
Athens Journal of Sciences 2021, 8: 1-35 

https://doi.org/10.30958/ajs.X-Y-Z                  
 

1 

Numerical Analysis of Boundary Layer Flow and Heat  

Transfer over  a Stretching and Non-Stretching Bullet-

Shaped Object  
 

By Mohammed Ali

 & Md. Abdul Alim

±
 

 
The two-dimensional axisymmetric magnetohydrodynamic boundary layer flow with 

heat transfer of Newtonian fluid over a stretching and non-stretching bullet-shaped 

object has been investigated. Therefore, fluid flow and heat transfer have been 

investigated in two types of flow geometries such as the thicker surface  2s  and the 

thinner surface  0 2s  of the bullet-shaped object. The present analysis also 

focuses on the physical relevance and accurate trends of the boundary layer profiles 

which are adequate in the laminar boundary layer flow. The novelty of this current work 

is to discuss the effect of shape and size (surface thickness parameter s) and the 

stretching factor of the bullet-shaped object on the fluid velocity and temperature 

profiles within the boundary layer region also develop the relationship between the 

dependent and independent parameters by the correlation coefficient. The partial 

differential equations of momentum and energy have been reduced to a system of non-

linear ordinary differential equations along with the transformed boundary conditions 

by applying the local similarity transformations. These coupled non‐linear ordinary 

differential equations’ governing the flow field has been solved by the Spectral Quasi-

Linearization Method (SQLM). The numerical analysis of the SQLM has been carried 

out with MATLAB for investigating the effect of various controlling parameters on the 

flow fields. The residual error infinity norms have been analyzed to determine the speed 

of convergence and accuracy of the method. The numerical results have been displayed 

graphically and in tabular form and the physical behavior of the problem also discussed. 

The investigation shows that in the case of a thicker bullet-shaped object  2s  the 

velocity profile does not approach the ambient condition asymptotically but intersects 

the axis with a steep angle and the boundary layer structure has no definite shape 

whereas in the case of a thinner bullet-shaped object  0 2s  the velocity profile 

converge the ambient condition asymptotically and the boundary layer structure has a 

definite shape. It is also noticed that thinner bullet-shaped object acts as good cooling 

conductor compared to thicker bullet-shaped object and the wall friction can be reduced 

much when thinner bullet-shaped object  0 2s  is used rather than the thicker 

bullet-shaped object  2s  in both types of non-stretching or stretching bullet-shaped 

object  or > 0  .  
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Introduction 

 

A systematic and detailed review of studies done in the past related to the 

present problem is under study. This helps us to understand the problems with its 

historical background, current status, and scope of application. The review of 

literature provides a synthesis of many documents and articles. The main purpose 

of the review is to summarize the related fields of interest coming from different 

mediums. The review helps us that how important the topic is and summarized the 

article for all that relates to the topic is essential. When an external flow past along 

objects it encompasses a variety of fluid mechanics phenomena. The nature of the 

flow field depends on the shape of the object. Even the simplest shaped objects, 

like a plate, may produce rather complex flows. Therefore, the flow pattern and 

related forces depend strongly on various parameters such as size, orientation, 

speed, and fluid properties. Therefore, the present problem will be helpful for 

designing bullet-shaped objects like Rocket, Missile, Aero plane, Bullet Train and 

Submarine, etc.  

Due to the high applicability of this problem in such industrial phenomena, a 

large number of theoretical investigations are observed with different effects of 

physical parameters that have been presented during the last decades. Abo-

Eldahab and Salem (2004) studied the boundary layer flow of non-Newtonian 

fluid and energy transfer over a power-law stretching surface with heat flux and 

observed that thermal boundary layer thickness reduces for the increasing values 

of mixed convection parameter but the reverse trend arises due to viscous 

dissipation, as a result, the energy transfer enhances. Aftab et al. (2018) analyzed 

the boundary layer power-law fluid flow over a moving permeable flat plate with 

viscous dissipation and heat generation. Ahmad et al. (2002) studied the mixed 

convection boundary layer flow by using the SQLM. This study concluded that the 

SQLM is suitable than another method. Later Ahmad et al. (2001) performed 

Bellman QLM for Neumann problems. Ajala et al. (2019) analyzed the boundary 

layer flow and energy transfer by the effect of the magnetic field, variable viscosity, 

and thermal radiation. Ajaykumar and Srinivasa (2020) studied the effect of 

variable viscosity on unsteady Magneto Hydrodynamics (MHD) laminar boundary 

layer flow with heat transfer over a stretching surface. Alarifi et al. (2019) 

discussed the influence of the sink or source on MHD boundary layer flow with 

heat transfer over a vertical stretching surface. Asaithambi (1998) discussed the 

Falkner – Skan equation by applying the finite difference method and found a 

similar solution. Ashwini and Eswara (2012) discussed that the boundary layer 

separation is delayed due to magnetic field parameter and the dual solutions are 

arises in case of decelerating flow regime. Ashwini and Eswara (2015) performed 

the unsteady MHD decelerating boundary layer wedge flow with heat generation. 

Awaludin et al. (2018) developed the stability model of MHD boundary layer flow 

over a stretching wedge. Daba et al. (2015) studied the mixed convection BL flow 

and heat transfer with convective boundary conditions over a vertical stretching 

surface. Marneni and Ashraf (2015) observed that the momentum and thermal 

boundary layer thicknesses decrease with the increase of Eckert number in the 

presence of suction and heat absorption when the wedge stretches slower than the 

https://aip.scitation.org/author/Ajaykumar%2C+M
https://aip.scitation.org/author/Srinivasa%2C+A+H
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free stream flow, Ashwini and Eswara (2015) discussed that the dual solutions 

exist in forced convection decelerating flow regime and the magnetic field 

stabilizes the flow which in turn delays the boundary layer separation from the 

wedge surface, Kandasamy and Mohammad (2015) investigated theoretically the 

impact of a convective surface on the heat transfer characteristics of water-based 

nanofluids over a static or moving wedge in the presence of magnetic field with 

variable stream condition and show that the temperature distribution in a nanofluid 

in the presence of thermal radiation with magnetic influenced by the convection 

parameter. Alam et al. (2016) studied numerically the effects of variable fluid 

properties and thermophoresis on unsteady forced convective boundary layer flow 

along with a permeable stretching/shrinking wedge. The results show that the 

Prandtl number, as well as the Schmidt number, varies significantly within the 

boundary layer for the flow with variable thermal conductivity and viscosity, 

Falana et al.  (2016) studied the influence of Brownian motion and thermophoresis 

on a nonlinearly permeable stretching sheet in a nanofluid and found that the 

temperature rises for Brownian motion, thermophoresis and stretching ratio, 

Mabood et al. (2016) has been carried out to examine the effects of volume fraction 

of nanoparticles, suction/injection, and convective heat and mass transfer 

parameters on MHD stagnation point flow of water-based nanofluids and found 

that the friction factor and heat and mass transfer rates increase with magnetic field 

and suction/injection parameters. Nageeb et al. (2017) investigated the effects of 

thermal radiation, soret, and dufour parameters on mixed convection and nanofluid 

flow over a stretching sheet in the presence of a magnetic field. Mustaqim et al. 

(2018) studied the problem of the steady two-dimensional stagnation-point flow of 

heat and mass transfer over a shrinking sheet with the effect of radiation and 

velocity slip. Dual solutions are obtained. Therefore, they established a stability 

analysis that determines which solution is linearly stable and physically realizable. 

Kumar and Krishnan (2018) studied the axisymmetric boundary layer axial flow 

over a circular cylinder by using integral analysis. The analytical results are 

applicable to discuss the different flow regimes of axisymmetric boundary layers 

in the presence of pressure gradients. Aftab et al. (2018) investigated the combined 

effects of the thermal radiation, viscous dissipation, suction/injection, and internal 

heat generation/absorption on the boundary layer flow of a non-Newtonian power-

law fluid over a semi-infinite permeable moving flat plate in parallel or reversely 

to a free stream. It was observed that the dual solutions exist when the flat plate 

and the free stream move in opposite directions. The velocity and temperature 

distributions are plotted and discussed for various values of the emerging physical 

parameters. Salleh et al. (2019) analyzed the steady boundary layer flow of a 

nanofluid past a thin needle under the influences of heat generation and chemical 

reaction. It is observed that the multiple (dual) solutions are likely to exist when 

the needle moves against the direction of the fluid flow. Therefore, the reduction in 

needle thickness provides the enlargement of the region of the dual solutions. The 

stable solution has been done by using a stability analysis. The obtained results 

indicate that the upper branch solutions are linearly stable, while the lower branch 

solutions are linearly unstable. The study also revealed that the rate of heat transfer 

is a decreasing function of heat generation parameter, while the rate of mass 
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transfer is an increasing function of heat generation and chemical reaction 

parameters. Ibrahim and Tulu (2019) numerically inspected a steady laminar flow 

over a vertical stretching sheet with the existence of viscous dissipation, heat 

source/sink, and magnetic fields through a shooting scheme based Runge-Kutta-

Fehlberg-integration algorithm. Findings reveal that the Nusselt number at the 

sheet surface augments, since the Hartmann number, stretching velocity ratio, and 

Hartmann number increase. Nevertheless, it reduces with respect to the heat 

generation/absorption coefficient. Jabeen et al. (2020) analyzed the MHD boundary 

layer flow over a nonlinear stretching sheet in a porous medium using semi-

analytical approaches and proved that the flow field is effectively appreciable by 

injection and suction. Megahed et al. (2021) studied the effects of the extended 

heat flux and variable fluid properties on the unsteady laminar MHD flow and heat 

transfer over a stretching sheet. Irfan et al. (2020) discussed the effects of unsteady 

MHD stagnation point flow of heat and mass transfer across a stretching/shrinking 

surface in a porous medium with internal heat generation/absorption, thermal 

radiation, and chemical reaction. Muthukumaran and Bathrinathan (2020) studied 

the analytical solution of mixed convection boundary layer flows with suction, 

injection (blowing) and viscous dissipation over a vertical stretching sheet near the 

stagnation point. Shateyi and Muzara (2020) discussed the boundary layer 

nanofluid flow over a Non-Linearly Stretching surface with the effects of viscous 

dissipation and chemical reaction..  

The above discussion and review of the literature show that the mentioned 

works are restricted only for the case of flow around a flat plate, cone, wedge or 

cylindrical shape geometry with some physical conditions but to the best of 

author’s knowledge, no published work has been found on boundary layer flow 

over a bullet-shaped geometry.  

The main purpose of this problem is to investigate the MHD axisymmetric 

boundary layer flow and heat transfer over stretching and non-stretching bullet-

shaped object with internal heat generation parameter. Also analyzed the 

relationship between the physical parameters and flow profiles by applying the 

correlation coefficient and multiple regressions. Motivated by the previous studies, 

the present problem tries to fill the existing gaps in the field of boundary layer 

theory. The innovation of this present problem lies in the unification of more 

physical parameters into the governing equations and an attempt to give a 

thorough analysis of how the flow properties are affected by these parameters. 

Also, the novelty of the current paper lies in the application of the recently 

developed numerical method to solve these highly nonlinear equations. 

So the purpose of the present work is to study the effect of various parameters 

such as magnetic effect,  stretching factor, heat generation, size and shape of the 

surface on momentum and thermal behavior of the fluid, skin friction coefficient, 

rate of heat transfer, nature of solutions within the boundary layer over a bullet-

shaped object by using a spectral quasi-linearization iterative scheme. 
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Mathematical Model and Similarity Analysis 

 

Let us consider the steady two-dimensional MHD laminar boundary layer 

flow of an incompressible, electrically conducting, and viscous Newtonian fluid 

over a stretching bullet-shaped surface in a bulk fluid at a constant temperatureT . 

A schematic representation of the physical model and coordinate system as shown 

in Figure 1. It is assumed that the free stream and the stretching velocities are U  

and wU   respectively, x is the coordinate measured along the bullet-shaped surface, 

r is the coordinate measured in the radial directions respectively.  

 

Figure 1. Flow Geometry and Coordinate System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We assumed that the temperature of the surface is wT , where wT T  

corresponds to a heated surface (assisting flow) and wT T corresponds to a 

cooled surface (opposing flow). The surface has an isothermal surface, and kept at 

temperatures Tw such that the temperature differences within the flow are 

sufficiently small. The small magnitude of the temperature difference allows 

expression of the Taylor series expansion about the free stream temperature T  as a 

linear function of temperature at any interior point within the flow region. The 

magnetic field 0B  is imposed perpendicular to the direction of the flow and the 

induced magnetic field can be neglected due to the smallest magnetic Reynolds 

number. The surface moves with a velocity  wU x , in the same or opposite 

direction of the free stream velocity  U x . It is also assumed that the external 

electric field is zero and the electric field due to polarization of charges is 

negligible. The velocity of the surface  wU x , the free stream velocity  U x  and 

the temperature of the surface wT  are respectively defined as 
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stretching rate of the sheet and straining rate parameters respectively with 0a   

for stretching case and 0a   for the shrinking case. Also, m is the power-law 

index parameter of velocity and temperature. It may be noted that the constant b is 

proportional to the free stream velocity far away from the surface. An axial 

pressure gradient is imposed inside the boundary layer due to variable axial free-

stream. 

Therefore, the governing partial differential equations of continuity, 

momentum and thermal energy are as follows 

 

Equation of continuity: 

    0ru rv
x r

 
 

 
                                                                                  

(1) 

Momentum equation:     

 

 
 

22

0

2

σBu u dU ν u u
u v U U u

x dx r r ρ

dU1
 - U

dx

r
r r

xp
where x

x

    
      

    






         

(2) 

Energy equation: 

 
2

2

T T α T
u v

x r r p

T Q
r T T

r r C


    
     

    
                    (3) 

The above equations are subject to the following boundary conditions 

   

 

,  0,  

, ,

w wu U x v T T at r R x and

u U x U T T as r 

   

   
                                     (4) 

where R(x) prescribes the surface shape and size of the axisymmetric 

body,  u and v are the velocity components along with the axial and radial 

directions  ,x r respectively,   is the kinematic viscosity of the fluid,  ρ  is 

the density of the fluid, the term 
2

0B
u




describes the x component of the 

magnetic field where 
2

0B


is the magnetic parameter which is the ratio of the 

electromagnetic force to the inertial force, 
0B  is the magnetic field intensity, 

  is the thermal diffusivity of the fluid and T is the fluid temperature 

respectively. The magnetic field usually applied in the y direction normal to 

the boundary layer flow. The flow is in x-direction whose velocity component 

is u. Thus J × B, representing Lorentz force becomes  
2

0B
u




 . The negative 

sign in the term is because of retardation. The first term on the right-hand side 
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of equation (2) refers to the pressure gradient in the stream wise direction, as 

calculated from the Euler’s equation for inviscid fluid. 

To obtain the similarity solutions for the system of equation (1) – 

equation (3) subject to the boundary conditions (4), we use the following 

axisymmetric similarity transformation as: 

   
2

2 1,  , mUr
xf T x

x
     


                  (5) 

where  is the stream function and is defined by the velocity components 

1 1
andu v

r r r x

  
  

 
, η is the similarity variable, wU  is the surface 

velocity and U  is the free stream velocity.  The expression η gives the shape 

and size of the body, when we put η = s in the expression 
2Ur

x



  , we get 

the dimensionless radius  
1 msx

R x
a b

 




.  

The continuity equation (1) is identically satisfied by the equation (5) and 

the equations (2) and (3) are transformed into non-dimensional, nonlinear and 

coupled ordinary differential equations by applying the similarity 

transformation as  

   21
  1-  4 1-  2 0

2 8 8

m M
f f ff f f                 (6) 

  *1 1 1
Pr  - 2 1   Pr 0

2 2 4
f m f Q               (7) 

and the transformed boundary conditions are 

     

   

'

'

  0,  ,   1,   ,    
2

1
,  0

2

f f at s and

f as


    

   

   

  

               (8) 

Where prime denotes differentiation with respect to η, wU

U




 is the 

velocity ratio parameter between the surface and the composite velocity. It is 

mentioned here that the velocity ratio parameter 1   means that the surface 

stretches faster than that of the free stream flow and 1  means that the 

surface slower than that of the free stream flow. Here, 0   is for stretching 

and 0  is for shrinking. On the other hand, ε = 0 and ε = 1 correspond to a 

fixed surface in a moving fluid (Blasius flow) and a moving surface in a 

quiescent fluid (Sakiadis flow), respectively. The range 0 1  indicates 

that the surface and the fluid move in the same direction. If 0   the free 

stream is directed towards the positive x - direction, while the surface moves 

towards the negative x-direction. When 1  , the free stream is directed 

towards the negative x-direction, while the surface moves towards the 
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positive x-direction. However, the present analysis has performed only for the 

case 2  . 

The dimensionless parameters M is the magnetic parameter, m is the 

power-law index parameter,  is the stretching parameter Pr is the Prandtl 

number, and Q* is the heat generation parameter which is defined as  

*

2σB x U0M , , Pr ,  = 
2ρU U α

w

w p

Qx
Q

U c





    

In practical applications, two quantities of physical interest are to be 

determined, such as surface shear stress and the rate of heat transfer at the 

surface. These may be obtained in terms of the local skin-friction coefficient 

fC  and the local Nusselt number, xNu . The skin friction and Nusselt number 

are the dimensionless shear stress at the surface and dimensionless heat flux at 

the surface respectively and can be expressed as the following way. 

We have the shear stress at the surface 
0

w

r

u

r
 



 
  

 
and the local skin 

friction coefficient  
2

2
 w

fC
U




  

By applying the equations (4) and (5), we obtain the local skin friction 

coefficient  

   2

0

4 Re 4
Re

f f x

r x

u
C f C f

U r

 
  

 

 
     

 

 

The local Nusselt number for the convective boundary condition is 

defined as 

 
w

x

w

xq
Nu

T T 




 . Where wq  is the wall heat flux and can be defined as 

0

w

r

T
q

r




 
   

 
. 

By using the equations (4) and (5), we obtain the local Nusselt number 

   
1

2Re 2x xNu  


   

 

 

Procedure of Numerical Solution  

 

Bellman and Kalaba (1965) were the first to apply the QLM about half a 

century ago to solve nonlinear ordinary and partial differential equations. Since the 

differential equation is highly non-linear and it is almost impossible to find the 

closed-form analytic solution. The SQLM (2020) is a combination of two methods: 

(i) the Quasi-linearization method (QLM) and (ii) the Chebyshev spectral 

collocation method. The QLM is the generalization of Newton–Raphson-based 

method and is used to linearize the non-linear ODEs into linear ODEs. The QLM 
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approaches that the difference between the approximate solution at the present 

iteration and the previous iteration is very small. The numerical simulation of the 

present problem is obtained with the help of SQLM which gives highly accurate 

results. Since the similarity variable converges to  but the present simulation 

has been performed for a finite domain of η. Therefore, the dimensionless velocity 

and energy distribution within the boundary layer asymptotically tends to a free 

stream velocity that satisfies the boundary conditions. The numerical solution for 

the above equations for various values of magnetic parameter M, power-law index 

parameter m, the thickness of the surface s, stretching ratio ε and Prandtl number 

Pr are analyzed using the quasi-linearization technique. Applying SQLM, the 

system of equations (6) and (7) are converted into the following iterative sequence 

of linear differential equations. 

 

         0,t t 1 1,t t 1 2,t t 1 3,t t 1 1,ta a a af f f f R       
            (9) 

           0,t 1 1,t 1 2,t 3,t 1 4,t 1 2,b b b +b + bt t t t tf f R           
       (10) 

 

The subscripts t and t + 1 denote previous and current approximations.  

The transformed boundary conditions are 

 

     

     

1 1 1 t+1

1 0 1 0 t+1 0

0, , =1, at 0
2

1
0, , = 0, as 

2

t x t x x

t t

f xN f xN xN

f x f x x


 

 

  

 

  

  

 

 

The variable coefficients obtained from the previous iteration are given by  

 

0, 1, 2, 3,

1 1 1
, , ,

2 2 4 2
t t t t t t t

f f f M f
a a f a mf a f

f f f f


   
           

     
 

 

 

0, 1, 2,

3, 4,

Pr 2 11 Pr 1
, , Pr *

2 2 4 2

Pr 2 1 Pr
,

2 2

t t t t t

t t t t

m
b b f b Q f

m
b b

f f

  


  

 
 

  
       

   

 
    

 

 

         1, 0, 1, 2, 3,

2

, , , ......

1

2 2 8 8

n

t t t t t t t t t

t t

R a f a f a f a f F f f f f

m m M
f f f

                

    
 

 

         

2, 0, 1, 2, 3, 4,

Pr
, , , ...... 2 1

2

t t t t t t t t t t t

n

t t t t

R b b b b f b f

F f f f f f m f

   

      

      

          

 

           

The linear differential equations (9) and (10) are solved iteratively by using the 

Chebyshev spectral collocation method (CSCM). The linear transformation 
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2
1x

L





  is used to convert the domain [0, ∞) into the computational domain [−1, 

1]. The unknown functions 
1 1 and  r rf  

are determined with the help of CSCM, 

and Chebyshev interpolating polynomials. The derivatives of the functions 

1 1 and  r rf  
 at the Gauss–Lobatto collocation points are 

 

cos , 0,1,2,....i

i
x i N

N

 
  

 
 gives 

 
 

1
1

1

0

n N
t i n n

ik t k

k

d f x
D f x D F

dx







      (11) 

 

Where,
2

L
D  k , k is (N1 + 1) × (N1 + 1) differentiation matrix and 

         1 0 1 1 1 2 1 1 1, , ,.... ,
T

t t t t N t NF f x f x f x f x f x         . Similarly, the nth 

derivatives of 1t   are given by  

 
 

1
1

1

0

n N
t i n n

ik t k

k

d x
D x D

dx








                                                      (12) 

By applying the Equations (11) and (12), the Equations (9) and (10) yields 

 

1,111 12

2,121 22

tt

tt

RFA A

RA A





   
    

     
, Where 

3 2

11 0, 1, 2, 3, 12

2 2

21 3, 4, 22 0, 1, 2,

, 0 ,

,

t t t t

t t r t t

A a D a D a D a A I

A b D b A b D b D b

    

    
 

 

The matrix I is of order (N1 + 1) × (N1 + 1). 

 

 

Results and Discussion 

 

The non-linear ODEs of the present problem are solved by applying SQLM. 

The convergence criteria of the solution are performed by the use of solution-

based errors. These errors are defined by the differences between approximate 

solutions at the previous and current iteration levels t and t + 1, respectively. The 

error norms are defined as: 

 

1, , 1, ,
0 0
max  and maxf t i t i t i t i

i N i N
Error F F Error   

   
     

 

The infinity norms of the residual errors are defined by  

 

     21
Re   1-  4 1-  2

2 8 8

m M
s f f f ff f f


          and 



Athens Journal of Sciences XY 

 

11 

    *1 1 1
Re Pr  - 2 1   

2 2 2
s f m f Q     



 
        

 
  

 

The impact of physical parameters on velocity  f  , temperature    , 

skin friction, and the local Nusselt number is shown graphically. The numerical 

values of skin friction ( Ref xC  ) and Nusselt number (  
1

Rex xNu


) which are 

equivalent to velocity gradient  f  and temperature gradient     have been 

shown in Tables 1 and Table 2 respectively. The computations are done by taking 

N = 50 collocation points and solution-based errors are defined for the 

convergence of the numerical method. Again, Figures 16a and 16b show the error 

infinity norms and residual error infinity norms against iterations. Figure 16(a) 

represents the convergence for the present problem with iterations. From this, it is 

noticed that the error infinity norm decreases with the increasing number of 

iterations that confirm the convergence of the present method. So, it is observed 

that the present method converges after five iterations. On the other hand, Figure 

16(b) assure the accuracy of the present method of less than 10
-8

 and 10
-14

 for 

 f  and    against after fourth iterations. It is seen that the residual error 

decreases with increasing the iterations. This proves the validity of the present 

method. The errors show that the SQLM is accurate giving errors of less than 10
-8

 

within the fourth iteration. In this chapter the default parameters are taken as M = 

1.0, m = 1.0, Pr = 0.71, ϵ = 0.0, 2.0 and s = 0.05, 2.0 throughout the calculation. 

The fluid velocity profile and skin friction have been depicted graphically versus 

boundary layer co-ordinate (η) in Figures 2-6 for the increasing effect of the 

controlling parameters such as magnetic (M), power-law index (m), stretching 

ratio (ϵ), and surface thickness (s) in the following sub-section. The numerical 

calculations have been carried out for a wide range of values of the mentioned 

parameters; M  1.0 M 10.0  , m 0.0 m 3.0  ,  0.0 2.0   ,  0.05 2.0s s  ,  

 Pr 0.71 Pr 7.0  .  

 

Velocity Profiles and Skin Friction Coefficient  

 

Figure 2a and Figure 2b represent the influence of magnetic parameter on 

viscous fluid velocity profile for thinner (s = 0.05) and thicker surfaces (s = 2.0) 

when 1  , ϵ = 1.0 and 1  respectively. It is noticed from these figures that the 

variation of the stretching ratio parameter has a significant effect on the velocity 

profile in connection with the magnetic parameter. These plots depict that the 

velocity profile of the viscous fluid and boundary layer thickness affected 

significantly with increasing magnetic parameters. From these figures, it is seen 

that the velocity profile of the viscous fluid and boundary layer thickness squeezes 

when 1   and the fluid flow form an inverted boundary layer pattern but in the 

case of 1  , the reverse trend occurs in velocity profile both of the thinner and 

thicker surfaces of the bullet-shaped object. This happens because in presence of 
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the term  
2

0B
U u




  in equation (2) which is the combination of pressure force 

(

2

0B
U




 ) and Lorentz force (

2

0B
u




) terms. 

 

Figure 2. Effect of Magnetic Parameter (M) on Velocity Profile Taking (a) s = 

0.05 and ϵ = 0.0 (Lower Panel), ϵ =1.0 (Separation Line), ϵ = 2.0 (Upper Panel), 

and (b) s = 2.0 and ϵ = 0.0 (Lower Panel), ϵ =1.0 (Separation Line), ϵ = 2.0 

(Upper Panel) 

 
(a)  

 
(b) 

 

The velocity profile squeezes when Lorentz's force is greater than the pressure 

force and vice-versa. Again, it is also seen that the surface velocity and the free 

stream velocity are equal in the case of ϵ = 1.0. It is also observed that, if the 

surface thickness parameter (s) reduces then the fluid flow form a certain boundary 

layer structure and the fluid velocity satisfies the far-field boundary condition. On 

the other hand, while surface thickness parameter (s) increases then the fluid flow 

does not satisfy the far-field boundary condition and the boundary layer structure 

has no definite shape. Therefore, the velocity boundary layer thickness is higher in 

the case of a thicker bullet-shaped object (s = 2.0) than the thinner bullet-shaped 

object (s = 0.05). 

Figures 3a and 3b display the skin friction coefficient for the effect of the 

magnetic parameter (M) with stretching ratio parameter 1   and 1  , and the 

surface thickness parameter s = 0.05, s = 1.0, respectively. From these figures, it is 

observed that the skin friction coefficient enhances in the case of 1  but reduces 

while 1  for both of the thinner and thicker surfaces of the bullet-shaped object. 

It is observed that the skin friction coefficient is inversely proportional to the 

dimensionless velocity gradient. The velocity gradient at the surface is positive 
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when 1   and negative due to 1  but zero while ϵ = 1.0 for all values of the 

controlling parameters. The positive values of the velocity gradient indicate that 

the fluid applies a drag force on the bullet-shaped object, on the other hand, the 

bullet-shaped object exerts a drag force on the fluid flow while the velocity 

gradient is negative.  

 

Figure 3. Effect of Magnetic Parameter (M) on Skin Friction Coefficient Taking 

(a) s = 0.05 and ϵ = 0.0 (Upper Panel), ϵ = 2.0 (Lower Panel), and (b) s = 2.0 and 

ϵ = 0.0 (Upper Panel), ϵ = 2.0 (Lower Panel) 

 
(a)  

 
(b) 

 

Therefore, the parameter M is directly proportional to skin friction in the case 

of 1   but inversely proportional when 1  . It is observed from Table 1 that, 

when M changes from 1.0 to 10.0 for s = 0.05 and ϵ = 0.0, the skin friction 

decreases 25.5 % whereas for s = 0.05 and ϵ = 2.0 the skin friction increases 

22.13%. Hence, the skin friction is higher for the non-stretching surface ( 0  ) 

than the stretching surface ( 0  ). 

Figures 4a and 4b show the variation of a velocity profile for the effect of 

power-law index parameter when the stretching ratio parameter 1   and 1  , 

and the surface thickness parameter s = 0.05, s = 2.0, respectively.  
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Figure 4. Influence of Power-Law Index Parameter (m) on Velocity Profile Taking 

(a) s = 0.05 and ϵ = 0.0 (Lower Panel), ϵ =1.0 (Separation Line), ϵ = 2.0 (Upper 

Panel), and (b) s = 2.0 and ϵ = 0.0 (Lower Panel), ϵ =1.0 (Separation Line), ϵ = 

2.0 (Upper Panel) 

 
(a)  

 
(b) 

 

These plots represent that the velocity profile of the viscous fluid and 

boundary layer thickness affected insignificantly with an increasing power-law 

index parameter due to thinner surface (s = 0.05) whereas the reverse trend 

happens in the case of thicker surface (s = 2.0). From these figures, it is noticed 

that the velocity profile and boundary layer thickness squeezes when 1  and the 

fluid flow form an inverted boundary layer pattern whereas, in the case of 1  , 

the velocity profile expands but boundary layer thickness squeezes the and fluid 

flow form a certain boundary layer pattern. It is also observed that the velocity 

profile and boundary layer thickness satisfy the far-field boundary condition in the 

case of a thinner surface (s = 0.05). On the other hand, due to the thicker surface (s 

= 2.0), the velocity profile, and boundary layer thickness are not in parabolic 

shapes, so this is insignificant with the physical behavior of the boundary layer 

concept because in this case, the boundary condition does not satisfy. Therefore, 

the velocity boundary layer thickness is higher in the case of a thicker bullet-

shaped object (s = 2.0) than a thinner bullet-shaped object (s = 0.05). 

Figure 5a and 5b display the skin friction coefficient for the effect of power-

law index parameter (m) by taking the stretching ratio parameter 1  and 1  , 

and the surface thickness parameter s = 0.05, s = 1.0, respectively. From these 

figures, it is seen that the skin friction coefficient enhances in the case of 1  but 

reduces while 1  for both of the thinner and thicker surfaces. 
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Figure 5. Effect of Power-Law Index Parameter (m) on Skin Friction Coefficient 

Taking (a) s = 0.05 and ϵ = 0.0 (Lower Panel), ϵ = 2.0 (Upper Panel), and (b) s = 

2.0 and ϵ = 0.0 (Lower Panel), ϵ = 2.0 (Upper Panel) 

 
(a)  

 
(b) 

 

These graphs also show that the velocity gradient at the surface is a positive 

when 1  and negative while 1  but zero while ϵ = 1.0 for all values of the 

controlling parameters. Therefore, the positive values  f  indicate that the fluid 

applies a drag force on the bullet-shaped object and the negative value indicates 

the bullet-shaped object exerts a drag force on the fluid flow. It is observed from 

Table 1 that, when m changes from 0.0 to 2.0 for s = 0.05 and ϵ = 0.0, the skin 

friction decreases 10.73 % whereas for s = 0.05 and ϵ = 2.0 the skin friction 

increases 16.1%.  

Figures 6a and 6b illustrate the effects of surface thickness parameter (s) 

(0.05 2.0s  ) on the velocity distribution and skin friction coefficient when the 

other parameters are fixed by considering the stretching ratio parameter 1   and 

1  , and the surface thickness parameter s = 0.05, s = 2.0, respectively. These 

plots show that the velocity profile of the viscous fluid and boundary layer 

thickness affected significantly with increasing surface thickness parameters. From 

Figure 6(a) it is seen that the velocity profile and boundary layer thickness expands 

when 1   and the fluid flow form an inverted boundary layer pattern but in the 

case of 1  the velocity profile squeezes but velocity boundary layer thickness 

increases and the fluid flow forms a definite boundary layer pattern. This happens 

because the increase in shape and size of the bullet-shaped object enhances the 

surface area of the object that provides more resistance against the fluid motion as 

a result the fluid velocity decreases. Therefore, the velocity boundary layer 

thickness is higher in the case of a thicker bullet-shaped object (s = 2.0) than the 

thinner bullet-shaped object (s = 0.05). From Figure 6(b), it is noticed that the skin 

friction coefficient reduces in the case of 1  but increases while 1  for both of 
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the thinner and thicker surfaces. Hence, the parameter s is inversely proportional to 

Ref xC in the case of 1  but directly proportional when 1  .  This graph 

also shows that the velocity gradient at the surface is a positive when 1  and 

negative while 1  but zero while ϵ = 1.0 for all values of the controlling 

parameters. Therefore, the fluid applies a drag force on the bullet-shaped object for 

the positive values  f  while the bullet-shaped object exerts a drag force on the 

fluid flow for the negative values  f  . It is observed from Table 1 that, when s 

changes from 0.05 to 0.3 for ϵ = 0.0, the skin friction increases 76.5 % whereas for 

ϵ = 2.0 the skin friction decreases 75.2%. Hence, the skin friction is higher for ϵ = 

0.0 than ϵ = 2.0. 

 

Figure 6. Effect of Surface Thickness Parameter (s) on (a) Velocity Profile for ϵ = 

0.0 (Lower Panel), 1.0 (Separation Line), 2.0 (Upper Panel), and (b) Skin Friction 

for ϵ = 0.0 (Lower Panel), 2.0 (Upper Panel) 

 
(a)  

 
(b) 

 

Figure 7a and 7b illustrate the velocity profile for the increasing effect of 

stretching ratio parameter   0 2.0   consider the surface thickness parameter 

s = 0.05 and s = 2.0, respectively. From these figures, it is noticed that the velocity 

profile and boundary layer thickness expands when 1  and the fluid flow form 

an inverted boundary layer pattern but in the case of 1  the fluid flow form a 

certain boundary layer pattern. It is also observed that the velocity profile and 

boundary layer thickness satisfy the far-field boundary condition in the case of a 

thinner surface (s = 0.05). On the other hand, while the thicker surface (s = 2.0), 

the velocity profile is not in a parabolic shape, this is insignificant with the 

physical behavior because in this case, the boundary condition does not satisfy by 

the velocity profile. Therefore, the velocity boundary layer thickness is higher in 



Athens Journal of Sciences XY 

 

17 

the case of the thicker bullet-shaped object (s = 2.0) than the thinner bullet-shaped 

object (s = 0.05). 

 

Figure 7. Effect of Stretching Ratio Parameter (ϵ) on Velocity Profile Taking (a) s 

= 0.05 and ϵ = 0.0 (Lower Panel), ϵ =1.0 (Separation Line), ϵ = 2.0 (Upper Panel), 

and (b) s = 2.0 and ϵ = 0.0 (Lower Panel), ϵ =1.0 (Separation Line), ϵ = 2.0 

(Upper Panel) 

 
(a) 

 
(b) 

 

From these figures, it is observed that the velocity profile and momentum 

boundary layer thickness is getting expand due to power-law index parameter (m), 

surface thickness parameter (s), and stretching ratio parameter (ϵ) whereas 

magnetic parameter (M) has a reverse effect on it in the case of 1  for both of 

the thicker (s = 2.0) and thinner (s = 0.05) surfaces. On the other hand, in the case 

of 1  the velocity profile and momentum boundary layer thickness are getting 

expand due to magnetic parameter (M), power-law index parameter (m), and 

stretching ratio parameter (ϵ) but squeezes for the surface thickness parameter (s). 

Again, it is also revealed that in the case of a thicker bullet-shaped object (s = 2.0) 

the velocity profile does not approach the ambient condition asymptotically but 

intersects the vertical axis with a steep angle and the boundary layer structure has 

no definite shape whereas in the case of a thinner bullet-shaped object (s = 0.05) 

the velocity profile converge the ambient condition asymptotically and the 

boundary layer structure has a definite shape. It is also noticed that the thinner 

bullet-shaped object represents a thinner momentum boundary layer than the 

thicker bullet-shaped object in both static and moving bullet-shaped objects. 
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Temperature Profiles and Nusselt Number 

 

Figures 8a and 8b depicts the variation of Prandtl number (Pr)  0.71 Pr 10.0   

on temperature profile when stretching ratio parameter 1  or 1  and the surface 

thickness parameter s = 0.05, s = 2.0, respectively. These plots represent that the 

temperature profile of the viscous fluid and thermal boundary layer thickness 

affected significantly with increasing Prandtl number.  

 

Figure 8. Temperature Profile for Different Values of Prandtl Number when (a) ϵ 

= 0, s = 0.05, s = 2.0, and (b) ϵ = 2.0, s = 0.05, s = 2.0 

 
(a) 

 
(b) 

 

It is seen from these figures that the variation of surface thickness parameter 

has a significant effect on fluid temperature in connection with the Prandtl number. 

From these figures, it is seen that the temperature profile and boundary layer 

thickness squeezes for both the thicker (s = 2.0, and thinner (s = 0.05) surfaces of 

the bullet-shaped object. It is also observed that the thermal boundary layer 

thickness is higher in the case of the thicker surface (s = 2.0) than the thinner 

surface (s = 0.05). This happens because a smaller Prandtl number means heat is 

quickly diffuse from the heated surface than for higher values of Pr. For increasing 

values of Prandtl number, the temperature profiles are closing to the solid surface. 

So, for cooling purposes, the Prandtl number can be used. A smaller surface 

thickness has a greater decelerating effect than a thicker surface. Therefore, it is 

noticed that for higher values of surface thickness parameter, the maximum 

temperature shows in the thermal boundary layer compared to that of lower 

surface thickness parameter. 

Figure 9a and Figure 9b depict the influence of power-law index parameter on 

viscous fluid temperature for thinner surface (s = 0.05) and thicker surface (s = 

2.0) when ϵ = 0.2 and 2.0 respectively. It is noticed from these figures that the 
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variation of the surface thickness parameter has a significant effect on viscous 

fluid temperature in connection with the power-law index parameter. A lower 

surface thickness parameter has a greater decelerating effect. For thicker surfaces 

(s = 2.0) with increasing m, the decelerating effect is more prominent than for 

thinner surfaces (s = 0.05). Therefore, the thermal boundary layer thickness is 

higher due to the thicker surface when compared with the thinner surface. Figure 

9c and Figure 9d also represent the influence of power-law index parameter on 

viscous fluid temperature for air (Pr = 0.71) and water (Pr = 7.0) when s = 0.05 

and 2.0 respectively.  

 

Figure 9. Temperature Profile for Different Values of Power-Law Index Parameter 

(m) when (a) ϵ = 0.2, s = 0.05, s = 2.0, (b) ϵ = 2.0, s = 0.05, s = 2.0 (c) s = 0.2, Pr 

= 0.71, Pr = 7.0, and (d) s = 2.0, Pr = 0.71, Pr = 7.0 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

It is seen from these figures that the variation of the Prandtl number has a 

significant effect on viscous fluid temperature in connection with the power-law 

index parameter.  

A higher Prandtl number has a greater decelerating effect. For air (Pr = 0.71) 

with increasing m, the decelerating effect is more prominent than for water (Pr = 

7.0). Therefore, the thermal boundary layer thickness is higher for air when 

compared with water. From these figures, the temperature distribution and also the 

thermal boundary layer thickness decrease with the increase of m for all mentioned 

cases. These plots also represent that the temperature profile of the viscous fluid 

and thermal boundary layer thickness affected significantly with increasing power-

law index parameter. Therefore, it is seen that for higher values of surface 

thickness parameter, the maximum temperature shows in the thermal boundary 

layer compared to that of lower surface thickness parameter. Again, in the case of 

air (Pr = 0.71), the highest temperature shows in the thermal boundary layer 

compared to that of water (Pr = 7.0). 

Figure 10a and Figure 10b portray the influence of surface thickness 

parameter (s) on viscous fluid temperature for air (Pr = 0.71) and water (Pr = 7.0) 

when ϵ = 0.2 and 2.0 respectively. It shows that the temperature profile and 

thermal boundary layer thickness expand with an increase of surface thickness 

parameter because the heat transfer rate enhances. 
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Figure 10. Temperature Profile for Different Values of Surface Thickness 

Parameter (s) when (a) ϵ = 0.2, Pr = 0.71, 7.0 and (b) ϵ = 2.0, Pr = 0.71, 7.0 

 
(a) 

 
(b) 

 

It is seen from these figures that the variation of the Prandtl number has a 

significant effect on viscous fluid temperature in connection with the surface 

thickness parameter. A higher Prandtl number has a greater decelerating effect 

than a lower Prandtl number. For air (Pr = 0.71) with increasing s, the accelerating 

effect is more prominent than for water (Pr = 7.0). Therefore, the thermal 

boundary layer thickness is higher for air when compared with water. Again, in the 

case of air (Pr = 0.71), the highest temperature shows in the thermal boundary 

layer compared to that of water (Pr = 7.0). 

Figure 11a and Figure 11b display the effects of the stretching ratio parameter 

(ϵ) on viscous fluid temperature for air (Pr = 0.71) and water (Pr = 7.0) when s = 

0.05 and 2.0 respectively. It shows that the temperature profile and thermal 

boundary layer thickness squeeze with an increase of the stretching ratio parameter 

because the velocity profile increases for the effect of this parameter which tends 

to pass more fluid from the boundary layer region to the surrounding fluid. 
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Figure 11. Temperature Profile for Different Values of Stretching Ratio Parameter 

(ϵ) when (a) s = 0.2, Pr = 0.71, Pr = 7.0 and (b) s = 2.0, Pr = 0.71, Pr = 7.0 

 
(a) 

 
(b) 

 

It is seen from these figures that the variation of the Prandtl number has a 

significant effect on viscous fluid temperature in connection with the stretching 

ratio parameter. A higher Prandtl number has a greater decelerating effect. For 

water (Pr = 7.0) with increasing the stretching ratio parameter, the decelerating 

effect is more prominent than for air (Pr = 0.71). Again, in the case of air (Pr = 

0.71), the highest temperature shows in the thermal boundary layer compared to 

that of water (Pr = 7.0). 

 

Effect of Heat Generation Parameter (Q*) on Temperature Profile and Nusselt 

Number 

 

Figures 12a-12f display the effect of heat generation parameter on the 

temperature profile and Nusselt number when the stretching ratio parameter ϵ = 

0.2, ϵ = 2.0, the surface thickness parameter s = 0.05, s = 2.0, and Pr = 0.71, 7.0 

respectively. Figure 12a and Figure 12b depict the influence of heat generation 

parameter on viscous fluid temperature for thinner surface (s = 0.05) and thicker 

surface (s = 2.0) when ϵ = 0.2 and 2.0 respectively. These plots represent that the 

temperature profile of the viscous fluid and thermal boundary layer thickness 

affected significantly with increasing heat generation parameters. It is noticed from 

these figures that the variation of heat generation parameter has a significant effect 

on fluid temperature in connection with the surface thickness parameter and the 

Prandtl number. A lower surface thickness parameter has a lower accelerating 

effect. For thicker surfaces (s = 2.0) with increasing Q*, the accelerating effect is 

more prominent than for thinner surfaces (s = 0.05). Therefore, the thermal 

boundary layer thickness is higher due to the thicker surface when compared with 

the thinner surface. Therefore, the temperature profile and boundary layer 



Athens Journal of Sciences XY 

 

23 

thickness expand for both of the thicker (s = 2.0) and thinner (s = 0.05) surfaces of 

the bullet-shaped object whereas the Nusselt number decreases (Figures 12e and 

12f). Figures 12c and 12d also represent the influence of heat generation parameter 

on viscous fluid temperature for air (Pr = 0.71) and water (Pr = 7.0) when s = 0.05 

and 2.0 respectively. It is seen from these figures that the variation of the Prandtl 

number has a significant effect on viscous fluid temperature in connection with the 

heat generation parameter. A higher Prandtl number has a greater accelerating 

effect on the temperature profile. For water (Pr = 0.71) with increasing Q*, the 

accelerating effect is more prominent than for air (Pr = 0.71). Therefore, the 

thermal boundary layer thickness is higher for water when compared with air. 

However, the temperature attains its minimum for a low value of Prandtl number 

(Pr = 0.71) and a higher value of Prandtl number (Pr = 7.0) in connection with heat 

generation parameter shooting up the profiles near the surface of the bullet-shaped 

object within the region η < 0.4 and then the profile decreases sharply to meet the 

boundary condition as well. From these figures, the temperature profile and 

thermal boundary layer thickness increase with the increase of Q* for all 

mentioned cases. Therefore, it is seen that for higher values of surface thickness 

parameter, the maximum temperature shows in the thermal boundary layer 

compared to that of lower surface thickness parameter. Again, in the case of water 

(Pr = 7.0), the highest temperature shows in the thermal boundary layer compared 

to that of air (Pr = 0.71). It happens because heat sources produce more heat 

energy near the surface as a result the temperature of the fluid increases.  

 

Figure 12. Effect of Heat Generation Q* on Temperature Profile and Local 

Nusselt Number when (a) ϵ = 0.2, s = 0.05, s = 2.0 (b) ϵ = 2.0, s = 0.05, s = 2.0 

(c) s = 0.05, Pr = 0.71, Pr = 7.0 (d) s = 2.0, Pr = 0.71, Pr = 7.0 (e) ϵ = 0.2, s = 

0.05, Pr = 0.71, and (f) ϵ = 2.0, s = 0.05, Pr = 0.71 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 

The graph of temperature profile represents that the fluid temperature within 

the boundary layer region is getting lower due to Prandtl number, power-law index 

parameter, and stretching ratio parameter whereas surface thickness parameter has 

a reverse effect on it throughout the boundary layer region. From these figures, it is 

also revealed that in the case of a thicker bullet-shaped object (s = 2.0) the 

temperature profile does not approach the ambient condition asymptotically but 

intersects the axis with a steep angle and the boundary layer structure has no 

definite shape whereas in the case of a thinner bullet-shaped object (s = 0.05) the 

temperature profile converge the ambient condition asymptotically and the 

boundary layer structure has a definite shape. Here also one can notice that the 
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thinner bullet-shaped object acts as a good cooling conductor compared to the 

thicker bullet-shaped object for both ϵ = 0.0 and 2.0. It is also mentioned that the 

thinner bullet-shaped object represents a thinner thermal boundary layer because 

the heat transfer rate is higher than the thicker bullet-shaped object in both static 

and moving bullet-shaped objects. Hence it is mentioned that the lower values of 

the surface thickness parameter have a greater depressing effect on the temperature 

profile than higher values of the surface thickness parameter. It is also noticed that 

the thermal boundary layer thickness is higher for air when compared with water. 

The variation of the Nusselt number against the effect of the Prandtl number 

displays in Figures 13a and 13b  by taking the stretching ratio parameter ϵ = 0.0 

and ϵ = 2.0, and the surface thickness parameter s = 0.05, respectively.  

 

Figure 13. Nusselt Number for Different Values of Prandtl Number when (a) ϵ = 

0.0, s = 0.05, and (b) ϵ = 2.0, s = 0.05 

 
(a) 

 
(b) 

 

From these figures, it reveals that, the Nusselt number increase as the Prandtl 

number increases. It is observed that the Nusselt number is directly proportional to 

the temperature gradient. The temperature gradient at the surface is always 

negative for all values of the controlling parameters. Therefore, the Prandtl 

number is an increasing function of the Nusselt number. It is observed from Table 

2 that, when Pr changes from 0.71 to 10.0 for s = 0.05 and ϵ = 0.0, the Nusselt 

number increases 17.8 % whereas for s = 0.05 and ϵ = 2.0 the corresponding 

increases 48.8%. Hence, the Nusselt number is higher for the stretching surface (ϵ 

= 2.0) than the non-stretching surface (ε = 0). 

 

Influence of Power-Law Index Parameter (m) on Nusselt Number 

 

Figures 14a and 14b represent the variation of Nusselt number with respect to 

power-law index parameter by taking the stretching ratio parameter ϵ = 0.0 and ϵ = 
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2.0, and the surface thickness parameter s = 0.05, respectively. From these figures, 

it reveals that as the values of m increases the Nusselt number also increases. 

Therefore, the power-law index parameter is directly proportional to the Nusselt 

number.  

 

Figure 14. Nusselt Number for Different Values of Power-Law Index Parameter 

(m) when (a) ϵ = 0.0, s = 0.05, and (b) ϵ = 0.0, s = 2.0 

 
(a) 

 
(b) 

 

It is observed from Table 2 that, when m changes from 0 to 2 for s = 0.05 and 

ϵ = 0.0, the Nusselt number increases 8.85 % whereas for s = 0.05 and ϵ = 2.0 the 

corresponding increases 23.8%. Hence, the Nusselt number is higher for the 

stretching surface (ϵ = 2.0) than the non-stretching surface (ε = 0). 

 

Effect of Surface Thickness Parameter (s) on Nusselt Number 

 

Figures 15a and 15b represent the variation of Nusselt number with respect to 

surface thickness parameter (s) also taking the stretching ratio parameter ϵ = 0.0 

and ϵ = 2.0, respectively. From these figures, it reveals that as the values of s 

increase the Nusselt number decreases. Therefore, the Nusselt number is a 

decreasing function of the surface thickness parameter. This implies heat transfer 

rate is higher in the case of a thinner (s = 0.05) bullet-shaped object than the 

thicker (s = 2.0) bullet-shaped object. It is observed from Table 2 that, when s 

changes from 0.05 to 0.3 for ϵ = 0.0, the Nusselt number decreases 85.76 % 

whereas for ϵ = 2.0 the corresponding decreases 77.4%. Hence, the Nusselt 

number is higher for ϵ = 0.0 than ϵ = 2.0.  
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Figure  15. Nusselt Number for Different Values of Surface Thickness Parameter 

(s) when (a) ϵ = 0.0, and (b) ϵ = 2.0 

 
(a) 

 
(b) 

 

Table 1 represents the variation in skin friction coefficient for different values 

of the magnetic parameter (M), surface thickness parameter (s), Prandtl number 

(Pr),  and power-law index parameter (m) for various movements of the bullet-

shaped object.  

 

Table 1. Variation in Skin Friction Coefficient for Distinct Values of M, m, s, and 

Pr with ϵ = 0.0, 0.2, 2.0, s = 0.05 
Parameters 

- Ref xC  

ϵ = 0.0, s = 0.05 

- Ref xC  

ϵ = 0.2, s = 0.05 

Ref xC ϵ = 

2.0, s = 0.05 

M m s Pr 

1.0 1.0 0.05 1.0 5.6404 4.5437 6.0131 

5.0 1.0 0.05 1.0 6.3441 5.1011 6.6555 

10.0 1.0 0.05 1.0 7. 0787 5.6847 7.3436 

1.0 0.0 0.05 1.0 5.3397 4.2886 5.5421 

1.0 1.0 0.05 1.0 5.6404 4.5437 6.0131 

1.0 2.0 0.05 1.0 5.9128 4.7745 6.4342 

1.0 1.0 0.05 1.0 5.6404 4.5437 6.0131 

1.0 1.0 0.20 1.0 1.7491 1.4322 1.9969 

1.0 1.0 0.3 1.0 1.3251 1.0771 1.4993 

1.0 1.0 0.05 0.71 5.6404 4.5437 6.0131 

1.0 1.0 0.05 1.0 5.6404 4.5437 6.0131 

1.0 1.0 0.05 7.0 5.6404 4.5437 6.0131 

 

It is observed that the skin friction coefficient is inversely proportional to the 

velocity gradient,  f  at the bullet-shaped object. So, the velocity gradient at 

the surface of the object is negative for all values of mentioned parameters in the 

case of 1  but positive when 1  . The negative values  f  mean that the 

bullet-shaped object exerts a drag force on the fluid flow whereas the positive 
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values  f   mean that the fluid flow exerts a drag force on the bullet-shaped 

object. From Table 1, it is observed that the magnetic parameter (M) and power-

law index parameter (m) reducing the friction factor coefficient in the case of 

1   but boosting the friction factor in the case of 1  . On the other hand, the 

surface thickness parameter reduces the friction factor in both of the mentioned 

cases. It is interesting to note that friction factor coefficient is less in ϵ  = 0.2 case 

when compared with ϵ  = 0.0, ϵ  = 2.0 cases. At this point, it is highlighted that for 

reducing the friction between the particles and surface we have to use ϵ  = 0.2 

cases. It is evident from this table that the skin friction coefficient is higher in ϵ  = 

2.0 case when comparing with ϵ  = 0.0, ϵ  = 0.2 cases. It is also noticed that the 

Prandtl number (Pr) does not affect the skin friction coefficient. 

Table 2 displays the variation in Nusselt number for different values of the 

magnetic parameter (M), surface thickness parameter (s), Prandtl number (Pr),  

and power-law index parameter (m) for various movements of the bullet-shaped 

object. It is observed that the Nusselt number is directly proportional to the heat 

transfer rate     at the bullet-shaped object. The heat transfer rate at the surface 

of the object     is negative for all values of mentioned parameters. From 

Table 2, it is possible to observe that the heat transfer rate increases for the 

magnetic parameter (M),  Prandtl number (Pr), and power-law index parameter 

(m) but decreases for the surface thickness parameter (s)  for all three cases of 

stretching ratio parameter (ϵ  = 0.0, ϵ  = 0.2, ϵ  = 2.0) and s = 0.05 respectively. On 

the other hand, in the case of ϵ  = 2.0, and s = 0.05 the heat transfer rate increases 

for the magnetic parameter (M) and surface thickness parameter (s)  whereas 

decreases for Prandtl number (Pr), and power-law index parameter (m). Therefore, 

heat transfer rate is high in ϵ  = 0.0 case, when compared with ϵ = 0.2, ϵ = 2.0 

cases. At this point, it is highlighted that for reducing the heat transfer rate we have 

to consider the static (ϵ = 0.0) bullet-shaped object. 

 

Table 2. Variation in Nusselt Number,  
1

Rex xNu


 for Different Values of M, 

m, s, and Pr with ϵ = 0.0, 0.2, 2.0, s = 0.05 
Parameters 

 
1

Rex xNu


  

ϵ = 0.0, s = 0.05 

 
1

Rex xNu


  

ϵ = 0.2, s = 0.05 

 
1

Rex xNu


  

ϵ = 2.0, s = 0.05 

M m s Pr 

1.0 1.0 0.05 1.0 10.4671 10.6800 11.2800 

5.0 1.0 0.05 1.0 10.4911 10.6912 11.2611 

10.0 1.0 0.05 1.0 10.5134 10.7019 11.2426 

1.0 0.0 0.05 1.0 10.0001 10.0001 10.0000 

1.0 1.0 0.05 1.0 10.4671 10.6800 11.2800 

1.0 2.0 0.05 1.0 10.8845 11.2824 12.3826 

1.0 1.0 0.05 1.0 10.4671 10.6800 11.2800 

1.0 1.0 0.20 1.0 2.9202 3.1327 3.4985 

1.0 1.0 0.30 1.0 1.4899 2.3417 2.5867 

1.0 1.0 0.05 0.71 10.3431 10.4981 10.9376 

1.0 1.0 0.05 1.0 10.4671 10.6800 11.2800 

1.0 1.0 0.05 7.0 12.1862 13.3201 16.2761 
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Figures 16a and 16b show the convergence and accuracy of the present 

problem. Figure 16a depicts the infinity norms with iterations. The error infinity 

norm decreases with the increasing number of iterations that confirms the 

convergence of the present method. So, the present method converges after five 

iterations. Figure 16b represents the residual error norms of less than 10
-8

 and 10
-14

 

for  f  and    against after fourth iterations. It is seen that the residual error 

decreases with increasing the iterations. This proves the validity of the present 

method. The errors show that the SQLM is accurate giving errors of less than 10
-8

 

within the fourth iteration. 

 

Figure 16. (a) Error Infinity Norms and (b) Residual Error Infinity Norms for  

 f  and     

 
(a) 

 
(b) 

 

Correlation Analysis for Velocity Gradient 

 

A positive correlation means higher values of one variable tend to higher 

values of another variable but the reverse case arises for the negative correlation. 

The statistically significant values of the parameters are highlighted in the table 

because the values are greater equal to 0.25. Then we say that a 95% chance of a 

relationship between the parameters. So, from Table 3 it is observed that the 

velocity gradient is positively correlated with the magnetic parameter (M), and 

power-law index parameter (m) but negatively correlated with the surface 

thickness parameter (s) and stretching ratio parameter (ϵ). Therefore, the fluid 

velocity and gradient of velocity is an increasing function of the magnetic 

parameter, and power-law index parameter but a decreasing function of the 

surface thickness parameter and stretching ratio parameter within the boundary 

layer region. 



Vol. X, No. Y                          Ali & Alim: Numerical Analysis of Boundary Layer… 

 
 

30 

Table 3. Correlation Coefficient Between the Velocity Gradient  f   and 

Controlling Parameters by Taking 1
st
 Order Coefficient in the Case of ϵ = 0.2 

Parameters M s m ϵ  f   

M 1.00 
    

s -0.22 1.00 
   

m -0.09 -0.08 1.00 
  

ϵ 0.17 0.15 0.07 1.00 
 

 0f   0.52 -0. 43 0.21 -0.33 1.00 

 

 

Correlation Analysis for Temperature Gradient 

 

A positive correlation means higher values of one variable tend to higher 

values of another variable but the reverse case arises for the positive correlation. 

The correlations are significant between the variables if the numerical value of 

0.25 or above. Then we say that a 95% chance of a relationship between the 

parameters. So, from Table 4 the correlation is significant for all mentioned 

parameters except the stretching ratio parameter which is highlighted in the table. 

The temperature gradient is positively correlated with the parameters Pr, M, m, 

and ϵ but negatively correlated with the parameter s and Q*. 

 

Table 4. Correlation Coefficient Between the Temperature Gradient    and 

Controlling Parameters by Taking Zero-Order Coefficient 
Correlation Summary  

Parameters Pr M m s Q* ϵ     

Pr 1.00 
     

 

M 0.59 1.00 
    

 

m -0.08 -0.13 1.00 
   

 

s -0.14 -0.21 -0.08 1.00 
  

 

Q* -0.09 -0.06 -0.09 0.00 1..00   

ϵ 0.00 0.00 0.00 0.00 -0.09 1.00  

    0.45 0.44 0.28 -0.66 -0.15 0.23 1.00 

 

From Table 5 it is observed that all the parameters are statistically significant 

because their P – VALUEs less than 0.05. Hence at least a 95% chance that there 

is a true relationship between the parameters and the velocity gradient. From the 

regression model it is observed that if we increase the one-unit value of   the 

magnetic parameter (M) and power – law index parameter (m) then the average 

decrease of the skin friction coefficient by 0.8. From the table the regression model 

is 

 

  0.2 1.1 0.6 1.3Pr 0.3f M m s        
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Table 5. Regression Analyses for the Dimensionless Parameters M, m, and s and 

the Velocity    f  by Taking 2
nd

 Order Coefficient 

Regression Statistics 

Multiple R 0.758      

R Square 0.575      

Adjusted R 

Square 

0.368      

Standard Error 1.368      

Observations 18.00      

 df SS MS F Significance F  

Regression 5.00 32.946 6.589 3.522 0.034  

Residual 13.00 24.321 1.871    

Total 18.00 57.267     

 Coefficients Standard 

Error 

t Stat P-value Lower 95% Upper 

95% 

Intercept 0.00 #N/A #N/A #N/A #N/A #N/A 

M 0.2 0.064 -3.039 0.009 -0.335 -0.057 

s -0.6 0.687 -0.866 0.402 -2.080 0.889 

m 1.1 0.426 -2.366 0.034 -1.929 -0.088 

Pr 1.3 0.803 1.569 0.141 -0.475 2.993 

ϵ -0.3 0.427 -0.673 0.513 -1.210 0.636 

 

From Table 6 the regression model is 

  1.841 0.19Pr 0.16 0.47 1.21 0.33 0.3 *M m s Q          . In the regression 

analysis the variables are significant if P – VALUE less than 0.05 and this is the 

condition to develop a true relationship between dependent and independent 

variables. From Table 6 the significant variables are only the surface thickness 

parameter (s) which is highlighted in the table. From the regression model it is 

observed that if we increase the one unit value of the Prandtl number (Pr), power – 

law index parameter m, surface thickness parameter s and stretching ratio (ϵ) and 

then the average increase of the skin friction coefficient by 0.307, 0.0548, 2.13 and 

0.853. Again, if we increase the one-unit value of surface thickness parameter s 

then the average decreases of the skin friction coefficient by 21.71.  
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Table 6. Regression Analyses of the Energy Transfer    by Taking 0 (Zero) 

Order Coefficient 
Regression Statistics 

Multiple R 0.841           

R Square 0.708           

Adjusted R 

Square 

0.525           

Standard Error 0.773      

Observations 14.00      

  df SS MS F Significance F  

Regression 5.00 11.56 2.312 3.873 0.044  

Residual 8.00 4.776 0.597    

Total 13.00 16.36     

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 1.841 0.602 3.05 0.016 0.452 3.230 

Pr 0.184 0.152 1.21 0.260 -0.166 0.535 

M 0.162 0.204 0.79 0.450 -0.309 0.633 

m 0.469 0.328 1.43 0.190 -0.287 1.226 

s -1.213 0.432 -2.80 0.023 -2.208 -0.217 

Q* -0.30 0.07 -3.96 0.00 -0.45 -0.14 

ϵ 0.325 0.273 1.19 0.26 -0.305 0.955 

 

 

Code Verification 

 

The numerical values  f  have been compared with the results of Afridi 

and Qasim (2018) for different values of η to validate the convergence and 

accuracy of the present method. The results are almost similar to the previous 

results which are shown in Table 7. 

 

Table 7. Comparison of Skin Friction  f  for Different Values of η with Afridi 

(2018) by Taking M = m = 0 and Pr = 1 
 Afridi Present results 

η   0f    f   

0.001 62.1637 62.1572 

0.01 8.4924 8.4912 

0.10 1.2888 1.2839 

0.15 - 0.9359 

 

 

Conclusions 

 

The effect of various parameters on MHD laminar boundary layer flow of an 

incompressible, electrically conducting, and viscous Newtonian fluid past a 

stretching electrically non‐conducting bullet-shaped object with heat transfer has 

been carried out. In sequence, the fluid flow and heat transfer have been 
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investigated in two types of flow geometries such as the thicker surface 

 2s  and the thinner surface  0 2s  of the bullet-shaped object. 

 

 The SQLM along with the Chebyshev collocation method provides a more 

accurate and quicker convergence scheme. 

 Velocity profile squeezes for the limit 1  but in the limit, 1  the 

velocity profile enhances for increasing the shape and size (surface 

thickness parameter, s) of the bullet-shaped object but the boundary layer 

thickness expands in both cases. 

 In the case of the thinner bullet-shaped object,  0 2s   the fluid 

velocity profile converges asymptotically to the free stream velocity at 

infinity whereas for a thicker bullet-shaped object  2s  boundary 

conditions do not satisfy. 

 A thin momentum boundary layer thickness has been found in a thinner 

bullet-shaped object  0 2s   than the thicker bullet-shaped object 

 2s  .  

 The thinner bullet-shaped object  0 2s  represents a thinner thermal 

boundary layer because the heat transfer rate is higher than the thicker 

bullet-shaped object  2s  . 

 There is a positive correlation exists of the magnetic parameter (M) and 

power – law index (m) with velocity gradient and but negative correlation 

exists for surface thickness parameter (s) whereas there is no correlation 

for Prandtl number (Pr).  

 A strong positive correlation exists with temperature gradient of the 

parameters such as Prandtl number, power – law index whereas a negative 

correlation exists of the magnetic, heat generation and surface thickness 

parameters. Further, a positive weak correlation exists between 

temperature gradient and stretching ratio parameter. 

 The skin friction reduces for the magnetic parameter and power – law 

index parameter but increases for surface thickness parameter rate and 

stretching ratio parameter. 
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