
Athens Journal of Sciences- Volume 6, Issue 4 – Pages 265-286

https://doi.org/10.30958/ajs.6-4-3 doi=10.30958/ajs.6-4-3

Testing Artificial Intelligence by Customers’ Needs

By Thomas Fehlmann
*
& Eberhard Kranich

‡

Artificial Intelligence (AI) is everywhere, nowadays. No longer limited to computer la-

boratory, it now sets up media campaigns, influences people, decides elections, protects

property, and drives cars. The principles of AI are quite old; most of them originate from

the early times of computer science and had been discussed in the seventies and the

eighties. But they were theoretical concepts as computer power was a scarce resource,

and not enough data was available to feed the perception of that time. However, now AI

governs even safety-criminal systems. How can it be tested? The answer is surprisingly

simple: consider the system’s goals.

Keywords: Artificial Intelligence, Neural Networks, Safety Metrics, Software Metrics,

Support Vector Machines, Test Coverage, Test Metrics.

Introduction

The principles of AI are classification of entities and the solution of the equa-

tion , where and are vectors in spaces of different dimensions and

semantics. For instance, could be the observable behavior of people or extrasolar

planets, and the unknown cause of it. Traditional solution methods are regres-

sion, where both and are measurable, or eigenvector methods, where the , is

not directly measurable but the correlation between the two is measurable. If there

is not much known about the transfer function , neural networks can be set up

that learn the transfer function, based on experience.

If a car uses an image recognition system, it must learn to distinguish between

people walking, running, children playing, waiting, and bicycles riding, or being

walked. The system should also be able to recognize people and things if not seen

in full, even partly hidden behind a bush, by fog, or at night. Such a system is pro-

grammed to learn; neither image characteristics nor pattern recognition algorithms

are programmed into it.

Unfortunately, such neural networks do not only learn, they also unlearn. Van

Gerven et al. (2018) have shown that they can get distressed (―mad‖) as any neural

information processing, similar to humans. Before I dare to sit into an autonomous

car, I probably want to know whether and when this car with its current state of the

learning system had passed its last test.

*
Senior Researcher, Euro Project Office AG, Switzerland.

‡
Senior Researcher, Euro Project Office, Germany.

Vol. 6, No. 4 Fehlmann & Kranich: Testing Artificial Intelligence…

266

Our Approach

This requires the ability to test software-intense systems autonomously. It

must be possible to test a car’s image analysis capabilities in regular intervals to

see whether it still works as expected; thus, detecting ―madness‖ early enough to

avoid damage. Whether the old capabilities still work, it needs being tested.

Moreover, tests must evolve as well. They cannot be static; test suites need to

expand for new learnings, new environments, and new standards and regulations.

This is Autonomous Real-time Testing (ART). ART needs AI techniques to

generate enough test cases, and thanks to this expandability ART is capable of

testing other AI.

Why Learning is Not Good Enough without Testing

The death of Elaine Herzberg (August 2, 1968 - March 18, 2018) was the first

recorded case of a pedestrian fatality involving an autonomous car, following a

collision that occurred at around 10pm Mountain Standard Time (UTC-7) in the

evening of Sunday, March 18, 2018 (The National Transportation Safety Board

2018). The following narrative is extracted from the said source.

Herzberg was pushing a bicycle across a four-lane road in Tempe, Arizona,

United States, when she was struck by Volvo XC90 taxi outfitted with a sensor

system, operated under test conditions by Uber. Since 2015, Uber conducted tests

with various levels of automation in Arizona. The car was operating in self-drive

mode with a human safety backup driver sitting in the driving seat. Following the

collision, Herzberg was taken to the hospital where she died of her injuries.

According Uber, the accident was largely caused by the software that decides

how the car should react to objects it detects. The car’s sensors detected the pedes-

trian, who was crossing the street with a bicycle. Uber’s software first registered

Elaine Herzberg on lidar six seconds before the crash — at the speed it was travel-

ing, that puts first contact at about 115m away. As the vehicle and pedestrian paths

converged, the self-driving system software classified the pedestrian first as an

unknown object, then as a vehicle, and then as a bicycle with varying expectations

of future travel path. The software decided it did not need to react right away. Like

other autonomous vehicle systems, Uber’s software can ignore ―false positives,‖

or objects in its path that are not an obstacle for the vehicle, such as a plastic bag

floating over a road.

Then, 1.3 seconds before impact, which is to say about 24m away, the self-

driving system determined that an emergency braking maneuver was needed to

mitigate a collision. According to Uber, emergency braking maneuvers are not

enabled while the vehicle is under computer control, to reduce the potential for

erratic vehicle behavior. The vehicle operator is relied on to intervene and act. The

system is not designed to alert the operator. The Volvo model’s built-in safety

systems — collision avoidance and emergency braking, among other things —

were also disabled while in autonomous testing mode.

Athens Journal of Sciences December 2019

267

The self-driving system data showed that the vehicle operator intervened less

than a second before impact by engaging the steering wheel. The vehicle speed at

impact was 62km/h. The operator began braking less than a second after the im-

pact. The data also showed that all aspects of the self-driving system were operat-

ing normally at the time of the crash, and that there were no faults or diagnostic

messages.

The dead of Elaine Herzberg raises one major question: Why were the visual

recognition systems tested in real life situations only, instead under labor condi-

tions before hitting the road?

A Primer on Metrics for Testing Software

A Test is a finite collection of Test Stories. Test stories are finite collections of

Test Cases, characterized by some common business value delivered. Business

value is defined by User Stories. Test stories are related to user stories but typical-

ly not the same. Test stories address more than just one user story, combining dif-

ferent aspects from loosely related sources.

Test cases start with a set of preconditions

and yield some known response . Test cases always contain weakest assertions;

thus, inequalities or range specification rather than sample numbers; see the book

of the author (Fehlmann 2016, p. 319ff).

A Model for Software Functionality: ISO/IEC 19761 COSMIC

When consulting the ISO/IEC/IEEE 29119 testing standard (ISO/IEC/IEEE

29119-4, 2015), it astonishes that part 4 identifies 23 different so-called Test Cov-

erage Items. But tests primarily address software functionality. It is unnecessary to

define extra ―Items‖ that undergo testing.

Functional models are available and in use since the past 40 years for sizing

software. Tests cover its model elements. We chose the ISO/IEC 19761 COSMIC

standard (ISO/IEC 19761 2011). This model of software functionality consists of

Data Movements, moving Data Groups from one Object of Interest into another.

Thus, there exists only one test coverage item: obviously, the data movement.

Data Movement Maps

A piece of software connecting objects of interest that represent functionality,

persistent stores, devices and other applications, can be modeled as Data Move-

ment Maps. The connectors are called Data Movements.

Data movement maps have some resemblance to UML Sequence Diagrams

(Bell 2004) but with less detail, and sequencing is not prescribed. The advantage

of this representation is that size is immediately visible; useful as size count ac-

cording ISO/IEC 19761. Data movements always move a Data Group, which can

be thought as a data record. A data movement counts for size only if its data group

is unique.

Vol. 6, No. 4 Fehlmann & Kranich: Testing Artificial Intelligence…

268

Uniqueness is indicated by color-filled trapezes. Another move of same data

group between the same objects within a COSMIC functional process lets the tra-

peze blank.

There are four kinds of data movements: An Entry to some functional pro-

cess; an eXit to some device or other application; Reading from and Writing into a

permanent store. Counting data movements yields the Functional Size (Figure 1).

Figure 1. Sample Data Movement Map

2 Entry (E) + 2 eXit (X) + 1 Read (R) + 1 Write (W) = 6 CFP

Functional

Processes
Persistent

Data Store
Device Other Application

1.// Data Movement moving a Data Group

Trigger

2.// Write Data into Store

3.// Start Other Application

4.// Get Results from Other Application

5.// Read Data from Store

6.// Display FInal Result

When executing a test case, it is straightforward to identify the data move-

ments that are executed. The initial data movements are those whose data group

meets the assertions made for test data; the last data movement meets the response

assertion. The test case simply is represented by a sub-map of the data movement

map for the app being tested.

Moreover, objects of interest can be expected to provide test stubs; this means

that such objects can provide test data without executing all the data creation func-

tionality that under normal operational conditions is needed. If there is some

hardware in the loop, test stubs are needed anyway to simulate the sensors’ or ac-

tuators’ data supplied into the test.

Test Size

Test Size thus is the number of data movements needed to execute some test

case for producing the test response. According COSMIC rules, moving the same

data group is counted only once for size. However, since a test story consists of

many test cases, a specific data movement is executing many times within a test

story, typically with different test data. All test cases within a test story must be

different from each other.

Test Intensity in turn is an average number characterizing how many times on

average a data movement becomes part of test case. Since high test intensity, does

not rule out that not all data movements are executed at least once in a test, Test

Coverage remains an important indicator, specifying the percentage of data

movements not covered with one test case in some test story.

Athens Journal of Sciences December 2019

269

The total size of a test story is the sum of all test case sizes executed within a

test story, thus increasing test size when executing more test cases.

In statistics, test distribution indicates the degree to which test intensity differs

within one test story, or within the full test suite. For practical purposes, such a

metric seems not very telling, since it does not replace test coverage. It is rather

expected that high business value increases test intensity while data movements

moving irrelevant data are well tested with a few test cases only. Thus, test intensi-

ty depends from business value and is not normally distributed. Therefore, test

distribution is not a meaningful indicator.

Test Walk

The data movement maps can be used to visualize tests cases. You can walk

the tests, similar, but less in detail, as walking through code. Such visualization

might help in crowd testing for identifying bugs found. The tester sees selected

sequences in the data movement map; he can ―walk‖ the data movements when

planning or executing tests. This makes functionality visible to the development

team, localizes defects that impact functionality, and supports communication be-

tween testers, users, and developers. Figure 2 shows how Data Walker walks four

data movements of a test case and detects a bug at the fourth data movement.

A Bug is defined the traditional way: a test case that returns an unexpected re-

sponse. Because our data walker can detect only one bug at a time, we are able to

count defects unambiguously and thus define what defect density is. The maxi-

mum number of defects per test case is its test size. One test story only counts for a

maximum of one defect per data movement

Figure 2. Test Walk on Data Movement Maps (One Bug Found in Fourth Step)

Functional

Process

Other
Application

Some

Device

8.// Move some data

9.// Move some data

10.// Move some data

11.// Move some data

Other

Device

Functional

Process

Other
Application

Some

Device

Other

Device

Functional

Process

Other
Application

Some

Device

8.// Move some data

9.// Move some data

10.// Move some data

11.// Move some data

Other

Device

Functional

Process

Other
Application

Some

Device

Other

Device

Functional

Process

Other
Application

Some

Device

8.// Move some data

9.// Move some data

10.// Move some data

11.// Move some data

Other

Device

Functional

Process

Other
Application

Some

Device

Other

Device

Functional

Process

Other
Application

Some

Device

8.// Move some data

9.// Move some data

10.// Move some data

11.// Move some data

Other

Device

Functional

Process

Other
Application

Some

Device

Other

Device

Vol. 6, No. 4 Fehlmann & Kranich: Testing Artificial Intelligence…

270

Defect Density

What is a defect? A defect means that the response does not meet the asser-

tion of the response in the respective arrow term. It is therefore obvious that a de-

fect relates to a test story. It refers to some data movement that exhibits the flawed

response when executed by some specific test case.

Thus, counting defects become a limited task. You can count a maximum of

one defect per data movement per test story. Defect Density is therefore a percent-

age of the total of defect opportunities. This definition opens the possibility to ap-

ply the usual Six Sigma techniques to defect density and defect distribution. Tradi-

tional defect counts obtained from counting the number of entries in a bug reposi-

tory are not suitable for applying Six Sigma.

Test Coverage

Key among test metrics is Test Coverage. Test coverage has to do with users’,

or customers’, values. It is useless to test pieces of software that deliver nothing

visible to the user, or nothing that has any value. Test coverage refers to function-

ality, and not to code. Code implements functionality, and tests cover functionali-

ty, not code. Functionality can originate from anywhere, the cloud, other services.

Code might provide other things that user functionality, e.g., additional security or

traceability.

For defining test coverage, functionality needs evaluation in view of customer

values. It is obvious that just counting whether any given piece of functionality is

covered by tests does not yield useful metrics, because users see value in respec-

tive functionality differently.

Creating a Customer Needs Profile

The usual way of valuating functionality is by prioritizing user stories. Agile

teams set priorities when selecting user stories for a sprint. Priorities are set by the

product owner; however, the methods used for setting priorities are not standard-

ized. Since product owner is the most difficult role in agile development, especial-

ly with Scrum (Schwaber and Beedle 2002), it is helpful to use a method dedicated

to developing a product towards customer needs.

The method of choice is the Analytical Hierarchy Process (AHP), proposed

by Saaty (2003) and used in Fehlmann (2016, p. 21), based on calculating Eigen-

vector solutions. The applicable ISO 16355 standard (ISO 16355-1:2015 2015)

lists many more excellent alternatives for Voice of the Customer (Mazur 2014),

e.g., Net Promoter
®
 surveys (Fehlmann and Kranich 2014), and Gemba visits

(Mazur and Bylund 2009). All these methods are part of Quality Function De-

ployment (QFD) (Fehlmann 2016, p. 16).

Athens Journal of Sciences December 2019

271

Effectiveness of the Implemented System

With customer needs established, user stories can easily be prioritized with a

Six Sigma Transfer Function that maps user stories onto customers’ needs. Trans-

fer functions map causes to effects and have a Convergence Gap that indicates

how well the effective profile of the transfer function matches the goal profile. The

functional effectiveness transfer function uses the frequency of data movements

needed for implementing the user stories. The resulting profile defines the user

stories’ priorities. These transfer functions are explained in Fehlmann (2016, p.

21ff, p. 196).

In turn, mapping test stories onto user stories, again using the frequency of da-

ta movements used in test cases, defines Test Coverage. The matrix looks familiar;

tester uses it to assess coverage of code by tests. However, without proper test

metrics you cannot assess a test coverage matrix for its quality. If the test cases in a

series of test stories cover the user stories, and the transfer functions yields a satis-

factory convergence gap, the tests cover customer needs exactly, up to the said

convergence gap (Figure 3).

Figure 3. Transfer Functions Overview

USt CN

Pairwise Comparison

TSt USt

Test Stories
(TSt)

#Defects

Test Coverage

Customer
Needs (CN)

User Stories
(USt)

#Functional Size

Effectiveness

Values

Thus, the test coverage matrix represents a transfer function providing assur-

ance that the test stories verify the correct implementation of the user stories. The

convergence gap measures how well the correct implementation of user stories can

be proved by these tests.

These tests do not prove anything else than the requirements expressed in the

user stories. Adding user stories requires adding test stories. And as ever with

transfer functions, there is no way of proving that the selected test stories are the

only selection that works, not even the minimal one; you just can prove that the

selected test stories work sufficiently well. Thus, the convergence gap, in turn, is a

metric that can be used for test automation. It eliminates test stories that are not

needed in view of the values of the customer.

Test Acceptance Criteria

Test coverage within a given convergence gap replaces traditional test com-

pletion criteria, as extensively spread out in the respective ISO standard (ISO/IEC/

Vol. 6, No. 4 Fehlmann & Kranich: Testing Artificial Intelligence…

272

IEEE 29119-4 2015, p. 125). Test cases are considered for inclusion in the test

coverage transfer function only if passed when executing the test. The full test

suite is passed if test coverage, computed with valid test cases only, results in a

convergence gap below a certain limit. Currently, we believe a suitable limit is 0.1,

corresponding to a 10% match between goal of testing and tests executed

(Fehlmann 2016, p. 13ff).

How to Test Artificial Intelligence

Computer Vision and Artificial Intelligence (AI) overlap. AI is different from

ordinary software by its capability to learn. This means, AI can adapt to new envi-

ronments, data, images and videos. While AI can be used for other tasks, computer

vision is concerned with the theory behind artificial systems that extract infor-

mation from images. Areas of AI deal with autonomous planning or deliberation

for robot systems to navigate through an environment. A detailed understanding of

these environments is required to navigate through them. Information about the

environment could be provided by a computer vision system, acting as a vision

sensor and providing high-level information about the environment and the robot.

AI and computer vision share other topics such as pattern recognition and

learning techniques. Consequently, computer vision is sometimes seen as a part of

the AI field. Testing AI in computer vision obviously is not so straightforward;

mainly, because it is not possible to predict what the correct outcome is. The test

case might produce different responses, and all are correct at a given state of expe-

rience collection.

Recall that AI basically is sorting data into categories based on previous learn-

ing, or sample sets. In the Elaine Herzberg case, the Uber car did exactly that when

its Lidar, and ten visual cameras, recognized the object moving towards the car’s

driveway. The difficulty was to find the right category. Humans encounter the

same difficulty, when a biker enters the road from the pedestrian sidewalk. Expect-

ing a pedestrian, they rapidly must adapt categories to a bicycle that follows dif-

ferent traffic rules than a pedestrian. Things become even more complicated if

suddenly the pedestrian conjures up a skateboard, or a scooter. Traffic rules for the

latter two conveyances are unknown, or do not exist. Humans are disturbed, and so

are visual recognition systems, despite lidar and cameras.

Since the important contribution of the visual recognition system is categori-

zation, it should be tested whether categories detected by the visual recognition

system remain the same over its lifetime. But that is not enough. Behavior on cer-

tain sample image sequences should also remain stable – except if new learnings

tell it otherwise. Obviously, tests must adapt to learnings. On the other hand, learn-

ing systems can become neurotically disturbed – mentally sick, like humans

(Gerven and Bohte 2017). Thus, this is a case for Autonomous Real-time Testing

(ART) (Fehlmann and Kranich 2017). Testing AI must be possible anytime, au-

tonomous, without human intervention.

Athens Journal of Sciences December 2019

273

Baselining

You start testing AI as any other software:

 Identify the software under test

 Identify the goals of testing

 Draw a data movement map

 Calculate functional effectiveness

 Adjust scope of testing until goal and functional effectiveness converge

 Prepare the Test Stories:

 Identify new test stories

 Fill test stories by test cases

 Calculate test coverage

 Repeat above three steps until test coverage converges

Perform the tests and validate test stories and test cases. Identify defects and

remove them, or mitigate them, until your system is defect-free.

Extending Test Cases

Consider the AI domain when extending test cases. For instance, for traffic

vehicles, use video sequences from traffic scenes already described in the test sto-

ry. Use video sequences that have been used for deep learning and other who were

not. You must manually classify the videos for the category of traffic it represents;

it is therefore the same kind of work for testing as for learning.

With ART, you keep the test stories from the initial test suite stable while add-

ing more test cases to improve test intensity and to detect more defects. For visual

systems, the primary source for new test cases is new images and videos. Keeping

test coverage good enough is somewhat easier than in other ART instances, since

you only exchange test data. You do not change the aim of testing.

One primary source for new test cases is the contents of the data groups

moved by the data movements in the ISO/IEC 19761 COSMIC model. Whatever

can enter a certain functional process must become part of a test case, even for

nothing else than proving it has no effect at all. Thus, according the combinatory

logic approach, we combine all possible input as test data in the test cases and se-

lect those test cases that keep the convergence gap of the test coverage matrix

small.

This is an automatic task; it has some resemblance to AI techniques as it

means searching and categorizing data. The data stems from the data groups in the

ISO/IEC 19761 COSMIC data movements; the combinatory algebra defines its

structure. For more details see Fehlmann and Kranich (2018).

Vol. 6, No. 4 Fehlmann & Kranich: Testing Artificial Intelligence…

274

Interpreting Test Results

The aim of AI testing is to verify stable behavior in performing categorization

as previously learned. This is different from human learning where humans should

be able to interfere correct evaluations from their skills. As already mentioned, AI

has not so much to do with the Latin origin of the word ―Intelligence‖, namely

intellegere, read, or infer, between the lines, or other objects. Testing machine

intelligence means verifying that the software keeps identifying the same catego-

ries and does not change them. Testing AI remains simple while no new categories

are added.

If something else is being tested than categorization, interpreting test results

can become quite difficult. Remember that test results should be known in ad-

vance. AI behavior is not known before executing the test.

Thus, it can happen that when evaluating test results, responsibility must turn

back to humans in case the response of the test case is something else than one of

AI’s established categories. Adding another category to AI is connected to re-

learning from scratch. You must supply all given evidence again and accept that

the category borders move. In such cases, testing AI also re-starts from the begin-

ning with establishing a new baseline. As ultimate consequence of such a worst-

case scenario, the AI-driven VRS might go out of service until completely retest-

ed.

Repeat the Tests – Forever

Not only learning data changes, categories themselves are not except from

change. Certain categories such as legal behavior in traffic are also subject to

change and must be adapted to new environments and facts. Testing AI will detect

such changes.

Therefore, for the lifetime of the AI system, testing must repeat. AI systems

consist not of stable, always repeatable software but depend from their environ-

ment. If the AI system fails to reproduce correct answers, it might indicate a shift

in the learning data and probably learning must restart from the beginning. Such

restarts are required, for instance, if in traffic new conveyors appear, such as

scooters, electro-scooters, electro-bikes, or if rules change.

An Advanced Driving Assistance System (ADAS) as an Example

The sample ADAS service we use to demonstrate the principles is a Car Driv-

ing Function based on a Visual Recognition System (VRS; Camera driven by a

Sensor Bus) interpreting images. A Lidar – Light Detection and Ranging, a device

that measures distances with a pulsed laser light – delivers distances and allows the

Car Driving Function to build a 3D-model of the immediate surroundings, identi-

fying fixed and movable objects from the image captured and analyzed. Sequences

of images serve for determining the objects movements and direction.

Athens Journal of Sciences December 2019

275

ADAS Functionality

The Car Driving Function asks the Recommender for advice and acts in ac-

cordance with the selected route that the navigation system stored in the Remem-

ber Routes persistent database. This is a simplified ADAS for instructional pur-

pose only; it possibly can power a model car. The model is equipped with camera,

Lidar, and sensors for slippery roads. It uses a Navigator service to find a route.

Both the recommender and the VRS are implemented as neural network engines.

However, the system lacks the redundancy required for the real world.

The initial part of Figure 4 connects these services with sensors and car steer-

ing devices, triggered by Look and Act. The full ADAS application for our model

car consists of four more parts:

 Find Route, e.g. by help of a navigation system, or according car user’s

preference.

 Locate, compare current location with actual route.

 Check Route, used to compare different possible routes in terms of traf-

fic, weather, any other obstacles or fitting car user’s preferences.

 Amend Route; after receiving an Alert from the Navigator application

because conditions changed under way, changing route might help.

Finding a route is usually based on some Navigator service that can propose a

route between current location and some known destinations. The complete

ADAS is shown in Figure 4 as a data movement map; sizing information included

in the upper left corner.

Testing the ADAS

This piece of software first prepares the setting – collecting car specifics, test

cases, extending them – then executes testing first the neural network engine, then

the recommender, finally the Lidar and the camera.

The testing software resides local, on the car, but the test data originate from a

repository called Testing Cloud common to all cars undergoing the same tests.

Test cases originate there, and the Testing AI engine also works on this cloud ser-

vice. The ADAS of the car could upload images taken for adding those to the test-

ing cloud; however, this is neither reflected in the part of the ADAS shown before,

nor in Figure 5. Only test results are recorded in the testing cloud, upon approval

by the car user, the owner of the test results. Figure 5 consists of test preparation,

execution of tests for the Neural Network, the Recommender, and the Visual

Recognition Systems including the Lidar, plus a test result recording and test result

presentation for the tester testing the ADAS. It represents an application by itself,

with user stories and the need for testing.

Vol. 6, No. 4 Fehlmann & Kranich: Testing Artificial Intelligence…

276

Figure 4. The Complete ADAS Model
15 Entry (E) + 15 eXit (X) + 6 Read (R) + 6 Write (W) = 42 CFP

Car User Recommender
Car Driving

Function
Visual Recognition Visuals Sensor Bus Camera App Lidar

Car Steering

Devices
Routing Remember Routes Approve Route Navigator GPS Service

1.// Trigger Sensor

Look

2.// Start Cameras

3.// Supply Images

4.// Save Images

5.// Request Distance

6.// Lidar Distance

7.// Lidar Captures

8.// Collect Images

9.// Analysis Request

10.// Analysis Result

Act

11.// Chosen Route

12.// Ask for Actions

13.// Recommended Action

14.// Act

15.// Inform

16.// Enter Destination

Navigation

17.// Get Location

18.// Request Route

19.// Recommend Route

20.// Record Route

21.// Set Route

22.// Propose Route

23.// Routing Alert

Alert

24.// Recall Route

25.// Recalculate Route

26.// Change Route

27.// Proposed Route Change

28.// Update Location

Locate

29.// Compare with Actual Route

30.// Update Location

31.// Recalculate Route

32.// Adapt Route

33.// Inform

34.// Check Route

Check

35.// Get Route

36.// Show Route

37.// Approve Route

38.// Modify Route

39.// Confirm

40.// Change Route

41.// Changed Route

42.// Inform

Athens Journal of Sciences December 2019

277

Figure 5. Automated Real-Time Testing (ART) for Advanced Driving Assistant System (ADAS)
13 Entry (E) + 12 eXit (X) + 9 Read (R) + 8 Write (W) = 42 CFP

Recommender Recommender Test Visual Recognition
Visual Recognition

Test
Camera App Lidar Sensor Test Test Timer Car Specifics

Autonomous

Testing
Test Cases Test Updater Testing Cloud User

1.// New Test Case

Expand

2.// Add Test Case

3.// Collect Car Specifics

4.// Collect Car Specifics

5.// Collect Car Specifics

6.// Record Car Specifics

7.// Get Test Cases

8.// Get Car Specifics

9.// Extend Test

10.// Scan for Test Case

11.// Upload Test Case

12.// Car Ready?

13.// Car Ready

14.// Alert

15.// Start Testing

VRS Test

16.// Execute Tests

17.// Load Tests

18.// Yield Result

19.// Store Result

20.// Results Ready

21.// Start Testing

Reco Test

22.// Execute Tests

23.// Load Tests

24.// Yield Result

25.// Store Result

26.// Results Ready

27.// Start Testing

Sensor Test

28.// Execute Tests

29.// Load Tests

30.// Yield Results

31.// Load Tests

32.// Yield Result

33.// Store Result

34.// Results Ready

35.// Test Results Ready

Results

36.// Collect Responses

37.// Record Responses

38.// Display Test Results

39.// Acknowledge Test Results

40.// Record Test Results

41.// Scan forTest Results

42.// Upload Test Results

Vol. 6, No. 4 Fehlmann & Kranich: Testing Artificial Intelligence…

278

The Car Users’ Needs

Using the AHP, we identify the following major values for users of the

ADAS as listed in Figure 6.

Figure 6. Car Users’ Needs

Customer's Needs Topics Attributes Weight Profile

Y.a Drive Fast y1 Agile Driving Arrive safe Do not block other traffic Have fun 16% 0.36

y2 Smooth Driving Drive predictibly Do not break unnecessarily 15% 0.32

y3 Arrive in Time Arrive predictibly Avoid obstacles 23% 0.50

Y.b Drive Safe y4 Avoid Incidences Drive foresightful Know what's ahead Know my way 27% 0.58

y5 No Surprises Communicate Never surprise anybody Give signs 19% 0.422.2

AHP Priorities

The AHP process is used to analyze these needs and produce a profile for

its relative importance. The profile for the car users’ needs is based on the fol-

lowing pairwise comparison, shown in Figure 7. This is again a basic AHP.

Figure 7. AHP for ADAS

A
gi

le
 D

riv
in

g

S
m

oo
th

 D
riv

in
g

A
rr

iv
e

in
 T

im
e

A
vo

id
 I

nc
id

en
ce

s

N
o

S
ur

pr
is

es

Customer's Needs y1 y2 y3 y4 y5 Weight

y1 Agile Driving 1 1/2 1 1/2 2 16% 4 0.36

y2 Smooth Driving 2 1 1/2 1/2 1/2 15% 5 0.32

y3 Arrive in Time 1 2 1 2 1/2 23% 2 0.50

y4 Avoid Incidences 2 2 1/2 1 3 27% 1 0.58

y5 No Surprises 1/2 2 2 1/3 1 19% 3 0.42

P
ro

fi
le

R
an

ki
n

g

AHP Priorities

The needs of human drivers in today’s traffic might be individually quite

different; however, in view of an ADAS, characteristics linked to safety and

avoidance of disturbance are dominant. You use an ADAS because you need

something that helps through dense urban traffic, avoids jams and incidences,

and makes driving experience smoother.

An ADAS is less suited for people who drive cars just for fun. They even-

tually turn it off. Their needs are not investigated by that AHP; an AHP for

such people likely would produce a different car users’ needs profile.

User Stories – The Functional User Requirements (FUR)

The data movements are those of the joint ADAS data movement map

Figure 4. The user stories for ADAS are summarized in Table 1.

Athens Journal of Sciences December 2019

279

Table 1. ADAS User Stories

Label
As a

…
I want to … Such that … So that …

Populated

Area

Car

User

let my car reduce

speed

my car can

safely stop

my car is not

causing delays by

an incidence

Obstacle
Car

User

let my car avoid

obstacles

my car can

drive around

my car is not

stopping

unnecessarily

Know my

Way

Car

User

let my car take

appropriate routes

my car avoids

blocked routes

and traffic jams

I know when I'll

arrive

Amend

my Way

Car

User

optimize my route

when needed

no incidence

blocks my way

I still can predict

when I'll arrive

Check

my Way

Car

User

approve or

disapprove the car's

choice for routing

I can take my

preferred route
I feel in control

Able to

Stop

Car

User

have my car break

soon enough

it can avoid

dangerous

situations

It recognizes

obstacles ahead

Check

my Way

Car

User

approve or

disapprove the car's

choice for routing

I can take my

preferred route
I feel in control

The user stories remain on a high epic level without specifying the details

how the ADAS should behave in specific cases. With these user stories, the

functional effectiveness matrix yields a satisfying rationale for the user stories

(Figure 8). It means that the data movement map implements the user stories

completely and without any wrong focus.

The functional effectiveness transfer function maps the user stories onto

the car users’ needs by counting how many data movements contribute to the

user stories. This yields the cause-effect relation between functionality and

requirements; also, it assigns data movements to at least one user story.

Figure 8. Functional Effectiveness for ADAS
User Stories

G
oa

l P
ro

fil
e

P
op

ul
at

ed
 A

re
a

O
bs

ta
cl

e

K
no

w
 m

y
W

ay

A
m

en
d

m
y

W
ay

C
he

ck
 m

y
W

ay

A
bl

e
to

 S
to

p

A
ch

ie
ve

d
P

ro
fil

e

Q
00

1

Q
00

2

Q
00

3

Q
00

4

Q
00

5

Q
00

6

y1 Agile Driving 0.36 6 3 3 2 5 0.34

y2 Smooth Driving 0.32 4 3 5 5 2 0.34

y3 Arrive in Time 0.50 7 3 4 7 1 6 0.52

y4 Avoid Incidences 0.58 6 4 3 6 6 8 0.58

y5 No Surprises 0.42 1 3 3 8 9 0.41

Solution Profile for User Stories: 0.46 0.30 0.33 0.54 0.33 0.43 Convergence Gap

0.46 0.30 0.33 0.54 0.33 0.43 0.04

123 Total Effort Points

0.10 Convergence Range

0.20 Convergence Limit

Car User Needs
Deployment Combinator

Car User Needs

Vol. 6, No. 4 Fehlmann & Kranich: Testing Artificial Intelligence…

280

The Test Stories

The test stories in Table 2 specify more details how to implement the

ADAS.

Table 2. Test Stories for ADAS for User Stories Shown in Table 1

 Test Story Informal Description

A
People

Around
A.1

People

around

The ADAS identifies people staying near the

car, or sit on a specific vehicle

B Obstacle B.1
Obstacle

ahead

Static or moving obstacles I the way are

identified and correctly classified

C
Know

my way
C.1 Get route

The ADAS always knows where to go next, be

it at a crossing or at the end of the route

 C.2
Change

route

The route to take is periodically changed, based

on alerts received from Navigator

 C.3
Update

position

The correct position is always known to the

ADAS

D
Choose

way
D.1 Approval

When choosing the route, the car user must

approve the decision

 E.1
Arrival

time

The expected arrival time is shown to the car

user

 E.2 Learnings
The ADAS has a repository of routes taken and

can rely on past experiences, e.g. jams

 F.1
Keep under

control

The ADAS is always in control of the car, even

if he car user intervenes

 F.2
Brake

action

Brake action is known to ADAS, depending on

weather and road condition

 F.3
Avoid

stops

The ADAS tries to drive smoothly, adapting

speed, avoiding unnecessary stops

Remember that we had no clue how our visual recognition system deter-

mines the list of valid objects that it recognizes. Possibly it is implemented as a

neural network, or a Support Vector Machine (SVM) is used (Pupale 2018).

Nevertheless, we use our data movement map model to assess functional effec-

tiveness with the later goal of testing it. In other words: we test what we think

how the VRS works. We test our model.

For this paper, we give only informal descriptions, leaving it to the reader

to invent suitable test cases. For the calculation below, we used around five test

cases per test story. This yields the following test coverage (Figure 9).

The numbers in the cell represent the number of data movements that sup-

port the respective user story. With a convergence gap of 0.11 we are within

convergence range, set a bit wider than in usual transfer functions.

Athens Journal of Sciences December 2019

281

Figure 9. Initial Test Coverage
Test Stories

G
oa

l T
es

t C
ov

er
ag

e

P
eo

pl
e

ar
ou

nd

O
bs

ta
cl

e
ah

ea
d

G
et

 ro
ut

e

C
ha

ng
e

ro
ut

e

U
pd

at
e

po
si

tio
n

A
pp

ro
va

l

A
rri

va
l t

im
e

Le
ar

ni
ng

s

K
ee

p
un

de
r c

on
tro

l

B
ra

ke
 a

ct
io

n

A
vo

id
 s

to
ps

A
ch

ie
ve

d
C

ov
er

ag
e

1)
 A

.1

2)
 B

.1

3)
 C

.1

4)
 C

.2

5)
 C

.3

6)
 D

.1

7)
 E

.1

8)
 E

.2

9)
 F

.1

10
) F

.2

11
) F

.3

Q001 Populated Area 0.46 25 22 9 7 11 9 10 8 12 14 0.42

Q002 Obstacle 0.30 10 15 13 5 15 7 11 9 13 16 10 0.36

Q003 Know my Way 0.33 2 5 17 6 15 12 9 6 7 9 9 0.27

Q004 Amend my Way 0.54 24 19 14 19 21 9 25 9 17 15 21 0.59

Q005 Check my Way 0.33 16 13 6 5 7 23 12 8 20 0.35

Q006 Able to Stop 0.43 26 25 5 2 10 4 6 8 10 8 13 0.39

Ideal Profile for Test Stories: 0.44 0.41 0.25 0.20 0.32 0.24 0.32 0.19 0.25 0.20 0.36 Convergence Gap

0.45 0.42 0.25 0.19 0.32 0.24 0.31 0.19 0.25 0.19 0.4 0.11

768 Total Test Size

0.15 Convergence Range

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

Extending Test Cases

Extending test cases within the same test stories yields more reliable re-

sults, and a higher test intensity (see Figure 13). In this example, extension

works in two stages:

 Adding test cases that refer to bad weather forecast. If the Navigator re-

ports rain on the route, driving speed and arrival forecast must be

adapted.

 More test cases are added after the Navigator reports stormy weather

causing eventually a change to the chosen route.

The following matrices (Figures 10 and 11) show the results after each of

the two steps outlined above.

Figure 10. After Adding Bad Weather Cases
Test Stories

G
oa

l T
es

t C
ov

er
ag

e

Pe
op

le
 a

ro
un

d

O
bs

ta
cl

e
ah

ea
d

G
et

 ro
ut

e

C
ha

ng
e

ro
ut

e

U
pd

at
e

po
si

tio
n

Ap
pr

ov
al

Ar
riv

al
 ti

m
e

Le
ar

ni
ng

s

Ke
ep

 u
nd

er
 c

on
tro

l

Br
ak

e
ac

tio
n

Av
oi

d
st

op
s

A
ch

ie
ve

d
C

ov
er

ag
e

1)
 A

.1

2)
 B

.1

3)
 C

.1

4)
 C

.2

5)
 C

.3

6)
 D

.1

7)
 E

.1

8)
 E

.2

9)
 F

.1

10
) F

.2

11
) F

.3

Q001 Populated Area 0.46 39 31 9 7 11 9 10 8 12 14 0.46

Q002 Obstacle 0.30 16 18 13 5 15 7 11 9 13 16 10 0.33

Q003 Know my Way 0.33 4 6 17 6 15 12 9 6 7 9 9 0.21

Q004 Amend my Way 0.54 38 26 14 19 21 9 25 9 17 15 21 0.56

Q005 Check my Way 0.33 24 19 6 5 7 23 12 8 20 0.35

Q006 Able to Stop 0.43 40 32 5 2 10 4 6 8 10 8 13 0.44

Ideal Profile for Test Stories: 0.59 0.47 0.20 0.16 0.26 0.20 0.26 0.16 0.21 0.16 0.30 Convergence Gap

0.58 0.47 0.21 0.16 0.27 0.2 0.26 0.16 0.21 0.16 0.3 0.13

859 Total Test Size

0.15 Convergence Range

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

Vol. 6, No. 4 Fehlmann & Kranich: Testing Artificial Intelligence…

282

Figure 11. After Adding Adaption to Changed Route
Test Stories

G
oa

l T
es

t C
ov

er
ag

e

P
eo

pl
e

ar
ou

nd

O
bs

ta
cl

e
ah

ea
d

G
et

 ro
ut

e

C
ha

ng
e

ro
ut

e

U
pd

at
e

po
si

tio
n

A
pp

ro
va

l

A
rri

va
l t

im
e

Le
ar

ni
ng

s

K
ee

p
un

de
r c

on
tro

l

B
ra

ke
 a

ct
io

n

A
vo

id
 s

to
ps

A
ch

ie
ve

d
C

ov
er

ag
e

1)
 A

.1

2)
 B

.1

3)
 C

.1

4)
 C

.2

5)
 C

.3

6)
 D

.1

7)
 E

.1

8)
 E

.2

9)
 F

.1

10
) F

.2

11
) F

.3

Q001 Populated Area 0.46 39 31 16 11 11 9 10 8 12 16 0.44

Q002 Obstacle 0.30 16 18 18 9 15 7 11 9 13 20 11 0.34

Q003 Know my Way 0.33 4 6 23 10 15 12 9 6 7 13 11 0.24

Q004 Amend my Way 0.54 38 26 25 29 21 9 25 9 17 25 22 0.59

Q005 Check my Way 0.33 24 19 14 5 7 23 12 8 28 0.35

Q006 Able to Stop 0.43 40 32 6 2 10 4 6 8 10 10 14 0.40

Ideal Profile for Test Stories: 0.54 0.43 0.31 0.23 0.25 0.19 0.24 0.15 0.20 0.22 0.32 Convergence Gap

0.54 0.43 0.32 0.23 0.25 0.19 0.24 0.15 0.2 0.22 0.3 0.11

954 Total Test Size

0.15 Convergence Range

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

ART detects these new test cases because the data group received from the

Navigator contains a weather forecast, as part of the route description. New test

cases are created starting from the existing ones, by variation of test data, con-

sidering other all data received from data movements. Obviously, weather fore-

cast changes the driving time prediction. Among the many test cases that can

be created, ART keeps the convergence gap within limits, using this as selec-

tion process. Total test size is growing, and convergence gap is stable, or

shrinking. This is the benefit of using customers’ needs as goal for testing.

How Came the Weather Forecast into ART?

The additional test cases improve reliability and accuracy. ART finds such

extensions by scanning data groups of the data movements involved. Since the

chosen route is not fix but changes on receiving an Alert from the Navigator,

ART learns that conditions such as rainy and stormy weather can exist and

generates suitable test cases; shown in data movement map Figure 12.

Figure 12. Amend Route upon Navigator’s Alert

2 Entry (E) + 1 eXit (X) + 1 Read (R) + 1 Write (W) = 5 CFP

Car User Routing Remember Routes Navigator

1.// Routing Alert

Alert

2.// Recall Route

3.// Recalculate Route

4.// Change Route

5.// Propose Route Change

Athens Journal of Sciences December 2019

283

The data group moved by the data movement Routing Alert from the Nav-

igator application to the Routing functional process contains all sort of alerts,

including traffic jams and bad weather conditions. The ART mechanism ex-

tending test cases considers weather as a reason to change driving. Thus, when

replacing other reasons for choosing a route, the Chosen Route data movement

in Look & Act (initial two triggers in Figure 4) tells the Car Driving Function

about the changed weather conditions. This attribute is now selectable by ART

for generating new test cases, also for the Visual Recognition system (VRS).

Thus, it will be added as another test case for VRS, sooner or later. And be-

cause the new test case fits well with the car users’ needs, rather sooner than

later.

ART thus must find images showing people, or other vehicles, in the rain,

or in a storm, to produce the same results in the test stories A.1: People around;

B.1: Obstacle ahead; C.1: Get route; and C.2: Change route.

Weather is one thing that can be considered. But there is much more be-

fore autonomous cars can hit the road, for instance a tendency, or the need, to

use bikes for transporting bags in certain social environments. Moreover, where

Ms. Herzberg crossed, there is a functional road strip across the median of the

four-lane road with the potential of being abused by pedestrians. If the Naviga-

tor could also consider additional information about the neighborhoods trav-

ersed, Elaine Herzberg possibly would still be alive, and trust in autonomous

cars unhampered.

Summary View

The summary view on the original and the two extended test suites reveals,

as expected, that test size and intensity increased, while we might expect more

defects detected after the tests were executed.

Figure 13. Initial Test Suite, and Two Extensions
Total CFP: 39 Test Size in CFP: 768

Test Intensity: 19.7

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%

Total CFP: 39 Test Size in CFP: 859

Test Intensity: 22.0

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%

Total CFP: 39 Test Size in CFP: 954

Test Intensity: 24.5

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%

Functional size remained stable: CFP 39, while increasing test size also in-

creased test intensity.

Thus, improving testing is always possible by simply extending the test

cases by similar ones, provided test coverage keeps the convergence gap nar-

row enough. ART provides value without increasing functional size. In this

Vol. 6, No. 4 Fehlmann & Kranich: Testing Artificial Intelligence…

284

example, it was enough to trace back data movements that could contribute

extra data to tests. Thus, the data movement map is paramount for automatic

test case generation.

For testers, it is enough to provide an initial test suite (Table 2). The rest is

left to AI. So, you test AI with AI. You can increase test intensity as much as

you like, and our budget allows More tests certainly increase opportunities for

detecting defects that can be removed and add marketable value for the cus-

tomer. Thanks to the test coverage transfer function and its convergence gap,

those additional tests remain relevant. Moreover, since tests are generated ran-

domly, there is no bias blocking certain test cases, although extending test cases

along some application cases such as weather or route change might allow for

targeted test extensions.

The Next Steps, and a Preliminary Conclusion

The basic idea how to deal with ―untestable‖ neuronal networks and deep

learning is to create a data movement map as a model, specifying what users

expect the AI part to do.

Clearly, a VRS needs more tests than fitting in this paper. ART generates

more test cases out of the fourteen test stories to increate test intensity. Howev-

er, at the current stage of research, we have no clue what test intensity is

enough for a VRS in an autonomous car.

The proposed method can be upscaled to larger test coverage transfer func-

tions. Real software systems have a few hundred user stories, and even more

test stories. Solving such test coverage matrices requires big data algorithms

but these tools are readily available nowadays.

A promising approach is to use the AHP for initial test coverage. With

many user stories and test stories, a complex system often splits into smaller

parts than can be tested separately, at least initially, and the full test coverage

matrix fills in automatically by ART (Fehlmann 2019).

Applying ART means adding more test cases, more image sequences, al-

ways with respect to the convergence gap, aiming at improving the conver-

gence gap. This limits combinatorial explosion, as it allows selecting relevant

test cases only.

References

Bell D (2004) UML basics: the sequence diagram – introductory level. Armonk, NY:

IBM DeveloperWorks.

Fehlmann TM (2016) Managing complexity - uncover the mysteries with six sigma

transfer functions. Berlin, Germany: Logos Press.

Fehlmann TM (2019) Autonomous real-time testing - testing artificial intelligence and

other complex systems. Berlin, Germany: Logos Press.

Fehlmann TM, Kranich E (2014) Uncovering customer needs from net promoter

scores. Istanbul, Turkey: 20
th
 International Symposium on Quality Function

Deployment.

Athens Journal of Sciences December 2019

285

Fehlmann TM, Kranich E (2017) Autonomous real-time software & systems testing.

Göteborg: s.n.

Fehlmann TM, Kranich E (2018) Theoretical aspects of consumer metrics for safety &

privacy. In X Larrucea, I Santamaria, R O'Connor, R Messnarz (eds), Systems,

Software and Services Process Improvement. EuroSPI 2018. Communications in

Computer and Information Science, 649-653. Springer, Cham.

Gerven Mv, Bohte S (2017) Artificial neural networks as models of neural information

processing. Lausanne: Frontiers Media.

ISO 16355-1:2015 (2015) Applications of statistical and related methods to new

technology and product development process - part 1: general principles and

perspectives of quality function deployment (QFD). Geneva, Switzerland: ISO TC

69/SC 8/WG 2 N 14.

ISO/IEC 19761 (2011) Software engineering - COSMIC: a functional size measurement

method. Geneva, Switzerland: ISO/IEC JTC 1/SC 7.

ISO/IEC/IEEE 29119-4 (2015) Software and systems engineering — software testing

— part 4: test techniques. Geneva, Switzerland: ISO/IEC JTC 1.

Mazur G (2014) QFD and the new voice of customer (VOC). Istanbul, Turkey:

International Council for QFD (ICQFD), 13-26.

Mazur G, Bylund N (2009) Globalizing gemba visits for multinationals. Savannah, GA,

USA: Transactions from the 21
st
 Symposium on Quality Function Deployment.

Pupale R (2018) Support vector machines (svm)  -  an overview. Retrieved from: https://

bit.ly/36KQkRD. [Accessed 28 March 2019].

Saaty TL (2003) Decision-making with the AHP: why is the principal eigenvector

necessary? European Journal of Operational Research 145(1): 85-91.

Schwaber K, Beedle M (2002) Agile software development with scrum. Upper Saddle

River, NJ: Prentice Hall PTR.

The National Transportation Safety Board (2018) Preliminary Report Highway

Hwy18mh010. Retrieved from: https://bit.ly/2NtKlZO. [Accessed 13 March 2019].

van Gerven M, Bothe S (2018) Artificial neural networks as models of neural

information processing. Lausanne: s.n.

https://bit.ly/2NtKlZO

Vol. 6, No. 4 Fehlmann & Kranich: Testing Artificial Intelligence…

286

