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Artificial Intelligence (AI) is everywhere, nowadays. No longer limited to computer la-

boratory, it now sets up media campaigns, influences people, decides elections, protects 

property, and drives cars. The principles of AI are quite old; most of them originate from 

the early times of computer science and had been discussed in the seventies and the 

eighties. But they were theoretical concepts as computer power was a scarce resource, 

and not enough data was available to feed the perception of that time. However, now AI 

governs even safety-criminal systems. How can it be tested? The answer is surprisingly 

simple: consider the system’s goals. 
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Introduction 

 

The principles of AI are classification of entities and the solution of the equa-

tion , where  and  are vectors in spaces of different dimensions and 

semantics. For instance,  could be the observable behavior of people or extrasolar 

planets, and  the unknown cause of it. Traditional solution methods are regres-

sion, where both  and  are measurable, or eigenvector methods, where the , is 

not directly measurable but the correlation between the two is measurable. If there 

is not much known about the transfer function , neural networks can be set up 

that learn the transfer function, based on experience. 

If a car uses an image recognition system, it must learn to distinguish between 

people walking, running, children playing, waiting, and bicycles riding, or being 

walked. The system should also be able to recognize people and things if not seen 

in full, even partly hidden behind a bush, by fog, or at night. Such a system is pro-

grammed to learn; neither image characteristics nor pattern recognition algorithms 

are programmed into it. 

Unfortunately, such neural networks do not only learn, they also unlearn. Van 

Gerven et al. (2018) have shown that they can get distressed (―mad‖) as any neural 

information processing, similar to humans. Before I dare to sit into an autonomous 

car, I probably want to know whether and when this car with its current state of the 

learning system had passed its last test. 
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Our Approach 

 

This requires the ability to test software-intense systems autonomously. It 

must be possible to test a car’s image analysis capabilities in regular intervals to 

see whether it still works as expected; thus, detecting ―madness‖ early enough to 

avoid damage. Whether the old capabilities still work, it needs being tested. 

Moreover, tests must evolve as well. They cannot be static; test suites need to 

expand for new learnings, new environments, and new standards and regulations. 

This is Autonomous Real-time Testing (ART). ART needs AI techniques to 

generate enough test cases, and thanks to this expandability ART is capable of 

testing other AI. 

 

 

Why Learning is Not Good Enough without Testing 

 

The death of Elaine Herzberg (August 2, 1968 - March 18, 2018) was the first 

recorded case of a pedestrian fatality involving an autonomous car, following a 

collision that occurred at around 10pm Mountain Standard Time (UTC-7) in the 

evening of Sunday, March 18, 2018 (The National Transportation Safety Board 

2018). The following narrative is extracted from the said source.  

Herzberg was pushing a bicycle across a four-lane road in Tempe, Arizona, 

United States, when she was struck by Volvo XC90 taxi outfitted with a sensor 

system, operated under test conditions by Uber. Since 2015, Uber conducted tests 

with various levels of automation in Arizona. The car was operating in self-drive 

mode with a human safety backup driver sitting in the driving seat. Following the 

collision, Herzberg was taken to the hospital where she died of her injuries.  

According Uber, the accident was largely caused by the software that decides 

how the car should react to objects it detects. The car’s sensors detected the pedes-

trian, who was crossing the street with a bicycle. Uber’s software first registered 

Elaine Herzberg on lidar six seconds before the crash — at the speed it was travel-

ing, that puts first contact at about 115m away. As the vehicle and pedestrian paths 

converged, the self-driving system software classified the pedestrian first as an 

unknown object, then as a vehicle, and then as a bicycle with varying expectations 

of future travel path. The software decided it did not need to react right away. Like 

other autonomous vehicle systems, Uber’s software can ignore ―false positives,‖ 

or objects in its path that are not an obstacle for the vehicle, such as a plastic bag 

floating over a road. 

Then, 1.3 seconds before impact, which is to say about 24m away, the self-

driving system determined that an emergency braking maneuver was needed to 

mitigate a collision. According to Uber, emergency braking maneuvers are not 

enabled while the vehicle is under computer control, to reduce the potential for 

erratic vehicle behavior. The vehicle operator is relied on to intervene and act. The 

system is not designed to alert the operator. The Volvo model’s built-in safety 

systems — collision avoidance and emergency braking, among other things — 

were also disabled while in autonomous testing mode. 
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The self-driving system data showed that the vehicle operator intervened less 

than a second before impact by engaging the steering wheel. The vehicle speed at 

impact was 62km/h. The operator began braking less than a second after the im-

pact. The data also showed that all aspects of the self-driving system were operat-

ing normally at the time of the crash, and that there were no faults or diagnostic 

messages. 

The dead of Elaine Herzberg raises one major question: Why were the visual 

recognition systems tested in real life situations only, instead under labor condi-

tions before hitting the road? 

 

 

A Primer on Metrics for Testing Software 

 

A Test is a finite collection of Test Stories. Test stories are finite collections of 

Test Cases, characterized by some common business value delivered. Business 

value is defined by User Stories. Test stories are related to user stories but typical-

ly not the same. Test stories address more than just one user story, combining dif-

ferent aspects from loosely related sources.  

Test cases  start with a set of preconditions  

and yield some known response . Test cases always contain weakest assertions; 

thus, inequalities or range specification rather than sample numbers; see the book 

of the author (Fehlmann 2016, p. 319ff). 

 

A Model for Software Functionality: ISO/IEC 19761 COSMIC 

 

When consulting the ISO/IEC/IEEE 29119 testing standard (ISO/IEC/IEEE 

29119-4, 2015), it astonishes that part 4 identifies 23 different so-called Test Cov-

erage Items. But tests primarily address software functionality. It is unnecessary to 

define extra ―Items‖ that undergo testing. 

Functional models are available and in use since the past 40 years for sizing 

software. Tests cover its model elements. We chose the ISO/IEC 19761 COSMIC 

standard (ISO/IEC 19761 2011). This model of software functionality consists of 

Data Movements, moving Data Groups from one Object of Interest into another. 

Thus, there exists only one test coverage item: obviously, the data movement. 

 

Data Movement Maps 

 

A piece of software connecting objects of interest that represent functionality, 

persistent stores, devices and other applications, can be modeled as Data Move-

ment Maps. The connectors are called Data Movements.  

Data movement maps have some resemblance to UML Sequence Diagrams 

(Bell 2004) but with less detail, and sequencing is not prescribed. The advantage 

of this representation is that size is immediately visible; useful as size count ac-

cording ISO/IEC 19761. Data movements always move a Data Group, which can 

be thought as a data record. A data movement counts for size only if its data group 

is unique. 
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Uniqueness is indicated by color-filled trapezes. Another move of same data 

group between the same objects within a COSMIC functional process lets the tra-

peze blank. 

There are four kinds of data movements: An Entry to some functional pro-

cess; an eXit to some device or other application; Reading from and Writing into a 

permanent store. Counting data movements yields the Functional Size (Figure 1). 

 

Figure 1. Sample Data Movement Map 

2 Entry (E) + 2 eXit (X) + 1 Read (R) + 1 Write (W) = 6 CFP

Functional

Processes
Persistent

Data Store
Device Other Application

1.// Data Movement moving a Data Group

Trigger

2.// Write Data into Store

3.// Start Other Application

4.// Get Results from Other Application

5.// Read Data from Store

6.// Display FInal Result

 
 

When executing a test case, it is straightforward to identify the data move-

ments that are executed. The initial data movements are those whose data group 

meets the assertions made for test data; the last data movement meets the response 

assertion. The test case simply is represented by a sub-map of the data movement 

map for the app being tested. 

Moreover, objects of interest can be expected to provide test stubs; this means 

that such objects can provide test data without executing all the data creation func-

tionality that under normal operational conditions is needed. If there is some 

hardware in the loop, test stubs are needed anyway to simulate the sensors’ or ac-

tuators’ data supplied into the test. 

 

Test Size 

 

Test Size thus is the number of data movements needed to execute some test 

case for producing the test response. According COSMIC rules, moving the same 

data group is counted only once for size. However, since a test story consists of 

many test cases, a specific data movement is executing many times within a test 

story, typically with different test data. All test cases within a test story must be 

different from each other. 

Test Intensity in turn is an average number characterizing how many times on 

average a data movement becomes part of test case. Since high test intensity, does 

not rule out that not all data movements are executed at least once in a test, Test 

Coverage remains an important indicator, specifying the percentage of data 

movements not covered with one test case in some test story. 
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The total size of a test story is the sum of all test case sizes executed within a 

test story, thus increasing test size when executing more test cases.  

In statistics, test distribution indicates the degree to which test intensity differs 

within one test story, or within the full test suite. For practical purposes, such a 

metric seems not very telling, since it does not replace test coverage. It is rather 

expected that high business value increases test intensity while data movements 

moving irrelevant data are well tested with a few test cases only. Thus, test intensi-

ty depends from business value and is not normally distributed. Therefore, test 

distribution is not a meaningful indicator. 

 

Test Walk 

 

The data movement maps can be used to visualize tests cases. You can walk 

the tests, similar, but less in detail, as walking through code. Such visualization 

might help in crowd testing for identifying bugs found. The tester sees selected 

sequences in the data movement map; he can ―walk‖ the data movements when 

planning or executing tests. This makes functionality visible to the development 

team, localizes defects that impact functionality, and supports communication be-

tween testers, users, and developers. Figure 2 shows how Data Walker walks four 

data movements of a test case and detects a bug at the fourth data movement. 

A Bug is defined the traditional way: a test case that returns an unexpected re-

sponse. Because our data walker can detect only one bug at a time, we are able to 

count defects unambiguously and thus define what defect density is. The maxi-

mum number of defects per test case is its test size. One test story only counts for a 

maximum of one defect per data movement 

 

Figure 2. Test Walk on Data Movement Maps (One Bug Found in Fourth Step) 
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Defect Density 

 

What is a defect? A defect means that the response does not meet the asser-

tion of the response in the respective arrow term. It is therefore obvious that a de-

fect relates to a test story. It refers to some data movement that exhibits the flawed 

response when executed by some specific test case.  

Thus, counting defects become a limited task. You can count a maximum of 

one defect per data movement per test story. Defect Density is therefore a percent-

age of the total of defect opportunities. This definition opens the possibility to ap-

ply the usual Six Sigma techniques to defect density and defect distribution. Tradi-

tional defect counts obtained from counting the number of entries in a bug reposi-

tory are not suitable for applying Six Sigma. 

 

Test Coverage 

 

Key among test metrics is Test Coverage. Test coverage has to do with users’, 

or customers’, values. It is useless to test pieces of software that deliver nothing 

visible to the user, or nothing that has any value. Test coverage refers to function-

ality, and not to code. Code implements functionality, and tests cover functionali-

ty, not code. Functionality can originate from anywhere, the cloud, other services. 

Code might provide other things that user functionality, e.g., additional security or 

traceability. 

For defining test coverage, functionality needs evaluation in view of customer 

values. It is obvious that just counting whether any given piece of functionality is 

covered by tests does not yield useful metrics, because users see value in respec-

tive functionality differently.  

 

Creating a Customer Needs Profile 

 

The usual way of valuating functionality is by prioritizing user stories. Agile 

teams set priorities when selecting user stories for a sprint. Priorities are set by the 

product owner; however, the methods used for setting priorities are not standard-

ized. Since product owner is the most difficult role in agile development, especial-

ly with Scrum (Schwaber and Beedle 2002), it is helpful to use a method dedicated 

to developing a product towards customer needs.  

The method of choice is the Analytical Hierarchy Process (AHP), proposed 

by Saaty (2003) and used in Fehlmann (2016, p. 21), based on calculating Eigen-

vector solutions. The applicable ISO 16355 standard (ISO 16355-1:2015 2015) 

lists many more excellent alternatives for Voice of the Customer (Mazur 2014), 

e.g., Net Promoter
®
 surveys (Fehlmann and Kranich 2014), and Gemba visits 

(Mazur and Bylund 2009). All these methods are part of Quality Function De-

ployment (QFD) (Fehlmann 2016, p. 16). 
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Effectiveness of the Implemented System 

 

With customer needs established, user stories can easily be prioritized with a 

Six Sigma Transfer Function that maps user stories onto customers’ needs. Trans-

fer functions map causes to effects and have a Convergence Gap that indicates 

how well the effective profile of the transfer function matches the goal profile. The 

functional effectiveness transfer function uses the frequency of data movements 

needed for implementing the user stories. The resulting profile defines the user 

stories’ priorities. These transfer functions are explained in Fehlmann (2016, p. 

21ff, p. 196). 

In turn, mapping test stories onto user stories, again using the frequency of da-

ta movements used in test cases, defines Test Coverage. The matrix looks familiar; 

tester uses it to assess coverage of code by tests. However, without proper test 

metrics you cannot assess a test coverage matrix for its quality. If the test cases in a 

series of test stories cover the user stories, and the transfer functions yields a satis-

factory convergence gap, the tests cover customer needs exactly, up to the said 

convergence gap (Figure 3). 

 

Figure 3. Transfer Functions Overview 
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Thus, the test coverage matrix represents a transfer function providing assur-

ance that the test stories verify the correct implementation of the user stories. The 

convergence gap measures how well the correct implementation of user stories can 

be proved by these tests. 

These tests do not prove anything else than the requirements expressed in the 

user stories. Adding user stories requires adding test stories. And as ever with 

transfer functions, there is no way of proving that the selected test stories are the 

only selection that works, not even the minimal one; you just can prove that the 

selected test stories work sufficiently well. Thus, the convergence gap, in turn, is a 

metric that can be used for test automation. It eliminates test stories that are not 

needed in view of the values of the customer. 

 

Test Acceptance Criteria 

 

Test coverage within a given convergence gap replaces traditional test com-

pletion criteria, as extensively spread out in the respective ISO standard (ISO/IEC/ 



Vol. 6, No. 4                                 Fehlmann & Kranich: Testing Artificial Intelligence… 

 

272 

IEEE 29119-4 2015, p. 125). Test cases are considered for inclusion in the test 

coverage transfer function only if passed when executing the test. The full test 

suite is passed if test coverage, computed with valid test cases only, results in a 

convergence gap below a certain limit. Currently, we believe a suitable limit is 0.1, 

corresponding to a 10% match between goal of testing and tests executed 

(Fehlmann 2016, p. 13ff). 

 

 

How to Test Artificial Intelligence 

 

Computer Vision and Artificial Intelligence (AI) overlap. AI is different from 

ordinary software by its capability to learn. This means, AI can adapt to new envi-

ronments, data, images and videos. While AI can be used for other tasks, computer 

vision is concerned with the theory behind artificial systems that extract infor-

mation from images. Areas of AI deal with autonomous planning or deliberation 

for robot systems to navigate through an environment. A detailed understanding of 

these environments is required to navigate through them. Information about the 

environment could be provided by a computer vision system, acting as a vision 

sensor and providing high-level information about the environment and the robot.  

AI and computer vision share other topics such as pattern recognition and 

learning techniques. Consequently, computer vision is sometimes seen as a part of 

the AI field. Testing AI in computer vision obviously is not so straightforward; 

mainly, because it is not possible to predict what the correct outcome is. The test 

case might produce different responses, and all are correct at a given state of expe-

rience collection. 

Recall that AI basically is sorting data into categories based on previous learn-

ing, or sample sets. In the Elaine Herzberg case, the Uber car did exactly that when 

its Lidar, and ten visual cameras, recognized the object moving towards the car’s 

driveway. The difficulty was to find the right category. Humans encounter the 

same difficulty, when a biker enters the road from the pedestrian sidewalk. Expect-

ing a pedestrian, they rapidly must adapt categories to a bicycle that follows dif-

ferent traffic rules than a pedestrian. Things become even more complicated if 

suddenly the pedestrian conjures up a skateboard, or a scooter. Traffic rules for the 

latter two conveyances are unknown, or do not exist. Humans are disturbed, and so 

are visual recognition systems, despite lidar and cameras. 

Since the important contribution of the visual recognition system is categori-

zation, it should be tested whether categories detected by the visual recognition 

system remain the same over its lifetime. But that is not enough. Behavior on cer-

tain sample image sequences should also remain stable – except if new learnings 

tell it otherwise. Obviously, tests must adapt to learnings. On the other hand, learn-

ing systems can become neurotically disturbed – mentally sick, like humans 

(Gerven and Bohte 2017). Thus, this is a case for Autonomous Real-time Testing 

(ART) (Fehlmann and Kranich 2017). Testing AI must be possible anytime, au-

tonomous, without human intervention. 
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Baselining 

 

You start testing AI as any other software: 

 

 Identify the software under test 

 Identify the goals of testing 

 Draw a data movement map 

 Calculate functional effectiveness 

 Adjust scope of testing until goal and functional effectiveness converge 

 Prepare the Test Stories: 

 Identify new test stories 

 Fill test stories by test cases 

 Calculate test coverage 

 Repeat above three steps until test coverage converges 

 

Perform the tests and validate test stories and test cases. Identify defects and 

remove them, or mitigate them, until your system is defect-free. 

 

Extending Test Cases 

 

Consider the AI domain when extending test cases. For instance, for traffic 

vehicles, use video sequences from traffic scenes already described in the test sto-

ry. Use video sequences that have been used for deep learning and other who were 

not. You must manually classify the videos for the category of traffic it represents; 

it is therefore the same kind of work for testing as for learning.  

With ART, you keep the test stories from the initial test suite stable while add-

ing more test cases to improve test intensity and to detect more defects. For visual 

systems, the primary source for new test cases is new images and videos. Keeping 

test coverage good enough is somewhat easier than in other ART instances, since 

you only exchange test data. You do not change the aim of testing. 

One primary source for new test cases is the contents of the data groups 

moved by the data movements in the ISO/IEC 19761 COSMIC model. Whatever 

can enter a certain functional process must become part of a test case, even for 

nothing else than proving it has no effect at all. Thus, according the combinatory 

logic approach, we combine all possible input as test data in the test cases and se-

lect those test cases that keep the convergence gap of the test coverage matrix 

small. 

This is an automatic task; it has some resemblance to AI techniques as it 

means searching and categorizing data. The data stems from the data groups in the 

ISO/IEC 19761 COSMIC data movements; the combinatory algebra defines its 

structure. For more details see Fehlmann and Kranich (2018). 
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Interpreting Test Results 

 

The aim of AI testing is to verify stable behavior in performing categorization 

as previously learned. This is different from human learning where humans should 

be able to interfere correct evaluations from their skills. As already mentioned, AI 

has not so much to do with the Latin origin of the word ―Intelligence‖, namely 

intellegere, read, or infer, between the lines, or other objects. Testing machine 

intelligence means verifying that the software keeps identifying the same catego-

ries and does not change them. Testing AI remains simple while no new categories 

are added. 

If something else is being tested than categorization, interpreting test results 

can become quite difficult. Remember that test results should be known in ad-

vance. AI behavior is not known before executing the test. 

Thus, it can happen that when evaluating test results, responsibility must turn 

back to humans in case the response of the test case is something else than one of 

AI’s established categories. Adding another category to AI is connected to re-

learning from scratch. You must supply all given evidence again and accept that 

the category borders move. In such cases, testing AI also re-starts from the begin-

ning with establishing a new baseline. As ultimate consequence of such a worst-

case scenario, the AI-driven VRS might go out of service until completely retest-

ed. 

 

Repeat the Tests – Forever  

 

Not only learning data changes, categories themselves are not except from 

change. Certain categories such as legal behavior in traffic are also subject to 

change and must be adapted to new environments and facts. Testing AI will detect 

such changes. 

Therefore, for the lifetime of the AI system, testing must repeat. AI systems 

consist not of stable, always repeatable software but depend from their environ-

ment. If the AI system fails to reproduce correct answers, it might indicate a shift 

in the learning data and probably learning must restart from the beginning. Such 

restarts are required, for instance, if in traffic new conveyors appear, such as 

scooters, electro-scooters, electro-bikes, or if rules change. 

 

 

An Advanced Driving Assistance System (ADAS) as an Example 

 

The sample ADAS service we use to demonstrate the principles is a Car Driv-

ing Function based on a Visual Recognition System (VRS; Camera driven by a 

Sensor Bus) interpreting images. A Lidar – Light Detection and Ranging, a device 

that measures distances with a pulsed laser light – delivers distances and allows the 

Car Driving Function to build a 3D-model of the immediate surroundings, identi-

fying fixed and movable objects from the image captured and analyzed. Sequences 

of images serve for determining the objects movements and direction. 
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ADAS Functionality 

 

The Car Driving Function asks the Recommender for advice and acts in ac-

cordance with the selected route that the navigation system stored in the Remem-

ber Routes persistent database. This is a simplified ADAS for instructional pur-

pose only; it possibly can power a model car. The model is equipped with camera, 

Lidar, and sensors for slippery roads. It uses a Navigator service to find a route. 

Both the recommender and the VRS are implemented as neural network engines. 

However, the system lacks the redundancy required for the real world. 

The initial part of Figure 4 connects these services with sensors and car steer-

ing devices, triggered by Look and Act. The full ADAS application for our model 

car consists of four more parts:  

 

 Find Route, e.g. by help of a navigation system, or according car user’s 

preference. 

 Locate, compare current location with actual route. 

 Check Route, used to compare different possible routes in terms of traf-

fic, weather, any other obstacles or fitting car user’s preferences. 

 Amend Route; after receiving an Alert from the Navigator application 

because conditions changed under way, changing route might help.  

 

Finding a route is usually based on some Navigator service that can propose a 

route between current location and some known destinations. The complete 

ADAS is shown in Figure 4 as a data movement map; sizing information included 

in the upper left corner.   

 

Testing the ADAS 

 

This piece of software first prepares the setting – collecting car specifics, test 

cases, extending them – then executes testing first the neural network engine, then 

the recommender, finally the Lidar and the camera. 

The testing software resides local, on the car, but the test data originate from a 

repository called Testing Cloud common to all cars undergoing the same tests. 

Test cases originate there, and the Testing AI engine also works on this cloud ser-

vice. The ADAS of the car could upload images taken for adding those to the test-

ing cloud; however, this is neither reflected in the part of the ADAS shown before, 

nor in Figure 5. Only test results are recorded in the testing cloud, upon approval 

by the car user, the owner of the test results. Figure 5 consists of test preparation, 

execution of tests for the Neural Network, the Recommender, and the Visual 

Recognition Systems including the Lidar, plus a test result recording and test result 

presentation for the tester testing the ADAS. It represents an application by itself, 

with user stories and the need for testing. 
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Figure 4. The Complete ADAS Model 
15 Entry (E) + 15 eXit (X) + 6 Read (R) + 6 Write (W) = 42 CFP
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Figure 5. Automated Real-Time Testing (ART) for Advanced Driving Assistant System (ADAS) 
13 Entry (E) + 12 eXit (X) + 9 Read (R) + 8 Write (W) = 42 CFP
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42.// Upload Test Results
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The Car Users’ Needs 

 

Using the AHP, we identify the following major values for users of the 

ADAS as listed in Figure 6. 
 

Figure 6. Car Users’ Needs 

Customer's Needs Topics Attributes Weight Profile

Y.a Drive Fast y1 Agile Driving Arrive safe Do not block other traffic Have fun 16% 0.36

y2 Smooth Driving Drive predictibly Do not break unnecessarily 15% 0.32

y3 Arrive in Time Arrive predictibly Avoid obstacles 23% 0.50

Y.b Drive Safe y4 Avoid Incidences Drive foresightful Know what's ahead Know my way 27% 0.58

y5 No Surprises Communicate Never surprise anybody Give signs 19% 0.422.2

AHP Priorities

 
 

The AHP process is used to analyze these needs and produce a profile for 

its relative importance. The profile for the car users’ needs is based on the fol-

lowing pairwise comparison, shown in Figure 7. This is again a basic AHP. 
 

Figure 7. AHP for ADAS 
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The needs of human drivers in today’s traffic might be individually quite 

different; however, in view of an ADAS, characteristics linked to safety and 

avoidance of disturbance are dominant. You use an ADAS because you need 

something that helps through dense urban traffic, avoids jams and incidences, 

and makes driving experience smoother.  

An ADAS is less suited for people who drive cars just for fun. They even-

tually turn it off. Their needs are not investigated by that AHP; an AHP for 

such people likely would produce a different car users’ needs profile. 

 

User Stories – The Functional User Requirements (FUR) 

 

The data movements are those of the joint ADAS data movement map 

Figure 4. The user stories for ADAS are summarized in Table 1. 
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Table 1. ADAS User Stories 

Label 
As a 

… 
I want to … Such that … So that … 

Populated 

Area 

Car 

User 

let my car reduce 

speed 

my car can 

safely stop 

my car is not 

causing delays by 

an incidence 

Obstacle 
Car 

User 

let my car avoid 

obstacles 

my car can 

drive around 

my car is not 

stopping 

unnecessarily 

Know my 

Way 

Car 

User 

let my car take 

appropriate routes 

my car avoids 

blocked routes 

and traffic jams 

I know when I'll 

arrive 

Amend 

my Way 

Car 

User 

optimize my route 

when needed 

no incidence 

blocks my way 

I still can predict 

when I'll arrive 

Check 

my Way 

Car 

User 

approve or 

disapprove the car's 

choice for routing 

I can take my 

preferred route 
I feel in control 

Able to 

Stop 

Car 

User 

have my car break 

soon enough 

it can avoid 

dangerous 

situations 

It recognizes 

obstacles ahead 

Check 

my Way 

Car 

User 

approve or 

disapprove the car's 

choice for routing 

I can take my 

preferred route 
I feel in control 

 

The user stories remain on a high epic level without specifying the details 

how the ADAS should behave in specific cases. With these user stories, the 

functional effectiveness matrix yields a satisfying rationale for the user stories 

(Figure 8). It means that the data movement map implements the user stories 

completely and without any wrong focus. 

The functional effectiveness transfer function maps the user stories onto 

the car users’ needs by counting how many data movements contribute to the 

user stories. This yields the cause-effect relation between functionality and 

requirements; also, it assigns data movements to at least one user story. 

 

Figure 8. Functional Effectiveness for ADAS 
User Stories
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y1 Agile Driving 0.36 6 3 3 2 5 0.34

y2 Smooth Driving 0.32 4 3 5 5 2 0.34

y3 Arrive in Time 0.50 7 3 4 7 1 6 0.52

y4 Avoid Incidences 0.58 6 4 3 6 6 8 0.58

y5 No Surprises 0.42 1 3 3 8 9 0.41

Solution Profile for User Stories: 0.46 0.30 0.33 0.54 0.33 0.43 Convergence Gap

0.46 0.30 0.33 0.54 0.33 0.43 0.04

123 Total Effort Points

0.10 Convergence Range   

0.20 Convergence Limit

Car User Needs
Deployment Combinator

Car User Needs
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The Test Stories 

 

The test stories in Table 2 specify more details how to implement the 

ADAS. 

 

Table 2. Test Stories for ADAS for User Stories Shown in Table 1 

   Test Story Informal Description 

A 
People 

Around 
A.1 

People 

around 

The ADAS identifies people staying near the 

car, or sit on a specific vehicle 

B Obstacle B.1 
Obstacle 

ahead 

Static or moving obstacles I the way are 

identified and correctly classified 

C 
Know 

my way 
C.1 Get route 

The ADAS always knows where to go next, be 

it at a crossing or at the end of the route 

  C.2 
Change 

route 

The route to take is periodically changed, based 

on alerts received from Navigator 

  C.3 
Update 

position 

The correct position is always known to the 

ADAS 

D 
Choose 

way 
D.1 Approval 

When choosing the route, the car user must 

approve the decision 

  E.1 
Arrival 

time 

The expected arrival time is shown to the car 

user 

  E.2 Learnings 
The ADAS has a repository of routes taken and 

can rely on past experiences, e.g. jams 

  F.1 
Keep under 

control 

The ADAS is always in control of the car, even 

if he car user intervenes 

  F.2 
Brake 

action 

Brake action is known to ADAS, depending on 

weather and road condition 

  F.3 
Avoid 

stops 

The ADAS tries to drive smoothly, adapting 

speed, avoiding unnecessary stops 

 

Remember that we had no clue how our visual recognition system deter-

mines the list of valid objects that it recognizes. Possibly it is implemented as a 

neural network, or a Support Vector Machine (SVM) is used (Pupale 2018). 

Nevertheless, we use our data movement map model to assess functional effec-

tiveness with the later goal of testing it. In other words: we test what we think 

how the VRS works. We test our model. 

For this paper, we give only informal descriptions, leaving it to the reader 

to invent suitable test cases. For the calculation below, we used around five test 

cases per test story. This yields the following test coverage (Figure 9). 

The numbers in the cell represent the number of data movements that sup-

port the respective user story. With a convergence gap of 0.11 we are within 

convergence range, set a bit wider than in usual transfer functions. 
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Figure 9. Initial Test Coverage 
Test Stories
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Q003 Know my Way 0.33 2 5 17 6 15 12 9 6 7 9 9 0.27

Q004 Amend my Way 0.54 24 19 14 19 21 9 25 9 17 15 21 0.59

Q005 Check my Way 0.33 16 13 6 5 7 23 12 8 20 0.35

Q006 Able to Stop 0.43 26 25 5 2 10 4 6 8 10 8 13 0.39

Ideal Profile for Test Stories: 0.44 0.41 0.25 0.20 0.32 0.24 0.32 0.19 0.25 0.20 0.36 Convergence Gap

0.45 0.42 0.25 0.19 0.32 0.24 0.31 0.19 0.25 0.19 0.4 0.11

768 Total Test Size

0.15 Convergence Range            

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

 
 

Extending Test Cases 

 

Extending test cases within the same test stories yields more reliable re-

sults, and a higher test intensity (see Figure 13). In this example, extension 

works in two stages: 

 

 Adding test cases that refer to bad weather forecast. If the Navigator re-

ports rain on the route, driving speed and arrival forecast must be 

adapted. 

 More test cases are added after the Navigator reports stormy weather 

causing eventually a change to the chosen route. 

 

The following matrices (Figures 10 and 11) show the results after each of 

the two steps outlined above. 

 

Figure 10. After Adding Bad Weather Cases 
Test Stories
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Figure 11. After Adding Adaption to Changed Route 
Test Stories
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ART detects these new test cases because the data group received from the 

Navigator contains a weather forecast, as part of the route description. New test 

cases are created starting from the existing ones, by variation of test data, con-

sidering other all data received from data movements. Obviously, weather fore-

cast changes the driving time prediction. Among the many test cases that can 

be created, ART keeps the convergence gap within limits, using this as selec-

tion process. Total test size is growing, and convergence gap is stable, or 

shrinking. This is the benefit of using customers’ needs as goal for testing. 

 

How Came the Weather Forecast into ART? 

 

The additional test cases improve reliability and accuracy. ART finds such 

extensions by scanning data groups of the data movements involved. Since the 

chosen route is not fix but changes on receiving an Alert from the Navigator, 

ART learns that conditions such as rainy and stormy weather can exist and 

generates suitable test cases; shown in data movement map Figure 12. 
 

Figure 12. Amend Route upon Navigator’s Alert 

2 Entry (E) + 1 eXit (X) + 1 Read (R) + 1 Write (W) = 5 CFP

Car User Routing Remember Routes Navigator

1.// Routing Alert

Alert

2.// Recall Route

3.// Recalculate Route

4.// Change Route

5.// Propose Route Change
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The data group moved by the data movement Routing Alert from the Nav-

igator application to the Routing functional process contains all sort of alerts, 

including traffic jams and bad weather conditions. The ART mechanism ex-

tending test cases considers weather as a reason to change driving. Thus, when 

replacing other reasons for choosing a route, the Chosen Route data movement 

in Look & Act (initial two triggers in Figure 4) tells the Car Driving Function 

about the changed weather conditions. This attribute is now selectable by ART 

for generating new test cases, also for the Visual Recognition system (VRS). 

Thus, it will be added as another test case for VRS, sooner or later. And be-

cause the new test case fits well with the car users’ needs, rather sooner than 

later. 

ART thus must find images showing people, or other vehicles, in the rain, 

or in a storm, to produce the same results in the test stories A.1: People around; 

B.1: Obstacle ahead; C.1: Get route; and C.2: Change route. 

Weather is one thing that can be considered. But there is much more be-

fore autonomous cars can hit the road, for instance a tendency, or the need, to 

use bikes for transporting bags in certain social environments. Moreover, where 

Ms. Herzberg crossed, there is a functional road strip across the median of the 

four-lane road with the potential of being abused by pedestrians. If the Naviga-

tor could also consider additional information about the neighborhoods trav-

ersed, Elaine Herzberg possibly would still be alive, and trust in autonomous 

cars unhampered. 

 

Summary View 

 

The summary view on the original and the two extended test suites reveals, 

as expected, that test size and intensity increased, while we might expect more 

defects detected after the tests were executed.  
 

Figure 13. Initial Test Suite, and Two Extensions 
Total CFP: 39 Test Size in CFP: 768

Test Intensity: 19.7

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%  
 

Total CFP: 39 Test Size in CFP: 859

Test Intensity: 22.0

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%  
 

Total CFP: 39 Test Size in CFP: 954

Test Intensity: 24.5

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%  
 

Functional size remained stable: CFP 39, while increasing test size also in-

creased test intensity. 

Thus, improving testing is always possible by simply extending the test 

cases by similar ones, provided test coverage keeps the convergence gap nar-

row enough. ART provides value without increasing functional size. In this 
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example, it was enough to trace back data movements that could contribute 

extra data to tests. Thus, the data movement map is paramount for automatic 

test case generation. 

For testers, it is enough to provide an initial test suite (Table 2). The rest is 

left to AI. So, you test AI with AI. You can increase test intensity as much as 

you like, and our budget allows More tests certainly increase opportunities for 

detecting defects that can be removed and add marketable value for the cus-

tomer. Thanks to the test coverage transfer function and its convergence gap, 

those additional tests remain relevant. Moreover, since tests are generated ran-

domly, there is no bias blocking certain test cases, although extending test cases 

along some application cases such as weather or route change might allow for 

targeted test extensions. 

 

 

The Next Steps, and a Preliminary Conclusion 

 

The basic idea how to deal with ―untestable‖ neuronal networks and deep 

learning is to create a data movement map as a model, specifying what users 

expect the AI part to do.  

Clearly, a VRS needs more tests than fitting in this paper. ART generates 

more test cases out of the fourteen test stories to increate test intensity. Howev-

er, at the current stage of research, we have no clue what test intensity is 

enough for a VRS in an autonomous car. 

The proposed method can be upscaled to larger test coverage transfer func-

tions. Real software systems have a few hundred user stories, and even more 

test stories. Solving such test coverage matrices requires big data algorithms 

but these tools are readily available nowadays.  

A promising approach is to use the AHP for initial test coverage. With 

many user stories and test stories, a complex system often splits into smaller 

parts than can be tested separately, at least initially, and the full test coverage 

matrix fills in automatically by ART (Fehlmann 2019). 

Applying ART means adding more test cases, more image sequences, al-

ways with respect to the convergence gap, aiming at improving the conver-

gence gap. This limits combinatorial explosion, as it allows selecting relevant 

test cases only.  
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