
Athens Journal of Sciences- Volume 2, Issue 3 – Pages 177-186 

 

https://doi.org/10.30958/ajs.2-3-2                                         doi=10.30958/ajs.2-3-2 

TIARA Tutor for Time Efficiency Analysis of 

Recursive Algorithms 

 
By Irena Pevac

1
 

 
TIARA tutor is an enhanced version of the ESRATEA software 

developed to assist students to learn time performance analysis of 

recursive algorithms. The new features include an option for 

learners to use practice problems in sequential order in addition to 

the option where problems are randomly selected by the tutoring 

software. Sequential order is more desirable in the learning phase, 

while random selection of the problems is more appropriate when 

students want to test the level of their knowledge after practicing 

time efficiency analysis in sequential mode. Visualization examples 

for problems are updated and use a simpler template approach. 

Practice examples are extended to include time efficiency analysis of 

more challenging problems, such as generating all permutations for 

the given set, generating power-set for a given set, computing n-th 

Fibonacci number as well as analysis of some other examples 

 

 

Introduction 

 

An algorithms course is typically difficult to teach because it requires 

students to have a good working knowledge of data structures, discrete 

mathematics and calculus. The typical course starts with a review of data 

structures and math preliminaries, and continues with formal analysis of time 

performance, discussed by introducing o, O, Ө, Ω, and ω notation. Most 

textbooks (Baase & Van Gelder, 2000, Cormen et al., 2007, Levitin, 2012, 

McConnell, 2008, Neapolitan, 2014, Pothering & Naps, 2002) provide a table 

for basic functions such as logarithmic log n, linear n,  n log n, quadratic n
2
, 

cubic n
3
, exponential a

n 
and factorial n!. For each function, values are provided 

for different values of n, and most often for geometric series such as 10, 10
2
,…, 

10
6
 to illustrate the difference in growth. In addition, textbooks provide 

summation formulas for basic series such as sum of first n integers, sum of first 

n squares, sum of first n cubes, sum of first n powers of 2, sum of first n 

powers of d, etc. A few examples of formal time performance analysis of 

iterative and recursive algorithms are usually provided next.  

It has been the authors’ experience that such preparation for most students 

is not sufficient. When students have been tested on their ability to perform 

                                                           

Professor, Central Connecticut State University, USA. 

1
Dedicated to the memory of Professor Djuro Kurepa 



Vol. 2, No. 3        Pevac: TIARA Tutor for Time Efficiency Analysis... 

                           

178 

formal time performance analysis of simple algorithms given the above 

foundation, students still typically struggled with the task. 

Problems can be implemented with either iterative or recursive algorithms. 

Time performance analysis of iterative algorithms is usually easier. It requires: 

1) selecting the problem size n; 2) selecting the basic operation; 3) establishing 

a series that specifies the number of times the basic operation is performed as a 

function of input size n; and 4) calculating the sum. The time performance 

analysis of recursive algorithms has proven to be more challenging. It also 

requires steps 1) and 2) as described above, but after that it requires: 3) 

establishing recurrences by providing base case and recursive step; and 4) 

solving the recurrences.   

One of the reasons why recursive algorithms time analysis is more difficult 

to learn is the implicit nature of the recursive approach. In addition, learners 

are often confused by the two types of recurrence relations. The first type of 

these relations is recurrences used to specify how to obtain the result of the 

original problem in terms of one or more sub-problems. These recurrences are 

used to write the code to solve the problem with a recursive algorithm. The 

second type of these relations is recurrences used in time analysis. They 

specify the number of times the basic operation is performed for a problem of 

size n, denoted as T(n), and depends on: 1) the number of times the basic 

operation is performed in one or more recursive sub-problems (denoted T(n-1), 

T(n/2) or similar); and 2) the time f(n), which denotes the number of times the 

basic operation is performed in the non-recursive part of the code, performed in 

addition to recursive invocation(s). 

One obvious way to improve a learners’ knowledge is to provide more 

examples of time performance analysis using simpler algorithms of 

approximately the same difficulty level as those given on exams. 

Unfortunately, spending more class time practicing time efficiency analysis 

leaves less time for covering different algorithm design techniques and 

introducing new algorithms of particular domain types.  

The tutoring software provided to students has proven to be an effective 

solution for the problem. TIARA tutor has a wide selection of practice 

examples with complete time analysis performed. Learners can practice as 

much as they need based on their background knowledge. Using the software 

does not take any additional class time since practice is performed outside of 

class. The tutor is free for students enrolled in an Algorithms course and is 

available on request to instructors who would like to use it in an Algorithms 

course taught in a flipped classroom style. At our school, students can 

download the software as a jar file from the blackboard learning platform, and install 

it on their own computer, allowing them to practice when convenient for them. 

Various researchers and educators have developed tutors for a wide 

spectrum of computer science domains, ranging from basic programming skills 

such as evaluating arithmetic and Boolean expressions (Krishna & Kumar, 

2001) to solving problems in automata theory (Cavalcante et al., 2004), and 

graph theory (Bridgeman et al., 2000). An extensive overview of tutors 

categorized based on: 1) the nature of the problem-solving activity they 



Athens Journal of Sciences September 2015 

             

179 

promote; 2) the way they provide problem examples; 3) the way they provide 

answers; 4) grading criteria; 5) feedback generation; and 6) feedback 

explanation is provided in (Kumar, 2005). 

 

 

TIARA Tutor Domain 

 

TIARA tutor covers over fifty examples for the following four categories 

of recursive algorithms. 

 

 Decrease-by-Constant-Factor – This category includes problems 

of size n that invoke one sub-problem of size n reduced by a 

constant factor c, where c is a positive integer that does not 

depend on n. The corresponding recurrences for time efficiency 

analysis are of type T(n) = T(n / c) + f(n). Function f(n) denotes 

the cost of the non-recursive portion of the code.  

 Divide-and-Conquer – This category includes problems of size n 

that invoke a (where a is positive integer constant i.e. a >= 1) sub-

problems of size reduced by positive integer constant factor c, 

where c >= 2. The recurrences are of type T(n) = a T(n / c) + f(n).   

 Decrease-by-Constant – This category includes problems of size n 

that invoke one sub-problem of a size reduced by a positive 

integer constant c. The recurrences are of type T(n) = T(n - c) + 

f(n). 

 General Decrease-and-Conquer – This category includes 

recursive problems of size n that invoke number a sub-problems 

of a size reduced by a positive integer constant c. Constants a and 

c are positive integers. The corresponding recurrences are of type 

T(n) = a T(n - c) + f(n).   

 

 

TIARA Tutor Description 

 

There are two modes, sequential and random, of selecting the problem 

from the desired category list in TIARA tutor. ESRATEA was designed to 

always randomly select one problem from the desired category. That was 

sufficient for testing the learner’s knowledge, but during the learning phase, 

sequential order is preferable because it orders the problems from simple to 

advanced. Random mode is more appropriate for assessing the learner’s 

knowledge after some practicing. It displays problems randomly from the 

selected list until all the problems from the list are completed. After that, if 

learner wants to continue, the software resets. 

ESRATEA had three categories: chip-and-conquer, chip-and-be-conquered 

and divide-and-conquer. TIARA uses more detailed categorization: decrease-

by-constant-factor; divide-and-conquer; decrease-by-constant; and general 

decrease-and-conquer as described in TIARA Tutor Domain section. The names 



Vol. 2, No. 3        Pevac: TIARA Tutor for Time Efficiency Analysis... 

                           

180 

for the category types follow the categorization applied in (Levitin, 2012). In 

the Figure below, it can be seen the initial screen for TIARA tutor. 

 

Figure 1. Initial Screen for TIARA Tutor 

 
 

For each of the buttons there is a tool tip, which includes the recurrence 

relations type for the current problems. Tool tip text is displayed when the 

cursor is rested on top of the button. 

Each problem displayed by TIARA tutor includes description in English 

and code for the problem implemented in Java language. Learners are asked to 

perform worst case time performance analysis unless specifically instructed 

otherwise. They have to determine the basic operation, the problem size n and 

recurrence relations, base case and recursive step, in this order. Each 

successive step can only be attempted upon successful completion of the 

previous steps. By the end, learners should solve the recurrences in order to 

calculate the resulting T(n). When the correct answer for T(n) is specified, the 

student may compare his/her solution derivation with the one provided by the 

tutor. In addition, at that time, student may also see the performance equivalent 

template example which shares the same recurrences as the original problem.  

 
Figure 2.  d

n 
as Decrease-by-Constant    Figure 3.  d

n 
as Divide-and-Conquer 

 
 



Athens Journal of Sciences September 2015 

             

181 

Based on implementation, the same problem can be solved by several 

different algorithms. Therefore, the time analysis of different algorithms for the 

same problem can not only have different recurrences but they may belong to 

different categories. Each different algorithm implementation for the same 

problem displays different examples, which can be in the same category or in 

different categories. Figures 2 and 3 illustrate calculating power d
n 

with 

algorithms that belong to decrease-by-constant and divide-and-conquer 

categories, respectively.
 

In addition to the two examples shown above, TIARA tutor provides 

several other examples for calculating d
n
 implemented with many different 

algorithm types based on the following defining recurrences: 

 d0 = 1  and  d
n
 = d*d

n-1 
, for n>0. 

This algorithm has time analysis recurrences T(1)=0 and T(n)=T(n-1) +1, for 

n>1.  We assume that multiplication is the basic operation. The algorithm is a 

decrease-by-constant type and has linear time. 

  d0 = 1  and  d
n
 = d*(d

n/2 
)
2
, for n>0 and n odd, and  d

n
 = (d

n/2 
)
2
, 

for n>0 and n even. 

If only one recursive call is made to sub-problem to determine d
n/2

, n is 

even and multiplication  is the basic operation, the time analysis recurrences 

are T(0)=0 and T(n)=T(n/2) +1. This algorithm is a decrease-by-constant-factor 

and a divide-and-conquer type and has logarithmic time.  

   d0 = 1   and  d
n
 = d * d

n/2 
* d

n/2 
, for n>0 and n odd, and   

 d
n
 = d

n/2 
 * d

n/2 
,  for n>0 and n even. 

If two separate recursive calls are made to call sub-problems to determine 

d
n/2

, n is even and multiplication is the basic operation, the time analysis 

recurrences are T(0)=0 and T(n)=2T(n/2)+1. This algorithm is a divide-and-

conquer type and has linear time. 

 For special case when d=2, the defining recurrences are as 

follows: 2
0
= 1,   and  2

n
 = 2

n-1
 + 2

n-1
, for n>0. 

If only one recursive call is made to calculate the sub-problems 2
n-1

 , and 

addition is the basic operation, the time analysis recurrences are T(0)=0 and 

T(n)=T(n-1)+1.The algorithm is a decrease-by-constant type and has linear 

time.  

If an algorithm invokes two recursive calls to determine each 2
n-1 

separately, and addition  is the basic operation, the time analysis recurrences 

are T(0)=0 and T(n)=2T(n-1)+1. The algorithm is a general decrease-and-

conquer type and has exponential time. 
 

 

Experience with Tutor 

 

The learners provided very positive feedback after using the software as a 

supplemental tool in the course (Pevac, 2012). The only aspect of the tutor that 

was not embraced by learners was visualization examples implemented in 

ESRATEA (Pevac & Carpenter, 2010). The graphical examples provided were 

designed to draw a line of length k to illustrate that k basic operations were 



Vol. 2, No. 3        Pevac: TIARA Tutor for Time Efficiency Analysis... 

                           

182 

performed. The lines were drawn on a graphical surface in a way that helps to 

determine their total length more easily. The total length is also the solution of 

corresponding recurrences and represents the run time performance function 

T(n). Only the best students were able to grasp the analogy and recognize the 

equivalence classes of problems that share the same recurrences and have the 

same solution. 

The main problem was that students who had difficulty to establish and 

solve the recurrences also had problem drawing lines on a two-dimensional 

graphical surface as discussed in (Pevac, 2012).  

In order to provide visualization that would be more appropriate for a 

majority of learners, TIARA uses much simpler examples based on the 

template approach introduced in (Pevac, 2011). For each time analysis 

problem, the code in the visualization example prints one letter whenever the 

original problem performs one basic operation. All other operations in the 

original problem that are not basic operations are omitted. In addition, the 

visualization examples include plotted pictures for the run time functions T(n) 

and the table of values for T(n). Since the original problem and the simplified 

code have the same recurrences, both have the same solution for the function 

T(n). Consequently, both have the same asymptotic growth. The simplified 

visualizing examples are expected to help the learner to better recognize the 

relationship among the pattern of code, the recurrences type and the run time. 
 

 

More Challenging Examples of Time Analysis Included in TIARA 
 

Figure 4. Time Analysis Example for Generating all Subsets of {1, 2,…,n}. 

 



Athens Journal of Sciences September 2015 

             

183 

In order to make TIARA tutor more appealing to students who do not need 

extensive practice of time analysis for simple recursive algorithms, we have 

included some more challenging examples of time analysis as well. The added 

examples are above the level of those given on tests and include time analysis 

of an algorithm which multiplies two matrices utilizing Strassen's method, 

analysis of an algorithm which multiplies two numbers via Karatsuba's method, 

analysis of an algorithm for generating all subsets (see Figures 4 and 5), 

analysis of an algorithm for generating all permutations (see Figures 6 and 7), 

and analysis of an algorithm to calculate the n-th Fibonacci number.  
 

Figure 5. Visualization and Solution Derivation for all Subsets of {1, 2,…,n} 

     
 

Figure 6. Example for Generating all Permutations of 1,2,…,n. 

 



Vol. 2, No. 3        Pevac: TIARA Tutor for Time Efficiency Analysis... 

                           

184 

Figure 7.Visualizing Example and Solution Derivation for all Permutations 

  
 

In Figure 7 that shows deriving the solution for the time analysis of the 

algorithm to generate permutations, we use Kurepa(n) to specify function 1! + 

2! + .+ n!. Related function left factorial, denoted !n, was introduced by 

(Kurepa, 1971) to specify function 0! + 1! +…+ (n-1)!. The relationship 

between functions Kurepa(n) and left factorial is Kurepa(n) = !(n+1) - 1. 

 

 

Conclusion 

 

Based on the categorization of tutors described in (Krishna & Kumar, 

2001), the TIARA tutor has examples carefully selected by the instructor and 

incorporated into the software. Correct answers were also created by the 

instructor and built into the software. Grading is done by the tutor in a fully 

automated way. Feedback is also generated by the tutor in an automated way. 

Feedback content displays “correct” or “incorrect” for most of the questions 

and provides complete derivation for solving recurrences. The visualization 

examples combined with practicing and requesting that learners create new 

problems are intended to promote knowledge, application, analysis and 

synthesis (according to Blooms taxonomy) for building the knowledge of time 

efficiency analysis of recursive algorithms. 

 

 

Acknowledgments 

 

Partial support for this work was provided by the CCSU University 

Research Grant. In addition, the author would like to thank to graduate students 

R. Kuruvela and K. Reganti, who created pictures for many simplified 

visualizing examples and implemented time analysis for Strassen’s 

multiplication and Karatsuba’s multiplication as part of their capstone project. 

 

 



Athens Journal of Sciences September 2015 

             

185 

References 

 
Baase, S., & Van Gelder, A. 2000, Computer Algorithms (3

rd
ed.). Addison Wesley 

Longman; Pearson Education. [Reprinted 2009]. 

Bridgeman, S., Goodrich, M. T., Kobourov, S.G., Tamassia, R. 2000, PILOT: An 

Interactive Tool for Learning and Grading. Proc. of the SIGCSE Technical 

Symposium on Computer Science Education, Austin, TX, ACM Press, 139-143. 

DOI = http://dx.doi.org/10.1145/331795.331800.  

Cavalcante, R., Finley, T., Rodger, S.H. 2004. A Visual and Interactive Automata 

Theory Course with JFLAP 4.0.  SIGCSE Bulletin (Association for Computing 

Machinery, Special Interest Group on Computer Science Education), Vol 36 , 

Issue 1, 140-144.  Also published in  Proceedings of the 35
th
 SIGCSE Technical 

Symposium on Computer Science Education, Norfolk, VA, March 2004, 140-144.  

DOI = http://doi.acm.org/10.1145/1028174.971349. 

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & C., Stein. 2007. Introduction to 

Algorithms (3
rd 

ed.). MIT Press; McGraw-Hill Book Company.  

Krishna A.,Kumar, A.  2001. A Problem Generator to Learn Expression Evaluation in 

CS I and its Effectiveness, The Journal of Computing in Small Colleges, Vol 16, 

No 4, May 2001, 34-43. DOI = http://dl.acm.org/citation.cfm? id=378659. 

Kumar, A. 2005. Generation of  Problems, Answers, Grade and Feedback – Case 

Study of a Fully Automated Tutor, Journal of Educational Resources in 

Computing (JERIC). Vol 5 No 3, Article no 3, Sep 2005. DOI = http://dx.doi. 

org/10.1145/1163405.1163408 

Kurepa, Dj. 1971. On the left factorial function n!, Math. Balkan. 1, 147-153. 

Levitin, A. 2012.  Introduction to the Design & Analysis of Algorithms (3rd ed.). 

Pearson.  

McConnell, J. J. 2008. Analysis of Algorithms (2
nd 

ed.). Jones and Bartlett Publishers.  

Neapolitan, R. 2014. Foundations of Algorithms (5
th
ed.). Jones & Bartlett Learning.  

Pevac I. Using Templates to Introduce Time Efficiency Analysis in an Algorithms 

Course. 2011. WORLDCOMP'11 – FECS, Proc. of the 2011 Int. Conf. on 

Frontiers in Education: Computer Science & Computer Engineering, (Ed. 

Arabnia, Clincy, Deligiannidis),  Las Vegas, NV, SCREA Press, 373-379. http:// 

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.8911 

Pevac, I. First Experiences with Software Tool for Recursive Algorithm Time 

Efficiency Analysis. 2012. The Journal of Computing Sciences in Colleges. Vol 

28, Num 1, Oct 2012, 56-65. http://dl.acm.org/citation.cfm?id=2379714 

Pevac, I., Carpenter T. 2010.  ESRATEA Software for Recursive Algorithms Time 

Efficiency Analysis.  WORLDCOMP’10 – FECS, Proc. of the 2010 Int. Conf. on 

Frontiers in Education: Computer Science & Computer Engineering, (Hamid R. 

Arabnia, Victor A. Clincy, Azita Bahrami, Ashu M. G. Solo  Eds),  Las Vegas, 

NV, July 2010, CSREA Press, 367-373. http://www.informatik.uni-trier.de/ 

~ley/db/conf/fecs/fecs2010.html 

Pothering, G., Naps, T. 2002. Introduction to Data Structures and Algorithms Analysis 

with C++, West Publishing Company. 

 

 

http://dx.doi.org/10.1145/331795.331800
http://doi.acm.org/10.1145/1028174.971349
http://dl.acm.org/citation.cfm?id=378659
http://dx.doi.org/10.1145/1163405.1163408
http://dx.doi.org/10.1145/1163405.1163408
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.8911
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.8911
http://dl.acm.org/citation.cfm?id=2379714
http://www.informatik.uni-trier.de/~ley/db/conf/fecs/fecs2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/fecs/fecs2010.html


Vol. 2, No. 3        Pevac: TIARA Tutor for Time Efficiency Analysis... 

                           

186 

 


