why we need food in the first place and what
10 it represents in our culture and daily living. The video illustrates how our bodies
11 process food as a source of energy and building materials. It looks at the
12 importance of good nutrition for a healthy life and what can happen without it,
13 whether here on Earth or in space. The programme also looks at research for
14 preserving and growing food for long flights, as well as valuable technology for
15 future food supplies on Earth, where climate change and population growth are
16 global challenges. New techniques developed for space missions can help to feed
17 hungry people on our planet. The DVD has a duration of 35 minutes and can be
18 downloaded as a high-resolution movie (417 MB). A Teacher's Guide and a
19 User's Guide are also available for download." In addition, the ESA-HSF's
20 Director *Simonetta Di Pippo* expounded that: "Food and nutrition are a
21 fundamental part of our daily lives, not only because we need energy and nutrients
22 to stay alive, but also because they are the basis of our culture and way of life. The
23 ancient Romans used to say 'mens sana in corpore sano' (healthy mind in a healthy
24 body), a saying that is even more meaningful nowadays as it emphasises the
25 importance of food and nutrition for a healthy life style – especially for the
26 younger generation. I am therefore pleased to introduce to European educators and
27 students, the programme 'Feeding our Future – Nutrition on Earth and in Space'.
28 The programme deals with the topic of nutrition from an inspirational perspective
29 – space travel. Astronauts on board the International Space Station must stay
30 healthy to be able to cope with the demands of life in space. Long term space
31 exploration requires advanced technologies in several different fields, including
32 life support systems for astronauts. Europe contributes a great deal to the life
33 support system research effort and food technology is an important focus. So one
34 of the next big questions is 'what will be for dinner on the Moon?' Space – like
35 nutrition – is an interdisciplinary topic because of its scientific, technological,
36 cultural and emotional values. It is therefore an ideal and inspirational subject to
37 engage and provide curriculum related material for European students. One of the
38 missions of the ESA Directorate of Human Spaceflight is to bring the fascination
39 of human spaceflight and exploration to our youth. Education is part of the
40 intangible benefits of our programme that contribute greatly to the establishment
41 of a knowledge-based society in Europe. I wish all teachers and students a pleasant
42 view and work in the classroom." (from ESA website⁶).
43

⁵<https://bit.ly/45ppQVF>.

⁶<https://bit.ly/4q6xAUU>.

1 **The two ESA missions committed with GHIS**
23 The *GHIS* was tested in the microgravity of an orbiting laboratory and in
4 absence of sunlight. Such extreme environments were provided, respectively, by
5 two pivotal 2010–2011 ESA missions:6

- 7 • *MagIStra*, 159 days on the International Space Station (Fig. 3);
- 8 • *Mars500*, 520 days in an isolation chamber in Moscow.

9 Ground-based drop facilities and any other experimental setup for domestic
10 microgravity, alternative to the International Space Station, were excluded for the
11 long duration of the plants' growth.12 **Figure 3. Astronaut Paolo Nespoli and ISS crew in December 2010**15 Source: <https://bit.ly/4erdZbB>.
1617 **The ESA–ISS mission MagIStra (December 15, 2010 – May 24, 2011)**
1819 Let us recall the mission MagIStra (Fig. 4): "ESA astronaut Paolo Nespoli
20 was launched to the International Space Station for a long-duration mission on 15
21 December, serving as flight engineer for Expeditions 26 and 27. This was the third
22 six-month mission by a European astronaut on the Station. From December 2010
23 to May 2011, Paolo, ESA's Italian astronaut, carried out an intensive programme
24 of experiments, ranging from radiation monitoring to measurements that could
25 improve oil recovery in petroleum reservoirs. His duties aboard the Space Station
26

1 included participating in docking operations to receive two cargo spacecraft:
2 Europe's second Automated Transfer Vehicle (ATV) *Johannes Kepler*, and the
3 second Japanese HII Transfer Vehicle (HTV). Both are unmanned spacecraft used
4 to resupply the International Space Station. Nespoli was the prime operator for
5 berthing the HTV to the Station after the free-flying vehicle was captured by his
6 crewmate Catherine Coleman. In May, Nespoli received a new Italian crewmate
7 for five days. ESA astronaut Roberto Vittori, assigned to Space Shuttle mission
8 STS-134, flew to the Station on a flight opportunity provided by the Italian space
9 agency, ASI. The Space Shuttle also delivered the Alpha Magnetic Spectrometer
10 (AMS-02) to the Station. With more than 30 experiments during this mission,
11 European space science is, as usual, driven by the quest to improve life on our
12 planet. The mission scientific programme covered human research, fluid physics,
13 radiation, biology and technology demonstrations. Paolo not only carried out
14 experiments for ESA, but also for the US, Japanese and Canadian space agencies.
15 As part of his educational programme, children had the chance to follow an
16 international initiative built around health, well-being and nutrition (Mission X:
17 Train Like an Astronaut), as well as a special greenhouse activity in space. From
18 his privileged viewpoint in space, Nespoli used ESA's novel 3D camera to show
19 unprecedented images of the Station." (from ESA website⁷).
20

21 **Figure 4.** The 2010 official logo of the mission MagISStra

22
23 Source: <https://bit.ly/3MNbAwa>.
24
25

⁷<https://bit.ly/40vhYiT>.

1 *The ESA-IBMP mission Mars500 (June 3, 2010 – November 5, 2011)*

2

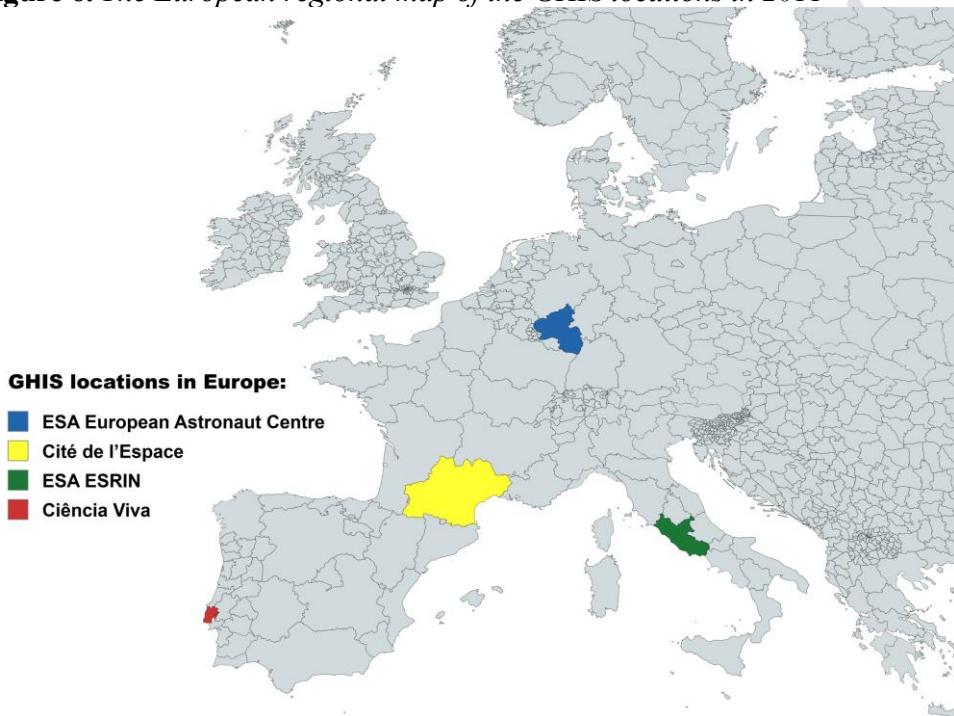
3 Let us recall the *Mars500* study (Fig. 5): "Human exploration of our Solar
4 System is an important focus for ESA. The Agency has started on the path to
5 making this a reality. Making sure that our astronauts are prepared mentally and
6 physically for the demands of long exploration missions is imperative to a
7 mission's success. In light of this, ESA undertook a cooperative project with the
8 Russian Institute for Biomedical Problems (IBMP) in Moscow, called Mars500.
9 ESA's Directorate of Human Spaceflight has a long tradition of conducting
10 research on the physiological and psychological aspects of spaceflight. ESA's
11 bedrest studies, in particular, are at the forefront of scientific research to
12 understand how the human body reacts under weightless conditions, in order to
13 devise effective countermeasures and enable humans to undertake long missions in
14 space effectively. Mars500 is part of these scientific efforts to prepare for human
15 exploration missions. When preparing for long space missions beyond the six-
16 month range undertaken by Expedition crews on the International Space Station
17 (ISS), medical and psychological aspects become an issue of major importance.
18 When contemplating missions beyond Low Earth Orbit, such as to the Moon and
19 Mars, daily crew life and operational capabilities may be affected by the hazardous
20 space environment, the need for full autonomy and resourcefulness, the isolation, the
21 interaction with fellow crewmembers and other aspects. A better understanding of
22 these aspects is essential for development of the elements necessary for an
23 exploration mission. Whereas research onboard the ISS is essential for answering
24 questions concerning the possible impact of weightlessness, radiation and other
25 space-specific factors, other aspects such as the effect of long-term isolation and
26 confinement can be more appropriately addressed via ground-based simulations.
27 The purpose of the Mars500 study is to gather data, knowledge and experience to
28 help prepare for a real mission to Mars. Obviously there has not been effect of
29 weightlessness, but the study is helping to determine key psychological and
30 physiological effects of being in such an enclosed environment for such an
31 extended period of time. The participants act as subjects in scientific investigations
32 to assess the effect that isolation has on various psychological and physiological
33 aspects, such as stress, hormone regulation and immunity, sleep quality, mood and
34 the effectiveness of dietary supplements. The knowledge gained during the study
35 is invaluable in providing the basis for the potential development of
36 countermeasures to deal with any unwanted side effects of such a mission, and
37 also to help in astronaut selection procedures, and at a modest expense. On the
38 European side, the Mars500 programme was financed from the European
39 Programme for Life and Physical Sciences in Space (ELIPS) and involves
40 scientists from across Europe. Life in the isolation chamber – In order to simulate
41 a mission to Mars, six candidates (three Russian, two European and one Chinese)
42 were sealed in an isolation chamber in June 2010. This group was chosen to
43 encompass working experience in many fields, including medicine, engineering,
44 biology and computer engineering. Part of the chamber simulated the spacecraft
45 that would transport them on their journey to and from Mars and another part
46 simulated the landing module that would transfer them to and from the martian

1 surface. Following the completion of an initial 105-day isolation period in 2009, a
 2 full 520-day study was started in June 2010. Candidates for this test began their
 3 mission training in February 2010 and the end of the isolation period was 4
 4 November 2011. Sealed in the chamber, the candidates had only personal contact
 5 with each other plus voice contact with a simulated control centre and family and
 6 friends as would normally happen in a human spaceflight mission. A 20-minute
 7 delay was built into communications with the control centre to simulate an
 8 interplanetary mission and the crew was given almost an identical diet to that used
 9 for the International Space Station. As with a human spaceflight mission, the crew
 10 was free to take certain personal items, and they were supplied with books, films,
 11 personal laptops and can occupy themselves with physical exercise or their own
 12 studies. During the isolation period the candidates simulated all elements of the
 13 Mars mission, travelling to Mars, orbiting the planet, landing and return to Earth.
 14 The crew was responsible for monitoring and maintaining the health and
 15 psychological states of themselves and each other as well as monitoring and
 16 controlling and maintaining systems, including life support, control resource
 17 consumption. During the mission the crew carried out standard and non-standard
 18 cleaning and maintenance, as well as fulfilling scientific investigations. A 7-day
 19 week was put in place with two days off and a rotational system was put in place
 20 for night shifts. Non-standard and emergency situations were simulated to
 21 determine the effect of a decrease in work capability, sickness, and also failures of
 22 the onboard systems and equipment. During 'Mars surface operations' the crew
 23 was divided into two groups of three people each. Once the first group 'descended'
 24 to the martian surface, the hatch between the martian simulation module and the
 25 rest of the facility was closed by the second group and was opened again only
 26 when the Mars surface stay simulation ended." (from ESA website⁸)
 27

28 **Figure 5.** The 2010 official logo of the isolation experiment Mars500

29
 30 Source: <https://bit.ly/44tRorH>.
 31

⁸<https://bit.ly/4kgoWiO>.


1 **The ESA–HSF educational project "Greenhouse in space"**
23 *Paolo Nespoli performs a preliminary greenhouse test (December 26, 2010)*
45 Onboard the ISS module Columbus, Paolo Nespoli performed an illumination
6 test⁹ within the EPO's operation "Greenhouse", supported by the Norwegian
7 USOC (Basit 2012), on December 26, 2010.
89 *ESA-HSF announces the GHIS educational project (February 3, 2011)*
1011 On February 3, 2011, the European Space Agency – Human Spaceflight
12 Education (ESA–HSF for short) announced the project Greenhouse in Space
13 (GHIS) as follows¹⁰: "It's a small greenhouse for space voyagers – and for you.
14 Paolo Nespoli has a special greenhouse with him at the International Space Station
15 and he's inviting young science enthusiasts to conduct an experiment with him.
16 *Instructions are now online!* Growing plants in space will be crucial for the
17 astronauts of the future. When flying to Mars or even further, it will be necessary
18 to produce fresh food onboard and become partially self-sufficient. Setting up
19 greenhouses on the Moon, Mars or other planetary bodies will also be an
20 important part of future exploration missions. Greenhouses also provide oxygen
21 and bring some life to the bleakness of space. Caring for plants is a good way to
22 maintain memories of Earth and an enjoyable way to pass time during the long and
23 possibly boring interplanetary cruise. Plants aboard the ISS – There is no danger of
24 boredom during Paolo's MagISStra mission, as it will be packed with activity and
25 science. The 'Greenhouse in space' project, proposed and conceived by ESA's
26 Directorate of Human Spaceflight, is not only a scientific experiment but also an
27 educational opportunity for schoolchildren aged between 12 and 14. Paolo will use
28 a specially-developed greenhouse in space to grow plants and make observations
29 of the life cycle of a flowering plant. The schoolchildren will be able to follow this
30 with their own experiment on the ground, using a similar greenhouse and the same
31 species of plant. The experiment starts with watering of some thale cress
32 (*Arabidopsis thaliana*) set up in the International Space Station's Columbus
33 laboratory. The children will start their own ground experiments at the same time.
34 Paolo will take still images of the growth cycle and video recordings of key steps
35 in the germination of the plants and post them on the MagISStra website. The
36 participating children will be able to compare the space experiment with their
37 ground experiment. The young scientists on the ground and Paolo in orbit will
38 follow the growth cycle of their flowering plants for about 10 weeks. The children
39 will be encouraged to exchange their observations with each other over this period,
40 creating a Europe-wide network that enables one experiment to link young
41 scientists together in a special way. Schools who wish to participate in this
42 experiment can order their mini greenhouse ground kits from the ESA's Human
43 Spaceflight education website, where there are limited numbers available. [...]
44 The children will be invited to send their end results and observations to the ESA

9⁹<https://bit.ly/3L1DBDc>.10<https://bit.ly/4ipZ0kB>.

1 Human Space Flight education team, who will create a final lesson online for
 2 download by other schools and teachers. The experiment will be launched on 17
 3 February 2011 with a live event linking together nearly 750 children in four
 4 locations in Europe: the European Astronaut Centre in Cologne, Germany¹¹;
 5 ESRIN in Frascati, Italy¹²; Cité de l'Espace in Toulouse, France¹³; and Ciência
 6 Viva – Agência Nacional para a Cultura Científica e Tecnológica in Lisbon,
 7 Portugal¹⁴. Paolo will of course participate in the event from the Space station
 8 which will have its own miniature greenhouse." Let us notice how the *GHIS*
 9 project was accomplished in different European microclimates (Fig. 6).

10

11 **Figure 6. The European regional map of the GHIS locations in 2011**

12

13 Source: <https://bit.ly/3YFX9jE>.

14

15 *ESA-HSF inaugurates the GHIS educational project (February 17, 2011)*

16

17 On February 17, 2011, *GHIS* started with circa eight hundred gardeners on
 18 Earth (above the initial estimate of 750) and one in space: "ESA's 'Greenhouse in
 19 Space' educational project began yesterday in four locations throughout Europe
 20 and on the International Space Station. This unique undertaking involves
 21 schoolchildren and ESA astronaut Paolo Nespoli growing the same plants in
 22 similar small greenhouses for several months. Growing plants is essential for us
 23 all. They not only provide food, but they are also beautiful and relaxing. And they

¹¹<https://bit.ly/3IafwIq>.

¹²<https://bit.ly/4q7CHV1>.

¹³<https://bit.ly/3YoxdJe>.

¹⁴<https://bit.ly/3N60ZzV>.

1 can be educational: the Greenhouse in Space project offers European children aged
 2 10–16 the chance to compare plants grown on Earth with those in space. More
 3 than 800 children are now space gardeners, asking burning questions such as 'How
 4 do plants know where up and down is in microgravity?' and 'How difficult is it to
 5 sow seeds in space?' Together with Paolo Nespoli, ESA's astronaut on the
 6 International Space Station, they will now discover the answers to these questions
 7 with their own experiments. Thursday was seeding day – The project was
 8 launched yesterday in France, Germany, Italy and Portugal, along with Paolo on
 9 the Station. The children and teachers linked up via video, learning how to
 10 assemble their own greenhouses and plant the *Arabidopsis* seeds. Sowing was not
 11 easy because of the minuscule seeds, but the choice of plant was far from random.
 12 *Arabidopsis* has already proved itself to be a hardy grower in space and, even
 13 more importantly, it self-pollinates – essential in the absence of pollinating insects
 14 in space! The students in Cologne were also treated to an impromptu appearance
 15 by Alexander Gerst, one of ESA's newest astronauts. And in Italy, there was a
 16 special space connection: part of the audience were students from Paolo's old
 17 school. Message from Space – Paolo joined the children in the afternoon by video
 18 for a 20-minute call from space, showing us his space-qualified greenhouse and
 19 watering the seeds. He demonstrated that simple procedures on Earth such as
 20 watering is extremely complex and possibly dangerous in weightlessness. Paolo
 21 kindly answered several questions from children in the different countries in a rare
 22 opportunity – it's not every day you get to speak to an astronaut in space. Now the
 23 children and Paolo are eagerly following the growing plants in this 15-week
 24 experiment. The results will be posted as an online lesson in ESA's web pages
 25 once the data from the 800 greenhouses on Earth have been compared to Paolo's
 26 experiment." (from ESA website¹⁵).

27

28 *Mixed news from the ESA's missions (March 17, 2011)*

29

30 In March 2011, the mission MagIStra interrupted the *GHIS* for the presence
 31 of a dangerous fungus, whereas the *Arabidopsis* plants kept growing well at
 32 *Mars500*. ESA clarified that: "Gardens are always a source of surprises. After
 33 three weeks of steady growth in space under the watchful eye of the ESA astronaut
 34 Paolo Nespoli, the baby space plants of the Greenhouse in Space project have
 35 found a new – and unexpected – travelling companion: fungus. The International
 36 Space Station (ISS) ecosystem is a particularly delicate one. Whereas some fungus
 37 does not cause much harm to earthly plants or humans, the balance of the closed
 38 systems in the Station could be compromised. It is known that spaceflight reduces
 39 the crew's immune systems, their ability to fight off infections, and once safety
 40 experts had confirmed that a fungus was growing in the greenhouse, the
 41 unavoidable decision was made to carefully remove the greenhouse from the ISS,
 42 thus avoiding any probability of causing any harm to the astronauts. The
 43 *Arabidopsis* plants, already having proved themselves as a hardy growers in space,
 44 seemed to grow very well despite the uninvited hitch-hiker on board. Paolo was

¹⁵<https://bit.ly/4iNbxyr>.

1 the first one to remark that simple procedures on Earth are extremely complex and
 2 possibly dangerous in weightlessness. 'Part of the experiment was indeed a
 3 success: we were able to grow the plants and observe them.' Even though some
 4 experiments can go wrong, Paolo said, 'This is a lesson to be learned that we can
 5 leave to the future astronauts. I'm sure they will get even better at it.' From real
6 Space Station to virtual Mars spacecraft – The Greenhouse in Space education
 7 project moves on and encourages participating students throughout Europe to
 8 continue their experiments and monitor their plants even more closely. Now it is
 9 time to compare their greenhouses with the martian ones, as the crew of Mars500
 10 found four of these little greenhouses packed in their lander module with all other
 11 cargo. Now they are carefully growing the same plants in their spacecraft-like
 12 modules and the results are coming in." (from ESA website¹⁶).

13

14 *The GHIS closing event (May 25, 2011)*

15

16 On May 25, 2011, the *GHIS* closing event was celebrated as follows:
 17 "Harvest time for the little greenhouses – ESA's high-flying 'Greenhouse in Space'
 18 educational venture began in February with a live link to the Space Station and
 19 four events around Europe. Now, after three months, the project has finished in
 20 Lisbon – and aboard a virtual Mars spacecraft. More than 800 children around
 21 Europe took part in the Greenhouse in Space project with varying results: some of
 22 the *Arabidopsis* seeds in the miniature greenhouses grew well, but some did not.
 23 Most importantly, *Arabidopsis* proved itself to be a hardy grower in space. Its
 24 short life cycle from seed to seed, small size and ability to self-pollinate make
 25 *Arabidopsis* an ideal plant to grow in space. The greenhouse aboard the
 26 International Space Station unfortunately developed a potentially hazardous
 27 fungus. Since the Station's ecosystem is particularly delicate, it was decided to
 28 dispose of it. Whereas some fungi are quite harmless to earthly plants and humans,
 29 the balance of the 'closed' systems in the Station could not be risked. The crew of
 30 the Mars500 simulated mission to the Red Planet began their greenhouse
 31 experiment at the same time as ESA astronaut Paolo Nespoli started his on the
 32 Station. They set up three greenhouses and the results were very encouraging:
 33 some plants completed the full cycle. [...] Thank you, Lisbon! – The project's
 34 closing event was held in Lisbon, Portugal, at the Ciencia Viva science centre.
 35 Ciencia Viva invited 173 children and 20 teachers from eight schools from all over
 36 Portugal to present their findings on 12 May. Duarte Lopes elementary school in
 37 Benavente and Abel Salazar secondary school probed deeper by investigating how
 38 well *Arabidopsis* grows in different soils. Students even tried growing their seeds
 39 in gelatine – and the seeds germinated. Marcelino Champagnat school in Lisbon
 40 kept two greenhouses under the same conditions but withheld fertiliser from one.
 41 The school was awarded the first prize for their presentation and were given a
 42 Space Garden kit to try out some of their new ideas. Students from Duarte Lopes
 43 elementary school suggested using larger seeds and plants that are less sensitive to
 44 wide temperature changes. They concluded that such experiments are important

¹⁶<https://bit.ly/4iIA5sm>.

1 for gaining knowledge for space missions. They found that one experience leads to
 2 many others, and that learning is a continuous process." (from ESA website¹⁷).

3
 4 *The aftermath*

5
 6 The ESA invited all the other European participants to submit their findings
 7 by the end of June 2011. The Italian secondary schools respond to local
 8 administrations (regional or provincial, depending on their curricula) and the
 9 Province of Latina¹⁸ (manufacturing hub in southern Lazio¹⁹) was represented in
 10 the *GHIS* by the Scientific High School "G.B. Grassi" whose students sent their
 11 "Greenhouse results" on May 27, 2011. Anyway, the *GHIS* did not conclude in
 12 May 2011 but lasted until the end of the *Mars500* mission, whose crew were able to
 13 grow their seeds to maturity as well as harvesting new seeds. Their results were
 14 summarized by Romain Charles – one of the crew members: "We started the
 15 Greenhouse in Space experiment with 4 small greenhouses on the 17th of
 16 February 2011. We sowed a total of 36 seeds. After one month, only 5 sprouts
 17 appeared in 2 of the greenhouses. Then I took the decision to prepare the 2 other
 18 greenhouses with a new soil and 16 new seeds. After a few weeks, we had a total
 19 of 7 different plants but some of them were already dying. After 12 weeks (3
 20 months), the pods of the only surviving plant opened and I could harvest its seeds.
 21 I prepared a new greenhouse (new soil) for the seeds newly produced to check if
 22 our production was sustainable. Unfortunately, after 3 weeks, no sprout appeared."
 23 (from ESA website²⁰).

24
 25 *Scientific impact*

26
 27 After the *GHIS* experience, ESA dedicated a specific webpage²¹ to the
 28 research in space, and on parabolic flights, about the *Arabidopsis thaliana*
 29 acknowledging that "Growing plants for food in space and on other planets will be
 30 necessary for exploration of our Universe". The *GHIS* paved the way to modern
 31 microgravity plant research also outside Europe, especially by the National
 32 Aeronautics and Space Administration (NASA). In fact, on April 18, 2014, NASA
 33 launched the "Vegetable Production System" (Veggie) as "a space garden residing
 34 on the space station. Veggie's purpose is to help NASA study plant growth in
 35 microgravity, while adding fresh food to the astronauts' diet and enhancing
 36 happiness and well-being on the orbiting laboratory." (from NASA website²²).
 37 Analogously, on April 18, 2017, NASA launched the "Advanced Plant Habitat"
 38 (APH) as "the largest, fully automated plant growth research facility that is used to
 39 conduct plant bioscience research on the International Space Station (ISS). It
 40 occupies the lower half of the EXpedite the PRocessing of Experiments to Space

¹⁷<https://bit.ly/3DFpsrq>.

¹⁸<https://bit.ly/4spx0mN>.

¹⁹<https://bit.ly/4js9tO2>.

²⁰<https://bit.ly/41Qp6pY>.

²¹<https://bit.ly/44f9YVG>.

²²<https://bit.ly/44X0gHn>.

1 Station (EXPRESS) Rack and one powered International Sub-rack Interface
 2 Standard (ISIS) drawer, providing a fully enclosed, closed-loop plant life support
 3 system with an environmentally controlled growth chamber designed for
 4 conducting both fundamental and applied plant research during experiments
 5 extending up to 135 days. The system requires minimal crew involvement to
 6 install the science, add water, and other maintenance activities. Why is APH
 7 Important? – In order to thrive in deep space, there is a need for new technologies
 8 in space crop production and food safety which will supplement the space diet
 9 with fresh, nutritious crops during space station, cislunar, lunar and eventually
 10 Mars missions. Currently, spaceflight plant research is conducted in plant
 11 chambers designed to operate in microgravity. Previous plant growth systems
 12 were limited by small growth areas available for crop production. In order to
 13 overcome remaining challenges in spaceflight plant research, larger plant growth
 14 systems were required. NASA developed two new plant research facilities, Veggie
 15 and the APH, for conducting spaceflight plant research on station as recommended
 16 by the National Research Council Decadal Survey Study 'Recapturing a Future for
 17 Space Exploration: Life and Physical Sciences Research for a New Era.' Both
 18 these facilities have larger plant growth areas and are designed for studying crop
 19 production, plant-to-plant interactions, and human-plant-microbial ecosystems
 20 using large plants in microgravity. Future plant research conducted in these
 21 research facilities will help enable exploration by improving our understanding of
 22 how plants, and the associated microbiomes in leaves and roots, grow in the
 23 spaceflight environment. This knowledge is essential for developing suitable
 24 countermeasures to mitigate potential problems of crop production, water
 25 recycling and atmosphere revitalization needed for supporting sustainable and
 26 long-term human colonies in space. Space Applications – APH seeks to further
 27 our understanding of plant biology and crop growth in space. The variety of
 28 experiments flown use the APH facility test the genetic and epigenetic effects of
 29 spaceflight, plant metabolism, factors leading to crop flavor, and the effectiveness
 30 of APH hardware to grow plants for human consumption in space. Experience
 31 gained cultivating crops with APH will inform deep space missions requiring
 32 more sustainable and nutritional food sources. Earth Applications – The primary
 33 purpose of APH is to improve our understanding of plant growth in space.
 34 However, the findings from these investigations could provide better
 35 understanding of plant biology with relevance to generating increased agricultural
 36 yields, enhanced flavor, or more stable and easily cultivated crops." (from NASA
 37 website²³). The enduring echo of *GHIS* induced ESA to launch, in April 2017, the
 38 *AstroPlant* as "a citizen science initiative that aims to inspire home-gardeners,
 39 schools, urban farmers and enthusiasts to nourish seeds selected by the
 40 MELiSSA²⁴ team. Data recorded via a smartphone app will be sent to ESA for
 41 processing." (from ESA website²⁵).
 42

²³<https://bit.ly/49pQmQ4>.

²⁴<https://bit.ly/41eb0am>.

²⁵<https://bit.ly/3IcYGss>.

1 *Educational impact*

2

3 We define *GHIS* as a STEM activity for involving three different subjects
 4 (Kelley & Knowles 2016): Astronomy, Biology, and Science. Although missing
 5 one of its highest goals, i.e., a full comparison with the ISS experiment, the *GHIS*
 6 strongly opposed the low attractiveness of STEM studies (Nistor et al. 2018), with
 7 a passionate response from eight hundred students, with various SEND pupils
 8 (Ianes et al. 2020), and dozens of teachers. As highlighted by the organizers²⁶,
 9 *GHIS* encouraged children's interest in science at an early age; the teacher *Paulo*
 10 *Fonseca* (Escola Básica D. Duarte, Viseu) exclaimed: "This was a unique occasion
 11 to talk to an astronaut and stimulate the appetite for science of our kids". Even the
 12 unexpected mold onboard the ISS turned into an instructional opportunity, letting
 13 the pupils realize that laboratory tests can be affected by accidents that virtual
 14 simulations often neglect (Bonacci 2025). The *GHIS* projects were implemented
 15 via *learning by doing* (Dewey 1916) in traditional laboratories (technology level
 16 TRL 4), triggering the emotional intelligence (Parker et al. 2004), and
 17 corroborating both the ICT (Gras-Velázquez 2017) and the ESD (Gras-Velázquez
 18 & Fronza 2020). The *GHIS* contribution from "G.B. Grassi" of Latina, the
 19 scientific high school hosting the Planetarium "Livio Gratto" (Bonacci 2013),
 20 was fairly appreciated in the Section "Didactics of Physics" of the 98th Congress
 21 of the Italian Physical Society (September 17–21, 2012) at the University of
 22 Naples (Bonacci 2012) and in the Poster Session of the international conference
 23 GIREP-EPEC 2011 (August 1–5, 2011) at the University of Jyväskylä in Finland
 24 (Bonacci 2011b). The latter projected the young city of Latina²⁷ on an
 25 international stage, so that the cosmonaut Walter Villadei went there in person to
 26 sponsor the school contest "Space for Your Future. The ISS: Innovatio, Scientia,
 27 Sapientia" in 2016 (Bonacci 2023). In conjunction with the start of the *GHIS*
 28 campaign, ESA potentiated the European Space Education Resource Office
 29 (ESERO²⁸); opened in 2006²⁹, such project has become the foremost path of
 30 supporting early years, primary and secondary education community in Europe.
 31 On the footprint of the *GHIS*, the Italian Space Agency (ASI) promoted other
 32 instructional initiatives with the endorsement of astronauts as science ambassador
 33 (McNamee 2025), like the competition "YiSS – Youth ISS Science" publicized by
 34 Paolo Nespoli³⁰. In Spain, instead, the "Ignacio da Riva" University Microgravity
 35 Institute³¹ supported the "Europe to Space" program (EU2Space³²), a challenge
 36 addressed to the university students from any major (Roibas-Millan et al. 2023) to
 37 "plan, design, solve, and put your hands on a real satellite that will fly to space"
 38 (from UARX website³³).

39

²⁶<https://bit.ly/4iNbxyr>.

²⁷<https://bit.ly/4mKNJhg>.

²⁸<https://bit.ly/3HBG8IP>.

²⁹<https://bit.ly/4lO6Mpp>.

³⁰<https://bit.ly/47XKf6a>.

³¹<https://bit.ly/4qISWYZ>.

³²<https://bit.ly/4pHy2ru>.

³³<https://bit.ly/49qgHyB>.

1 **The GHIS educational project by the "G.B. Grassi" high school**

2

3 We focus on the educational project "A greenhouse in space" by which the
 4 Scientific High School "Giovanni Battista Grassi" of Latina³⁴ joined the *GHIS*
 5 proposed by ESA in 2011. Hosting the Planetarium "Livio Gratton", a mighty
 6 driver of STEM projects (Bonacci 2016a, 2016b) and participatory science
 7 (Bonacci 2020a), that secondary school³⁵ has always been connected to the ESRIN
 8 of Frascati and to "Frascati Scienza" (Bonacci 2018b, 2020b). The short distance
 9 (only 55 km) and excellent welcome organization fostered guided tours and solo
 10 visits in the decade 2010-2020. The consequent peak of enrolment in university
 11 faculties related to space exploration³⁶ confirmed that both STEM career
 12 knowledge and interests are influenced by society at large (Blotnický et al. 2018)
 13 and benefit from the collaboration with multi-stakeholders (Jiménez-Iglesias et al.
 14 2016). Therefore, when ESA ESRIN called for the *GHIS* applications in Italy, the
 15 Director of the Planetarium of Latina responded immediately with an *ad hoc*
 16 project based on *hands-on laboratory* and summarized in the Table 1. Being the
 17 sole school to register in *GHIS*, the "G.B. Grassi" represented the whole Province
 18 of Latina, a territory deeply studied³⁷ by geologists for its peculiar coastal
 19 geomorphology.

20

21 **Table 1. The 2011 GHIS project of the school "G.B. Grassi" in Latina (Italy)**

Title	A greenhouse in space (original title in Italian: "Una serra nello spazio").
Aims	Seeding, watering and observing the growth of a plant in the laboratory with reference to the results obtained in space (mission MagISStra) and on Earth (in the isolation experiment Mars500 and in other schools).
Goal	Spotting the differences between the terrestrial and the space (micro-g) environment about the evolution of a low technology readiness level (TRL 4) botanic process.
Materials	An ESA's standard miniature greenhouse (i.e., a growth chamber with medium perlite, a transparent cover, a transparent cap, a black cut out piece of foam, a seed bag of <i>Arabidopsis thaliana</i> with fertilizer), a watering beaker, a magnifying glass, a pair of thin forceps, some filter paper to place the seeds on, and a large sunny window.
Tools	EPO Educational Kit P/N 309348 ³⁸ for ESA's Greenhouse in space
Project Manager	Enzo Bonacci, Teacher of Mathematics and Physics, Director of the Laboratory of Physics and of the Planetarium "Livio Gratton" in Latina.
Project Team	Twenty-five students aged 14, sixteen girls and nine boys, from the Scientific High School "Giovanni Battista Grassi" in Latina (Italy).

22

Source: <https://bit.ly/4mkqxWa>.

23

³⁴<https://bit.ly/4jsESQm>.

³⁵<https://bit.ly/443wGNk>.

³⁶<https://bit.ly/3MWa9PB>.

³⁷<https://bit.ly/44Tcj8F>.

³⁸<https://bit.ly/3FooEYH>.

1 In August 2011, the Project Manager popularized the Latina's GHIS
 2 contribution in a poster session at the University of Jyväskylä (Bonacci 2011b)
 3 and, in September 2012, he illustrated the Latina's GHIS experience in a talk at the
 4 University of Naples (Bonacci 2012).

5 The school activity developed through the following seven phases:

- 7 1. February 3, 2011: the Director of Planetarium "Livio Gratton" presented
 8 the educational project "Greehouse in Space" to the School Executive
 9 Committee for urgent approval; the *GHIS* was aimed at bringing research
 10 to the classroom (Nistor et al. 2019) through the STEM best practices
 11 (Kasza & Slater 2017).
- 12 2. February 9, 2011: the School Executive Committee approved the *GHIS*
 13 project appointing the presenter as Manager who, subsequently, selected
 14 25 motivated pupils. Sixteen of the twenty-five *GHIS* high schoolers were
 15 girls, breaking the gender stereotype of Science for secondary students
 16 (Makarova et al. 2019). The percentage of schoolgirls (64%) was stunning
 17 if compared, e.g., to the 35% share of female STEM graduates registered
 18 in 2024 by the UNESCO Institute for Statistics³⁹.
- 19 1. February 10–16, 2011: since the three *GHIS* subjects (Astronomy,
 20 Biology, Physics) are curricular in the Italian Scientific High School, there
 21 was no need for special training. The students watched the ESA'S 2009
 22 DVD "Feeding our Future: Nutrition on Earth and in Space", familiarized
 23 themselves with the concept of microgravity⁴⁰ and with the *Arabidopsis*
 24 *thaliana* (plant also known as *thale* or *mouse ear cress*), studied the ISS as
 25 the home of humanity in space and the significant contribution Italy gave
 26 to its construction (ASI website⁴¹).
- 27 2. February 17, 2011: the *GHIS* team (i.e., the kids and the Project Manager)
 28 linked up via video to Paolo Nespoli on the ISS, learning how to assemble
 29 their own greenhouses and plant the *Arabidopsis* seeds⁴². They opened the
 30 EPO's kit and placed the medium into the growth chamber, mixing it well
 31 with the fertilizer; they poured 40 ml of water onto the growth medium;
 32 they shaked the growth chamber to ensure water was well distributed and
 33 they placed the cut out black foam pad over the top of the wet growth
 34 medium; they opened the seed container and, using magnifying glasses and
 35 thin forceps, separated out few *Arabidopsis* seeds onto a small piece of
 36 filter paper; they placed the seeds inside one of the holes in the black foam
 37 and pressed down into the growth medium so that it covered the seeds,
 38 repeating this till they had planted seeds in all 7 holes; then they remove
 39 the black cut out foam, took the transparent plastic cover and placed it over
 40 the entire white growth chamber; they put the cap on it and placed their
 41 growth chamber near the sunny windows of Physics Lab.

³⁹ <https://bit.ly/45JctQM>.

⁴⁰ <https://bit.ly/3xSkukD>.

⁴¹ <https://bit.ly/3R8SmS4>.

⁴² <https://bit.ly/4kOAr2p>.

1 3. February 18 – March 16, 2011: the students monitored the germination of
2 their seeds and watered when needed, keeping the substrate moist without
3 causing it to be waterlogged. They also placed a thermometer inside the
4 greenhouse and registered the temperatures, week by week, fifteen times.
5 The ten weekly entries of the observations' form provided by ESA were:

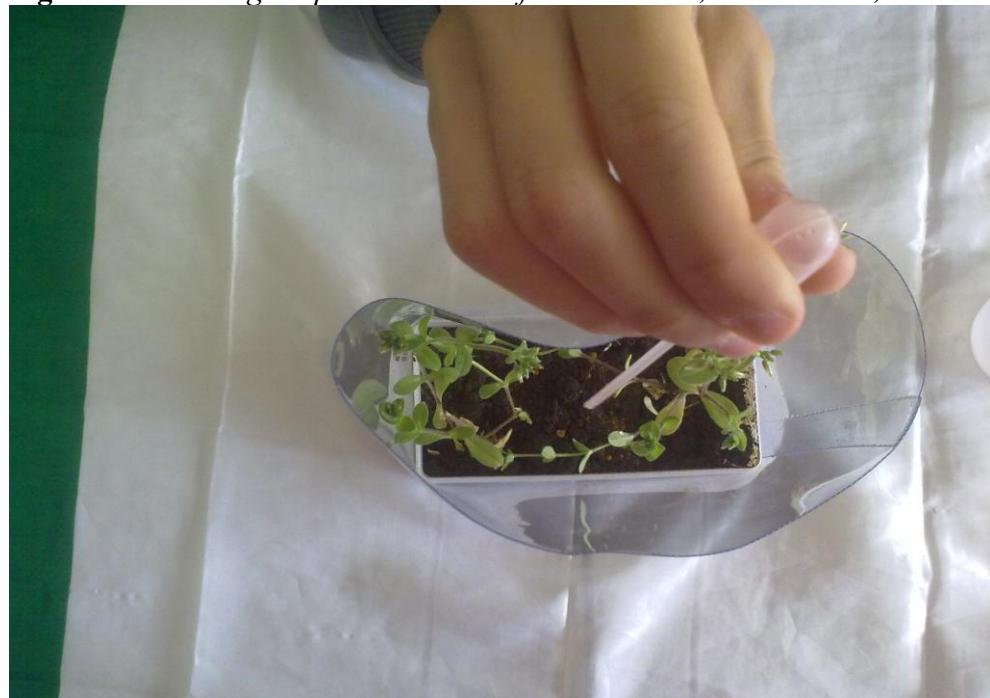
6

- 7 • Height (mm);
- 8 • Temperature (°C);
- 9 • Number of internodes;
- 10 • Colour (red-green-yellow);
- 11 • Plants problems;
- 12 • Flowers (yes/no);
- 13 • Water (mls);
- 14 • Estimated hours of day light;
- 15 • Condensate (yes/no);
- 16 • Notes.

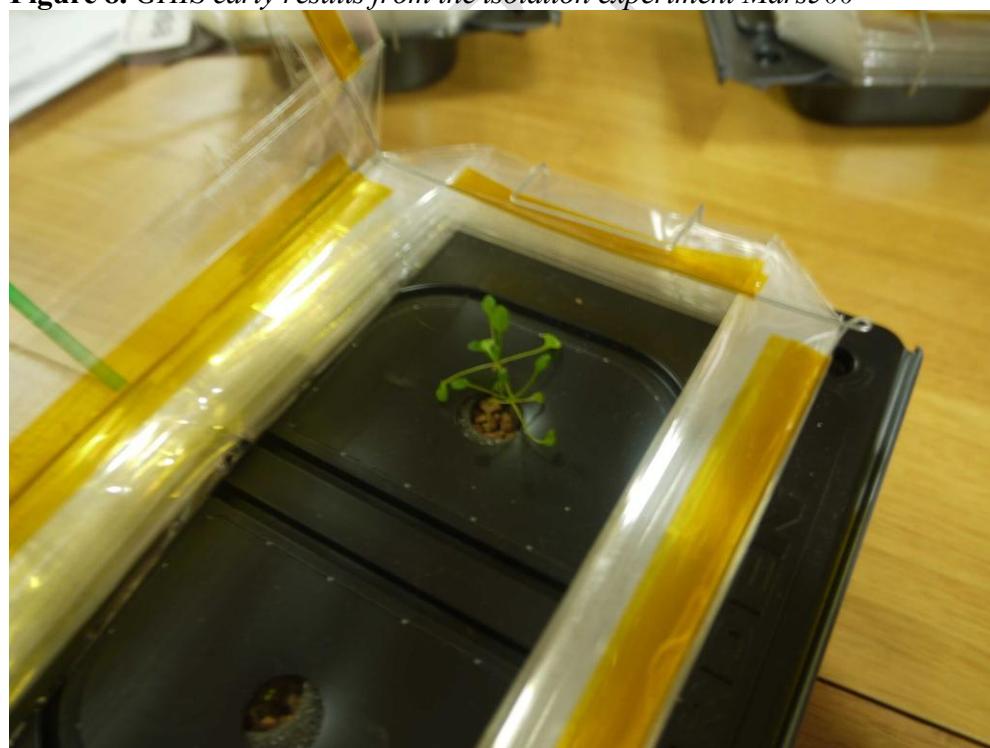
17

18 4. March 17, 2011: the *GHIS* team learned about the abrupt interruption of
19 the test in the *micro-g* environment, due to *fungus* in the EPO's kit on ISS,
20 and followed the three-level safety containment packaging by Nespoli⁴³
21 (with mask, glasses, plastic bags, insulating tape, and gloves) as waste of
22 *mild* toxicity level (tox 2) to send back to Earth in a cargo spacecraft.

23 5. March 18 – May 24, 2011: the students decided to change the place from
24 the Physics Lab to the Biology Lab (Fig. 7) for better sunlight; after
25 comparing their early results with those from *Mars500* (Fig. 8), they kept
26 noting down the features of their growing plants (Fig. 9).


27

28


⁴³ <https://bit.ly/3DuFSD8>.

1 **Figure 7.** Observing the plant at school after one month, on March 18, 2011

2
3 *Source: <https://bit.ly/3IRV3IJ>.*

4 **Figure 8.** GHIS early results from the isolation experiment Mars500

6
7 *Source: <https://bit.ly/44xxWKB>.*

8
9

1 **Figure 9.** *Observing the plant at school after two months, on April 22, 2011*

2
3 *Source: <https://bit.ly/3IRV3IJ>.*

4
5 6. May 25, 2011: the team of Latina (Fig. 10) attended remotely the *GHIS*
6 closing event celebrated in Lisbon (Portugal), streamed from the Ciencia
7 Viva science centre⁴⁴.
8
9

⁴⁴ <https://bit.ly/3DFpsrq>.

1 **Figure 10.** The 25 GHIS students from Liceo "G.B. Grassi" of Latina (Italy)

2
3 *Source: <https://bit.ly/3IRV3IJ>.*

4
5 7. May 26–27, 2011: the pupils finished filling out the forms in Italian (Fig. 11)
6 and in English (Fig. 12) that the Project Manager attached to his final report,
7 entitled "Greenhouse results from Latina".

8
9

1 **Figure 11. The GHIS report from Latina on ESA's form in Italian**

ARABIDOPSIS: OSSERVAZIONI:

European Space Agency

Settimana	Altezza (mm)	Temp °C	N° di Internodi	Colore			Problemi alle Piante	Fiori Sì/no	Acqua mls	Ore Stimate di Luce del Giorno	Condensa Sì/no	NOTE
				Red	Verde	Giallo						
1	0	13-18	0				NO	40	7	NO	14/02/2011	
2	10-20	14-19	0	X			NO	5	8	NO	24/02/2011	
3	20-30	14-19	1	X			NO	5	8	NO	04/03/2011	
4	40-50	15-20	3	X			NEARLY	5	9	NO	11/03/2011	
5	60-80	15-20	5	X			YES	5	9	NO	18/03/2011	
6	80-100	16-21	6	X			YES	5	10	YES	25/03/2011	
7	100-120	16-21	7	X			YES	5	10	YES	01/04/2011	
8	120-130	17-22	8	X			YES	5	11	YES	08/04/2011	
9	130-150	17-22	10	X			YES	10	11	YES	15/04/2011	
10	150-160	18-23	11	X			YES	10	12	YES	22/04/2011	
11	160-170	18-23	12	X			YES	10	12	YES	29/04/2011	
12	170-180	19-24	13	X			YES	10	13	YES	06/05/2011	
13	180-190	19-24	14	X			YES	10	13	YES	13/05/2011	
14	190-200	20-25	15	X			YES	10	14	YES	20/05/2011	
15	200-210	20-25	15	X			YES	10	14	YES	27/05/2011	

2
3 *Source: <https://bit.ly/3TuZ4oA>.*

4

5 **Figure 12. The GHIS report from Latina on ESA's form in English**

ARABIDOPSIS OBSERVATIONS:

European Space Agency

Week	Height (mm)	Temp °C	N° of internodes	Colour			Plants Problems	Flowers Yes/No	Water mls	Estimated Hours of day light	Condensate Yes/No	NOTES
				Red	Green	Yellow						
1	0	13-18	0				NO	40	7	NO	2011-02-17	
2	10-20	14-19	0	X			NO	5	8	NO	2011-02-24	
3	20-30	14-19	1	X			NO	5	8	NO	2011-03-04	
4	40-50	15-20	3	X			NEARLY	5	9	NO	2011-03-11	
5	60-80	15-20	5	X			YES	5	9	NO	2011-03-18	
6	80-100	16-21	6	X			YES	5	10	YES	2011-03-25	
7	100-120	16-21	7	X			YES	5	10	YES	2011-04-01	
8	120-130	17-22	8	X			YES	5	11	YES	2011-04-08	
9	130-150	17-22	10	X			YES	10	11	YES	2011-04-15	
10	150-160	18-23	11	X			YES	10	12	YES	2011-04-22	
11	160-170	18-23	12	X			YES	10	12	YES	2011-04-29	
12	170-180	19-24	13	X			YES	10	13	YES	2011-05-06	
13	180-190	19-24	14	X			YES	10	13	YES	2011-05-13	
14	190-200	20-25	15	X			YES	10	14	YES	2011-05-20	
15	200-210	20-25	15	X			YES	10	14	YES	2011-05-27	

6
7 *Source: <https://bit.ly/4eIKhjS>.*

8

1 **Conclusions**

2

3 Promoted in 2011 by ESA–HSF, the Greenhouse in Space (GHIS) was
 4 hugely participated in schools of four European countries (France, Germany, Italy,
 5 Portugal) with more than 800 early adolescents observing the *seed-to-seed* life
 6 cycle of an *Arabidopsis thaliana* implanted in a standard miniature greenhouse.
 7 The same kit was employed in two parallel ESA missions (*MagISStra* on the ISS
 8 and *Mars500* in a Muscovite isolation chamber) to spot the differences among the
 9 plants grown naturally (European schools), in microgravity (ISS), and without
 10 sunlight (Russian Institute for Biomedical Problems). Unfortunately, the
 11 comparison with the ISS experiment was interrupted by the formation of
 12 dangerous mold beside the astronaut's plant (toxicity level 2). Nevertheless, the
 13 *GHIS* was a tremendous STEM enrichment activity based on *learning by doing* in
 14 traditional laboratories (technology level TRL 4). The engaging and sustainable
 15 *GHIS* projects developed problem solving, critical analysis, teamwork,
 16 communication, and digital literacy, i.e., some of the soft skills requested by
 17 labour market (Holik & Sanda 2023). The *GHIS* improved the STEM good
 18 practices by integrating HOL, ESD, and ICT. In addition, the positive response of
 19 students usually unattracted by *Science* revealed the importance of stimulating the
 20 emotional intelligence of kids by involving other cognate subjects, such as *Biology*
 21 and *Astronomy*⁴⁵, and of nourishing their curiosity by using the Science
 22 Laboratories. The Scientific High School "Giovanni Battista Grassi" in Latina, a
 23 dynamic⁴⁶ agro-industrial Italian province, enrolled in the "Greenhouse in Space"
 24 with a team of twenty-five 14-year-old pupils (64% schoolgirls). Those high
 25 schoolers faced *GHIS* with expertise also because, in spring 2011, the "G.B.
 26 Grassi" had already praxis of citizen science and STEM projects (Bonacci 2018a),
 27 propelled by the Planetarium "Livio Gratton". The presence of accessible and
 28 well-equipped Physics and Biology Labs was another driving factor in the success
 29 of the *GHIS* project from the "G.B. Grassi", that was divulged in national and
 30 international symposiums soon after. Along with other ESA's educational
 31 projects⁴⁷, the "Greenhouse in Space" favored the inclusion of *Astronomy* in most
 32 European schools' curriculum (Percy 2005), tough rarely as standalone subject, to
 33 enhance the competences (Boon Ng 2019) required in the *high-quality* STEM
 34 pedagogy auspicated by the European Education Area (EEA)⁴⁸.

35

36

⁴⁵<https://bit.ly/3GYXTqF>.

⁴⁶<https://bit.ly/4aJwoCa>.

⁴⁷<https://bit.ly/4pHCxCE>.

⁴⁸<https://bit.ly/3L3Z7Vj>.

1 **References**

2

3 Basit MA (2012) *ESA Education Payload Operations Greenhouse – Challenges of*
4 *preparing and performing a plant biology experiment on ISS*. SpaceOps 2012
5 Conference, Stockholm (Sweden). AIAA 2012-1287972.
6 <https://doi.org/10.2514/6.2012-1287972>.

7 Blotnický KA, Franz-Odendaal T, French F, Joy P (2018) A study of the correlation
8 between STEM career knowledge, mathematics self-efficacy, career interests, and
9 career activities on the likelihood of pursuing a STEM career among middle school
10 students. *International Journal of STEM Education* 5(22).
11 <https://doi.org/10.1186/s40594-018-0118-3>.

12 Bonacci E (2011a) *The planetarium experience in Latina (Italy)* [Poster presentation].
13 GIREP-EPEC 2011: International Conference in Finland, University of Jyväskylä.
14 <https://doi.org/10.13140/RG.2.1.2070.7362>.

15 Bonacci E (2011b) *The GHIS project in Latina (Italy)* [Poster presentation]. GIREP-EPEC
16 2011: International Conference in Finland, University of Jyväskylä.
17 <https://doi.org/10.13140/RG.2.1.2595.0240>.

18 Bonacci E (2012) *The ESA-HSF education project GHIS in Latina* [PowerPoint slides].
19 98th Congress of the Italian Physical Society, University of Naples.
20 <https://doi.org/10.13140/RG.2.2.14090.06088>.

21 Bonacci E (2013) The History of Science and Science Education: A Planetarium at
22 School. In Pisano, Capecchi, Lukešová (Eds.), *Physics, Astronomy and Engineering.*
23 *Critical Problems in the History of Science and Society* (pp. 141–146). Šiauliai
24 (Lithuania): The Scientia Socialis Press.

25 Bonacci E (2016a) Mathematical Insights in the Pioneering Educational Project FSTF.
26 *International Journal of Mathematical Sciences and Applications* 6(1): 13–19.
27 <https://doi.org/10.48550/arXiv.2201.00386>.

28 Bonacci E (2016b) *Indi uscimmo a riveder le stelle...* [And then we emerged to see the
29 stars again...]. Latina (Italy): Scientific High School "G.B. Grassi".
30 <https://doi.org/10.13140/RG.2.2.34661.60640>.

31 Bonacci E (2018a) *The ISS educational project in Latina (Italy)* [PowerPoint slides]. 104th
32 Congress of the Italian Physical Society, University of Calabria.
33 <https://doi.org/10.13140/RG.2.2.23200.64009>.

34 Bonacci E (2018b) *Il progetto didattico ISS a Latina (Lazio)* [The ISS educational project
35 in Latina (Lazio)] [PowerPoint slides]. 13th European Researchers' Night by Frascati
36 Scienza, Museo della Terra Pontina. <https://doi.org/10.13140/RG.2.2.13137.58729>.

37 Bonacci E (2020a) *The UNESCO events about light in Latina (Italy)* [Video presentation].
38 106th Congress of the Italian Physical Society, University of Milan.
39 <https://doi.org/10.13140/RG.2.2.25339.75048>.

40 Bonacci E (2020b) *Percorsi di luce col Club per l'UNESCO di Latina* [Paths of lights
41 with the UNESCO Club of Latina] [PowerPoint slides]. 15th European Researchers'
42 Night by Frascati Scienza, The City Hall of Latina.
43 <https://doi.org/10.13140/RG.2.2.24159.69280/1>.

44 Bonacci E (2023) The International Space Station (ISS) Contest as STEM Educational
45 Project. *Athens Journal of Sciences* 10(3): 153–180. <https://doi.org/10.30958/ajs.10-3-3>.

46 Bonacci E (2025) *The importance of hands-on laboratories in the Virtual Era: a case of*
47 *study at La Sapienza's DICMALAB* [PowerPoint slides]. 111th Congress of the
48 Italian Physical Society, University of Palermo.
49 <https://doi.org/10.13140/RG.2.2.34806.25927>.

1 Boon Ng S (2019) Exploring STEM competences for the 21st century. *In-Progress*
 2 *Reflection No. 30, on Current and Critical Issues in Curriculum, Learning and*
 3 *Assessment.* UNESCO document: IBE/2019/WP/CD/30REV.
 4 <https://unesdoc.unesco.org/ark:/48223/pf0000368485>.

5 Dewey J (1916) *Democracy and education: An introduction to the philosophy of*
 6 *education.* New York (NY): The Macmillan Company.

7 Gras-Velázquez À (2016) *ICT in STEM Education – Impacts and Challenges: Setting the*
 8 *scene. A STEM Alliance Literature Review* (Publication No. 921). Brussels
 9 (Belgium): European Schoolnet.

10 Gras-Velázquez À (2017) *ICT in STEM Education – Impacts and Challenges: On*
 11 *Teachers. A STEM Alliance Literature Review* (Publication No. 1002). Brussels
 12 (Belgium): European Schoolnet.

13 Gras-Velázquez À, Fronza V (2020) Sustainability in formal education: ways to integrate
 14 it now. *Innovation in STEM learning* 1(2): 154–175.
 15 <https://doi.org/10.57568/iulres.v1i2.84>.

16 Holik I, Sanda ID (2023) The possibilities of developing STEM skills in higher education.
 17 *Athens Journal of Technology and Engineering* 10(1): 9–26.
 18 <https://doi.org/10.30958/ajte.10-1-1>.

19 Ianes D, Demo H, Dell'Anna S (2020) Inclusive education in Italy: Historical steps,
 20 positive developments, and challenges. *Prospects* 49: 249–263.
 21 <https://doi.org/10.1007/s11125-020-09509-7>.

22 Jiménez-Iglesias M, Nistor A, Gras-Velázquez À, Balta G, Caeiro Rodriguez M, Caine M,
 23 Cevik O, Crouch F, Cunha C, Farkas B, Godinho A, Gomez S, Idin S, Jimenez
 24 Gonzalez A, Mayordomo Reales R, Mihai G, Munoz Vidal J, Ozkaynak H, Rubic
 25 M,... Valero A (2016) *Multi-stakeholder partnerships in STEM education* (Scientix
 26 Observatory report, March 2016). Brussels (Belgium): European Schoolnet.

27 Kasza P, Slater TF (2017) A Survey Of Best Practices And Key Learning Objectives For
 28 Successful Secondary School STEM Academy Settings. *CIER* 10(1): 53–66.
 29 <https://doi.org/10.19030/cier.v10i1.9880>.

30 Kelley TR, Knowles JG (2016) A conceptual framework for integrated STEM education.
 31 *International Journal of STEM Education* 3(11). <https://doi.org/10.1186/s40594-016-0046-z>.

32 Makarova E, Aeschlimann B, Herzog W (2019) The Gender Gap in STEM Fields: The
 33 Impact of the Gender Stereotype of Math and Science on Secondary Students' Career
 34 Aspirations. *Frontiers in Education* 4(60). <https://doi.org/10.3389/feduc.2019.00060>.

35 McNamee L (2025) Perspective Chapter: Astronauts as STEM Role Models and Science
 36 Ambassadors. In Cinelli, Harris, Beard (Eds.), *The Human Element in Advancing*
 37 *21st-Century Space Exploration.* IntechOpen.
 38 <http://dx.doi.org/10.5772/intechopen.1011278>.

39 Nistor A, Gras-Velázquez À, Billon N, Mihai G (2018) *Science, Technology, Engineering*
 40 *and Mathematics Education Policies in Europe* (Scientix Observatory report,
 41 October 2018). Brussels (Belgium): European Schoolnet.

42 Nistor A, Clemente-Gallardo J, Angelopoulos T, Chodzinska K, Clemente-Gallardo M,
 43 Gozdzik A, Gras-Velázquez À, Grizelj A, Kolenberg K, Mitropoulou D, Micallef
 44 Gatt AD, Tasiopoulou E, Brunello A, Echard P, Arvaniti V, Carroll S, Cindea N,
 45 Diamantopoulos N, Duquenne N,... Vojinovic M (2019) *Bringing Research into the*
 46 *Classroom – The Citizen Science approach in schools* (Scientix Observatory report,
 47 April 2019). Brussels (Belgium): European Schoolnet.

48 Parker JDA, Creque RE Sr., Barnhart DL, Harris JI, Majeski SA, Wood LM, Bond BJ,
 49 Hogan MJ (2004) Academic achievement in high school: does emotional intelligence
 50

1 matter? *Personality and Individual Differences* 37(7): 1321–1330.
2 <https://doi.org/10.1016/j.paid.2004.01.002>.

3 Percy JR (2005) Why astronomy is useful and should be included in the school
4 curriculum. In Pasachoff & Percy (Eds.), *Teaching and Learning Astronomy:
5 Effective Strategies for Educators Worldwide* (pp. 10–13). Cambridge University
6 Press. <https://doi.org/10.1017/CBO9780511614880.004>.

7 Roibas-Millan E, Álvarez-Romero JM, Marín-Coca S, Porras-Hermoso Á, Pérez-Álvarez
8 J, Cubas J, Pindado S (2023) The UPMQube: An academic/educational pocketqube
9 proposal for the EU2Space challenge. *Athens Journal of Technology and
10 Engineering* 10(1): 27–48. <https://doi.org/10.30958/ajte.10-1-2>.

11