
Athens Journal of Sciences- Volume 9, Issue 1, March 2022 – Pages 25-46

https://doi.org/10.30958/ajs.9-1-2 doi=10.30958/ajs.9-1-2

Generation, Regeneration and Validation of Binary

Secret Keys through Blockchain in IoT Devices

By John M. Medellin
*

This article operationalizes a mathematical root of trust that can be scaled into

protection for Internet of Things (IoT) devices. The initial discussion focuses on

gated arrays and the generation of 4-way binary keys. Randomization is used in

generation of input and sequence keys giving a unique secret key. The

probability of successful attack depends on the number of devices and ordinary

implementations are well into one in a billion or more. The paper uses the

“epoch” concept; a time-dimensioned interval where more blocks are added to

the blockchain. The epochs are selected at random and voting, duration,

frequency and key roles are also randomized increasing resiliency. The model

does not require constant update of IoT storage; only until such time as

communication with others is initiated or a request is received. The substantial

savings in processing requirements are significant in IoT. A detailed discussion

of the management of the blockchain is provided as well as the necessary blocks

enabling the approach. The paper includes a sample dialogue using standard

TCP/IP communication structures with security protocols and closing remarks

aim at extrapolation to cloud and quantum computing.

Keywords: blockchain, key management and distribution, internet of things,

root of trust, cyber-resiliency

Introduction

Logic operations, blockchain and key validation/encryption are common terms

used in a variety of technologies implemented for protection of computers. This

paper proposes a model for interaction of these concepts into an approach that is

operationally efficient for devices in the Internet of Things (IoT). These

technologies are well known but the ability to have them interact at the right time

for protection in this way is novel. The approach specifically lends itself to use in

processors that must conserve energy (Huang and Cheng 2002).

This paper is organized into related work, logic gates, blockchain and key

exchanges to set preparatory material. Next, the discussion focuses on explaining

the randomized election process and key generation, the blockchain components

and the interaction of devices along the TCP/IP layers using this model. A

simulation-experiment gives an example of the order of magnitude in this

approach versus traditional computation-intensive ones. Finally, a brief discussion

of extensibility into cloud and quantum computing is provided.

*
Chief Technical Officer, Medellin Applied Research Concepts, LLC and TruDecision, Inc., USA.

https://doi.org/10.30958/ajs.9-1-2

Vol. 9, No. 1 Medellin: Generation, Regeneration and Validation of Binary Secret…

26

Related Work

Previous work is in three categories; logic gates, blockchain patterns and secret

keys.

Logic Operations (Logic Gates)

Logic operations are symbols that operate on two binary input numbers (1 or

0) and yield a third binary outcome. In Figure 1, three operations; OR, NAND and

NOT are illustrated in the top part, common symbols for representing them are

shown and are used in design for circuits and chips. The matrix below shows the

corresponding “truth table” for each “gate” operation above. The format of the

truth table shows what happens to the output (Z) when two inputs are entered.

There are 4 possible combinations in the two input numbers 1 and 0 with a set of 4

outcomes for the OR and the NAND gates in the example. The NOT X gate only

contains 1 input which can have 2 possible values of Z.

Figure 1. Sample Gate Symbols & Truth Tables

There are 6 operations and outcomes from 2-way binary gates (Ferguson et al.

2010). The truth tables for those gates can be found in Figure 2 (the model that is

presented in section “Model Heuristics and Base Operations” requires the usage of

2 way gates, the 1 way gate has been omitted).

Figure 2. Inputs, Outputs & Gated Outcomes for Different Scenarios

A key reason for usage of logic gates is their energy/voltage requirements.

Binary result computations based on logic gates will use comparatively low CPU

cycles (therefore less energy) versus the requirements of decimal or other base

OR NAND NOT

X Y Z

1 1 1

1 0 1

0 1 1

0 0 0

X Y Z

1 1 0

1 0 1

0 1 1

0 0 1

X Z

1 0

0 1

 Inputs Logic Gate Outputs (Z)

Scenario X Y OR NOR AND NAND XOR XNOR

1 1 1 1 0 1 0 0 1

2 1 0 1 0 0 1 1 0

3 0 1 1 0 0 1 1 0

4 0 0 0 1 0 1 0 1

Athens Journal of Sciences March 2022

27

numbering systems. In the case of the division operation, computation of the result

can take up to 1 cycle per bit
1
 (some typical algorithms like the SHA 384 or higher

will contain a payload of 512 hexadecimal values or 512*16=8192 CPU cycles to

compute the result). Most algorithms that require key validation today rely on

usage of extensive division, multiplication and other operations (Ferguson et al.

2010). By this very virtue, they are more computationally intensive and therefore

require more energy to derive. This document assumes and experiments with logic

gates to achieve significant resource conservation. Conservation of computational

resources is vital to smaller processors (Monk 2017).

Blockchain Design Patterns

Blockchain is a variation of shared data intelligence made famous by

Nakamoto (2019); although the author is unknown, it has had a significant impact

on creating the concept of shared value exchanges that do not necessarily need to

occur through a third-party intermediary. The most famous of these exchange

operations is bitcoin. There are literally hundreds of medium exchanges where

willing buyers and sellers can contribute value in order to transact between

themselves without an intermediary.

This article is not about the usage of such “shared intelligence” to create an

exchange for value, rather the usage of the blockchain pattern as a medium for

disseminating factual information related to secret keys between participants.

Recent academic developments have begun to explore the secrecy and

computational advantages of blockchain to communicate in a trust-worthy fashion

between members of particular communities (Dinh et al. 2017, Dorri et al. 2017a).

Some recent examples of alternate use of blockchain include distribution of sign-

on credentials or authentication of agents (Li et al. 2019, Dorri et al. 2017b). These

studies rely on exchanging a secret known to the sender and receiver and can be

validated by trusted parties who are members of the blockchain (Salman et al.

2018).

In precursor articles, the author has written about blockchain in the context of

usage of this design pattern mostly on the consensus architecture requirements and

implementation (Medellin and Thornton 2018). In those studies, comparisons were

made to the Byzantine General’s Problem; a common shared context problem

used to teach the concepts of consensus between participants. This particular

technique is complex and very computational but serves as the yardstick to

measure efficiency. The focus of this document will branch into measurement of

binary operations versus those referenced in higher number system operations to

arrive at consensus.

Although there is no authoritative set of components for the blockchain

design pattern, there are some typical components. The typical components of the

block chain are: the block architecture, a smart contract (which is optional), a

consensus model (the ability to validate previous blocks), a set of participants –

typically elastic as to volume and a method for encryption using a unique number

(the “nonce”) which is used once in that encryption (Liang and Wu 2017,

1
https://projectf.io/posts/division-in-verilog/. [Accessed 17 February 2021]

https://projectf.io/posts/division-in-verilog/

Vol. 9, No. 1 Medellin: Generation, Regeneration and Validation of Binary Secret…

28

Christidis and Devetsikiotis 2020, Ongaro and J. Ousterhout 2014, Muralidharan

et al. 2018, Ferguson et al. 2010). A partial graphical representation of a typical

blockchain set of blocks and attributes is diagrammed and presented in Figure 3.

Figure 3. Partial Blockchain Sequence and Block

Secret Keys (Trust and Encryption)

Human beings have used the concept of secrets for perhaps millennia. Secrets

have been used to preserve and communicate critical information in key situations

(Soni and Goodman 2017). These concepts have evolved through the ages and are

inherited by computer systems today.

Modern systems create trust between each other by using mathematical

formulae that have finite answers. Two computer systems will exchange a

particular sequence of numbers and apply a secret formula to determine the

veracity of the sequence being received (Johnsonbaugh 2018). If the item checks

out then communication can proceed. There are multiple formulae that can be used

but the most popular rely on the modulo operations. In modulo operations, a

number is divided by another number and the remainder whole-number

component is the result. For example, 9 modulo 6 is 3 (9 divided by 6 is 1 with a

remainder of 3).

Diffie and Hellman are credited with a widely-used algorithm to validate

identity by usage of remainder modulo operations. In this algorithm, actors in send

messages to each other encoded with their private keys and arrive at the same

number (Kozierok 2017). This is then used to perform encryption on data. The

basic DH key exchange is shown below in Figure 4.

AETiC 2019, Vol. 3, No. 4 19

the record of a transaction, i t is also possible to store a method in a BC. Because items stored in a

properly implemented and functioning BC are immutable, w hen these items are in the form of an

agreed set of actions between two parties, they essential ly obey the legal definition of a “ contract.”

That is, if two nodes agree upon a set of actions and that set of actions is validated by the BC

community to be those that were originally agreed upon, and furthermore, a record of these actions

are stored in the immutable BC data structure that also guards against nonrepudiation, then a

contract has been executed among the two parties that originally proposed and agreed upon the set

of actions. This type of object, when used in a BC, is referred to as a “ smart contract.” A smart contract

is a reference to a set of procedures that the block w ill provide, and in some cases w ill cause to be

executed, when the conditions of the contract are met [14]. The scope and specifications of a smart

contract are a design consideration.

Figure 1. Diagram of Blockchain Architecture w ith Partial Detail

Smart contracts can be implemented as a block that defines a set of procedures in the actual data

payload or a conditional reference to another part of the BC that contains other types of data. The

smart contract, w hen invoked by a special block type, w ill produce a result that operates on the input

data of that another block. A smart contract may contain the algorithm for processing the additional

data or may reference a specific location for those instructions [15].

A BC requires several different types of algorithms to function properly. Some of these include

hash functions both for the construction of the structures as well as possibly serving as sources for a

mining puzzle. A lgorithms are needed to maintain the ADTs, to maintain valid replications of the

ledger, to update invalid copies of the ledger, to support the consensus model, to ensure the privacy

of sensitive data, and a host of other support functions. In most BC implementations, it is desirable

to encrypt portions of or the entire ledger, thus cryptographic methods and support functions such

as nonce generators are important design considerations [16].

While there are other considerations, the final one that we w ish to describe here is the consensus

model. Broadly, consensus is the process w hereby the participants agree in adding the new block

to the chain [17]. An important aspect of the BC pattern is the avoidance of a centralized authority

that may become corrupted either through a fault or via some malicious intent. For this reason, it is

important that the model be computationally distributed rather than a naïve approach such as a

centralized voting accumulator as such a centralized consensus model w ould negate the benefits

sought through the deployment of a distributed ledger. The consensus model provides the method

whereby sufficient proof of validity of a transaction is provided by a given set of node in order to

append the block and commit i t to permanent storage in the chain. Two of the most common

consensus methods at this writing are based on Proof-of-Work (PoW) [18] and Byzantine Fault

Tolerance A lgorithms (BFTA) [19].

The consideration of the design of the consensus model must necessarily involve aspects of the

application. For example, if the BC community consists of nodes that run on computationally

l ightweight CPUs, the consensus model must not require excessive CPU cycles to complete.

A lternatively, if performance is the prime factor, then the consensus model should be one that rapidly

 www.aetic.theiaer.org

Athens Journal of Sciences March 2022

29

Figure 4. DH Rules and Example

Source: adapted from Stallings (2018).

This article will use a similar approach to conveying trust to other members

except that the algorithm to decode the primary message will be regenerated in

different binary operations that will be stored along the blockchain’s historical

blocks.

TCP/IP Concepts

A key assumption of the model in section “Model Heuristics and Base

Operations” relies on the usage of TCP/IP as described in Kozierok (2017). The

operation of that set of protocols assumes the disaggregation of a message,

transmission through physical media and aggregation in the destination. In

summary, messages are prepended with routing and lower level information as the

data travels down the stack. They are finally transmitted through the physical layer

and are de-constructed by each of the layers until they arrive at the application. We

are particularly concerned in the handshake that will take place at the with the PPP

(point to point) sub-protocol of the ICMP protocol shown in Figure 5.

Alice Bob

Alice & Bob share a

Prime number q &

an integer α, such

that α < q & α is a

primitive root of q

Alice & Bob share a

Prime number q &

an integer α, such

that α < q & α is a

primitive root of q

Alice generates a private

key XA such that XA < q

Bob generates a private

key XB such that XB < q

Alice calculates a public

key YA= α^XA mod q

Bob calculates a public

key YB= α^XB mod q

Alice receives Bob’s YB Bob receives Alice’s YA

Alice calculates shared

secret key

K=YB^YA mod q

Bob calculates shared

secret key

K=YA^YB mod q

Alice Bob

q = 353

α = 3

q = 353

α = 3

XA = 97 XB = 233

YA =

3^97 mod

353

= 40

YB =

3^233 mod

353

= 248

YB = 248 YA = 40

K =

248^40

mod 353

= 160

K =

40^248

mod 353

= 160

RULES EXAMPLE

Vol. 9, No. 1 Medellin: Generation, Regeneration and Validation of Binary Secret…

30

Figure 5. The TCP IP Layers and Protocols

Source: compnetworkgingsec.com.

The PPP dialogue is established at the start of a session and it allows for the

usage of CHAP a more modern version of authentication that can be used on the

internet layer segment of the protocol. When the two machines are establishing a

joint session, the following dialogue occurs:

1. Machine A sends PPP frames to the target address on the network.

2. The receiving Machine B can respond in one of three ways:

Configure-ACK: parameters accepted, acknowledge and continue.

Configure-NAK: parameters rejected (and which ones).

Configure-Reject: ignore.

Challenge (if challenge met, then ACK).

Section “Model Heuristics and Base Operations” contains a specific example

of how the protocol tool set is deployed within the model.

Model Heuristics and Base Operations

In this section, the base matrix, the blockchain components and the base

operations are discussed.

Athens Journal of Sciences March 2022

31

The Base Matrix

The first thing proposed in this model is a base matrix that has five columns

and contains 4096 rows (more or less data points can be used). Each line contains

the following column components:

 The sequence number (“N”).

 The private key used in that sequence number (“P”).

 The secret key in that sequence number (“Q”).

 The gate used in that sequence number (“G”).

 The public key in that sequence number (“X”).

The base matrix structure is shown in Table 1. The actual matrix values have

only binary numbers (0 or 1). The sequence is assumed by location.

Table 1. Sample Matrix Structure

The first line above has the components of P:F(0), Q:T(1), G:00(XOR),

X:T(1), N:0. Those values correspond to using the XOR gate on inputs 0,1 and

obtaining the number 1. This matrix is never fully implemented in any block on

the blockchain rather it is computed by the members each time the members

validate each other before beginning exchange of messages.

Blockchain Components

The blockchain components are included in this section.

Blockchain Block

The blockchain block is described in Table 2 and discussed immediately

following it.

Table 2. The Model‟s Blockchain Block
Component Contents

Epoch ID Sequential number for the epoch

Manager secret key and

epoch
4096 bit key + original epoch of admission

Public key 4096 bit key generated by manager for the epoch

Gate sequence 4096 x 2 bit key corresponding to the gate being used

Admitted Secret Keys Sequences of 4096 bits for new members

Deprecated epoch/keys Deprecated sequences of previous members

Current hash
Previous hash XOR public key XOR gate sequence XOR manager

epoch XOR manager secret key XOR current epoch XOR nonce

P Q G X N

F (0) T (1) 00(XOR) T (1) 0

.

T (1) F (0) 01(XNOR) T (0) 4095

Vol. 9, No. 1 Medellin: Generation, Regeneration and Validation of Binary Secret…

32

In Table 2, the epoch id corresponds to the time period of operation (this can

be a sequential number or can include the sequential time number and the time

clock where the epoch began or variation thereof). The manager key and epoch are

the secret key assigned to the manager upon admission and the epoch in which that

operation was performed. The public key is the bit sequence of 4096 digits assigned

by the manager corresponding to the epoch. The gate sequence is the sequence of

4096 gates corresponding to 2 bits for designating one of 6 binary gates for the

epoch being communicated and is optional (if not noted, then the previous epoch’s

is assumed carried forward). The admitted secret keys are the new members’

secret keys for the epoch and must be unique for the epoch, while the next line

(deprecated key) corresponds to original epoch and secret key of the members that

are being removed. The current hash is a secret number that is known to members

to conclude the epoch. All of the above are generated by the manager.

Blockchain Operations

The blockchain operations that are required for this algorithm consist of the

consensus method enabled through the manager, the epoch, the election,

administrative tasks and conclusion of the epoch. This algorithm relies on epochs

and randomization of their duration as explained in Medellin and Thornton (2017).

The current manager at random selects a manager for the next epoch, directs when

that epoch will begin and produces the next key components of the blockchain.

The following paragraphs explain the concepts in greater detail.

The consensus method is mathematical and is enabled by the random election

of a member to perform the duties necessary in the next epoch. A recommended

approach is to elect at a minimum one manager and one alternate (which will

“wake up” sometime after the manager had to have operated and will assume the

duties if one has not done so). Additional alternate managers can be designated in

order to increase robustness.

The manager is notified by the previous epoch manager as part of the

conclusion of their duties. This previous manager has executed a randomized

election by generation of random numbers, partitioning of previous admittances in

to a continuous space, assignment of numbers and then assignment to one manager

and n-number of alternate managers with instructions to wake up at a random-

generated time in the future to execute the next epoch. As mentioned above, the

election of a new manager is supervised by the existing manager and is done by

announcing the election (for example through individual point to point to all IPv6

addresses or member IDs admitted but not deprecated in the chain). This

communication dialogue requests their participation, not all machines need to

participate, however those that can must; selection will be from the acknowledging

members.

The echo of the machines will be to provide the difference between their

secret key total and a random number generated times 4095. The closest (meaning

the one with the least numeric difference to that number generated by the

manager) and next closest will be assigned as the manager and alternate for the

next epoch (if only one alternate is to be used). Only they will be notified of their

role and a set of gates will be configured in their IoT arrays to correspond to the

Athens Journal of Sciences March 2022

33

logic needed to become a manager as the conclusion of the existing epoch is being

executed (for execution of duties in the next epoch). Notification of new

parameters will happen in broadcast for those that are in that communication

mode, otherwise adjacent machines will be used in the IP protocol to bring

themselves current (Kozierok 2017).

As mentioned above, the manager is responsible for execution of the

administrative tasks of generating a new Public key and generation of new gate

sequences. Typically, both of these will not be done in a single epoch, only

occasionally will the gate sequence be targeted for regeneration. Based on that

data, the members will re-generate their internal secret key in the base matrix to

reflect the current epoch. The model relies heavily on the ability to traverse

through the blockchain in order to ensure proper results, this is shown in Figure 6.

Figure 6. Blockchain Traversal Example

Admission and deprecation of participants will follow a similar process to

what other blockchain algorithms indicate. This will depend on the actual

blockchain software to be used (the “fabric”) (Xu et al. 2017). But those duties will

also be administered by the manager. After these tasks, the manager will become

dormant and the epoch will continue until a new one is declared by new managers

or alternates.

Implementation in TCP/IP PPP and TCP/IP CHAP

The preferred method of implementation is by usage of the PPP and CHAP

Protocols. PPP initiation begins with first message frames sent containing the user

name and password. Once that has been initially validated, the responding machine

would send back a challenge using CHAP (challenge/acknowledge). If that

challenge was correct then an acknowledgement would occur and the two machines

would use private keys to encrypt messages.

Initial Dialogue Between Members

If two members have not previously communicated or have done so in an

outdated time frame they must establish trust. The objective of the initial dialogue

between two members will be to validate the two parties and establish trusted

communication between them. This process is modeled in TCP/IP because it is

(1) (2)

(3)

(1) Structure of Block

(2) Backward traversal

through blockchain

(3) Forward walk

through blockchain

Epoch ID

Mgr. Secret
Key & Epoch

Public Key

Gate Seq.

Admitted
Secret Keys

Deprecated
Epoch/Secret K

Current Hash

Vol. 9, No. 1 Medellin: Generation, Regeneration and Validation of Binary Secret…

34

probably the most utilized of communication protocols in modern computing and

because of its inherent robustness in modeling dialogues on the internet (Kozierok

2017). This example dialogue is provided for illustrative purposes, many other

approaches are valid as well. The steps are as follows (it assumes no regeneration

of the gate sequence, see Figure 7 also):

1. Participant A consults their blockchain store for the current hash.

Participant A sends their original epoch of admittance hash XOR

encrypted with the current hash (as a user name) and their original

admission secret key XOR encrypted with that epoch’s hash (as a

password) in message #1 through TCP/IP PPP.

2. Participant B XOR decrypts message #1 with the current hash (for a prior

epoch hash) and looks for A’s admission secret key in that epoch and any

possible deprecation since. If it has been deprecated the process stops. B

prepends their epoch of admission key to their admission secret key and

XOR encrypts with the current hash prepended with the current epoch and

sends that as a challenge to A.

3. Participant A receives message #2 and XOR decrypts the value of B’s

admission epoch and secret key. It then uses that computed secret key as

the encryption key. A next XOR encrypts the computed encryption with

the current gate sequence and sends to Participant B as reply to the

challenge in message #3.

4. Participant B receives message #3 and XOR decrypts with the current

gate sequence. If it matches the encryption key sent then an acknowledge

is sent and handshaking is over.

Figure 7. Handshaking Dialogue

Guide: Op=Operation, Send=Transmit, Rec=Receive.

Participant A Participant B

(1) Consult Blockchain

Op: get current hash

Op: encrypt original epoch and secret

key with current hash and epoch hash

Send message #1 to B------à(2) Rec: original epoch hash / epoch and secret

key encrypted with hash

Op: consult B/C for hash

Op: decrypt message with hash & get prior epoch

Op: get prior hash of epoch, decrypt secret key

Op: verify blockchain: no deprecation

Op: If ok, encrypt B’s epoch of admit + that secret

key with epoch and hash

(3)ß------------------------------Send message #2

Rec: B’s admit epoch & secret key

Op: XOR decrypt B’s with hash & epoch

Op: Compute implied B’s secret key for encryption

Op: XOR B’s implied secret key with gate sequence

Send message #3------------à(4) Rec message #3

Op: XOR decrypt B’s w gate sequence & verifies

computation

ß---------------------------------Send: ACK (message #4)

Athens Journal of Sciences March 2022

35

Regeneration of Keys

A critical aspect of the model is the ability to regenerate the secret key for

each member through instruction to do so from an existing manager. The secret

key for members may be regenerated by taking their private key, the gate

sequences and the public key. In addition to regeneration of the secret key through

public keys, regeneration of the secret key could be done through usage of new

gate sequences instead of the public key (input would be the private key, the

public key and a new gate sequence for a new secret key).

Another area of expanded regeneration in this model is the ability to stack the

gated algorithm and instead of using one set of gates one would use multiple sets

of gate sequences in parallel to add further complexity protection. These areas

have not been researched at the moment and are expected to be further detailed at

a future point in additional research.

Attack Resiliency

A protection scheme’s ability to resist intrusion depends on how robust the

scheme is and how potentially dangerous such exploits are to the correct

functioning of the protected asset (Knapp and Langill 2015). A powerful aspect of

the model documented in this article is the ability to increase or decrease the

mathematical frequency and payload of the keys used to validate identity. In some

cases, the requirement may be for a very high level of protection and in some it

will not require as much. This translates into more computational abilities required

to fulfill them and therefore more resources (Arnberg et al. Patent Application).

In the two subsections below these implications are discussed by using the

base matrix of 4096 rows and 4 columns described above and testing against the

probability of a brute-force attack (one in which all possible payloads are used). In

the second subsection, additional variations are discussed to further complicate the

attack surface.

Attacks on the Previously-Described Base Matrix

Previous segments have described a 4 by 4096 binary base matrix. In order

for the attacker to begin an attack, they must have a valid secret key of admission,

that epoch’s hash, the prior epoch hash and the current epoch’s hash. All of these

are binary arrays of 4096 rows and the attacker would have to guess these

correctly (see Table 3 for attack success probabilities).

Vol. 9, No. 1 Medellin: Generation, Regeneration and Validation of Binary Secret…

36

Table 3. Brute Force Attack Success Probabilities

Table 3 depicts the number of machines (#) and the combined probabilities of

success in initiating a brute force attack in a static protection scheme if the model

was never regenerated through a new gate sequence or new primary keys. In this

case, the protection level might be adequate for somewhere around 1,500 to 1,900

IoT machines; the raw probability numbers for the 1,536 members is in one in 242

sextillions which would be an extremely high level of protection in most cases. In

addition, however, a key aspect of this paper’s contribution is the ability to vary

and regenerate parameters based on epochs which will add further complexity and

protection versus attacks; that will be discussed next.

The Dynamic Nature of the Model

Upon admission of a new member into the network, the manager will generate

a private key consisting of a binary value list (for example, 4096 as per the

description above) and will compute the value of the member’s secret key by

taking the generated private key with the epoch’s public key as inputs and using

the existing gate sequence. The private key and the blockchain payload thus far

will be communicated to the newly admitted member. The secret key will be

published in the epoch’s blocks.

One of the duties of a manager is to publish a new public key in each epoch (a

new set of gates can also be published). Each member has the responsibility of

regenerating their current secret key by using their private key and the new public

key as inputs to the gate sequence. This current secret key is crucial in the hand-

shaking algorithm. As discussed above, the frequency of epochs is a random

variable selected by the current manager; the manager at random (within tolerances

of the number of members and the volume/speed of the network) will announce

when the next epoch will begin to the next manager/alternate(s).

The regeneration of the secret keys during every epoch by every member

creates another layer of computational complexity for an attacker. Similar to the

added complexity afforded by the SHA algorithms this incremental iterative

requirement is significant since not only must the attacker know the current

parameters but be able to traverse the blockchain in order to continue the dialogue

with the intended machine (Stallings 2018). Even if the brute force attack is

successful in generating sequence of relevant keys the attacker must have

knowledge of the blockchain in order to respond to the challenge. The traversal of

P(x) Secret Key P(x) Hash Key P(x) Epoch Hash P(x) Epoch P(x) Combined

1 1 / (2^ 4096) 1 / (2^ 4096) 1 / (2^ 4096) 1 / (2^ 4096) 1 / Extremely high #

2 1 / (2^ 2048) 1 / (2^ 2048) 1 / (2^ 2048) 1 / (2^ 2048) 1 / Extremely high #

.	

128 1 / (2^ 32) 1 / (2^ 32) 1 / (2^ 32) 1 / (2^ 32) 1 / (2^ 1,048,576)

256 1 / (2^ 16) 1 / (2^ 16) 1 / (2^ 16) 1 / (2^ 16) 1 / (2^ 65,536)

512 1 / (2^ 8) 1 / (2^ 8) 1 / (2^ 8) 1 / (2^ 8) 1 / (2^ 4,096)

1024 1 / (2^ 4) 1 / (2^ 4) 1 / (2^ 4) 1 / (2^ 4) 1 / (2^ 256)

1536 1 / (2^ 3) 1 / (2^ 3) 1 / (2^ 3) 1 / (2^ 3) 1 / (2^ 81)

2048 1 / (2^ 2) 1 / (2^ 2) 1 / (2^ 2) 1 / (2^ 2) 1 / (2^ 16)

Athens Journal of Sciences March 2022

37

blocks is very necessary in order to be able to respond, an incorrect response is

ignored and the machine under attack simply does not continue.

As more epochs occur and more blocks are added to the blockchain the added

complexity for lack of knowledge will be overwhelming on the attacker. The

attacker will need to have intimate knowledge of prior epochs going back to the

attacked machine’s admission in order to respond (including if there are

deprecations of that machine or if gate sequences have been regenerated). The

distance of these transformations will increase in similar fashion as that described

in the SHA protocol transformations (at one point will exceed the number of

transformations in SHA by the additional epochs beyond the transformations in

the particular SHA version being used) (Stallings 2018). A diagram of this

distancing process can be seen in Figure 8, if gate change or deprecation events are

introduced they will require either evaluation or regeneration of private keys

further adding complexity for the attacker

Figure 8. Increased Complexity Through More Blockchain Blocks

Resource Consumption Evaluation

This section presents a simulation experiment on the model.

Formal Requirements

The formal requirements are included in the appendix and heavily rely on the

Z language (pronounced z-ēd) and is included in the appendix.

Experimental Model Construction

The experimental model focuses on simulating a very simple Modbus/TCP

IoT Operational Technology (OT) network as described in Bartelt (2011) and

includes the following messages:

(1)

(2)

(1) Attacker succeeds in obtaining a

valid combination that is stored in a

prior epoch (a machine’s prior admit).

(2) Attacked machine traverses blocks

and computes transformations through

knowledge of the blockchain.

(3) Attacked responds with challenge

derived from the transformations found.

AS THE BLOCKCHAIN GROWS,
THE ABILITY OF A SUCCESSFUL

ATTACK IS GREATLY DIMINISHED

(3)

Vol. 9, No. 1 Medellin: Generation, Regeneration and Validation of Binary Secret…

38

 Device status (90 messages).

 Correction sequence (13 messages).

 Correction feedback acknowledge (13 messages).

 Additional 116 messages distributed at random (twice the amount of the

previous 3) over the 90-day period.

The simulation is executed in quarter year intervals for a 5-year period, and

calculates the cpu cycles required for different size key exchanges. One is for a

512-bit sequence (a smaller subset of the 4096 previously described), another is

for the 4096-bit sequence and a third is for 512 bytes. The third is introduced to

compare to SHA 384 or higher order SHA protocols.

The simulation for the model described in this document assumes the load of

16 epochs with evenly distributed machines until 96, 192 and 384 machines are

admitted into the blockchain eco-system for the bit-based keys. The 512- decimal

simulation admits 96, 192 and 384 in one load operation for each instantiation.

Keys are regenerated every quarter year, 2% of the machines are admitted and

deprecated every period and there are up to 116*2=232 key exchanges per machine

per period. D-RAFT elections are not included in the simulation since they only

impact one machine (except for the acknowledgement from the participant

machines).

Estimation of Non-Volatile Storage Requirements

The usage of blockchain requires the provision of non-volatile storage where

the blocks will reside. A critical assumption of the blockchain model is the ability

to replicate the data in all the devices that are participants in the network. This

characteristic requires estimation of the storage requirements for each (a function

of the number of devices, the structure of the blockchain blocks and the number/

types of blocks that will be added to the blockchain as operations occur). The

model requires that admission keys be stored, new public keys and gate sequences,

deprecation of keys and finally the items which are required for management (the

manager key/admission epoch, the epoch ID and the current hash). Table 4

identifies the storage requirements for the 96, 192 and 384-member machine

networks. It estimates the initial load and then estimates the addition/ deprecation

of 2 devices a quarter for every 96 devices. The summary lines at the bottom

identify the non-volatile storage requirements for the blockchain at the quarter,

year and 5 year marks only for the bit-based keys (the totals are rounded up to

ensure the blocks will be written).

Athens Journal of Sciences March 2022

39

Table 4. Base Load & Operating Store Non-volatile Storage Requirements per

Device

Estimating CPU-Cycle Requirements

The estimated CPU-cycle requirements for three different scenarios (512

binary array, 4096 binary array and SHA 384+) are given in Table 5 (a description

of the assumptions follows).

Table 5. Estimated CPU-Cycle Loads Under Various Keys

Base Load Store Component Blockchain Base Load

Item Assumption 512 bit 4096 bit 512 bit 4096 bit 512 bit 4096 bit 512 bit 4096 bit

Devices >>> 16 Epochs 96 96 192 192 384 384

Epoch key length 512 4096 8,192 65,536 8,192 65,536 8,192 65,536

Mgr. Key+Epoch 32 + key bits 544 4128 8,704 66,048 8,704 66,048 8,704 66,048

Primary Key key length 512 4096 8,192 65,536 8,192 65,536 8,192 65,536

Gate Sequence key length 512 4096 0 0 0 0 0 0

Admit Secret Key key length 512 4096 49,152 393,216 98,304 786,432 196,608 1,572,864

Deprecated Key 32 + key bits 544 4128 0 0 0 0 0 0

Current Hash key length 512 4096 8,192 65,536 8,192 65,536 8,192 65,536

Total bits 82,432 655,872 131,584 1,049,088 229,888 1,835,520

Total bytes 10,304 81,984 16,448 131,136 28,736 229,440

Expressed in KB 10.3 82 16.5 131.2 28.7 229.4

Operating Store Component 512 bit 4096 bit Regeneration,	Admission	&	Deprecation	@	2	mach./qtr.

Time Period >>> Quarter Quarter Year Year 5 Year 5 Year

Epoch 32 bits 32 32 32 32 128 128 640 640

Mgr. Key+Epoch 32 + key bits 544 4128 544 4,128 2,176 16,512 10,880 82,560

Primary Key key length 512 4096 512 4,096 2,048 16,384 10,240 81,920

Gate Sequence key length 512 4096 0 0 0 0 0 0

Admit Secret Keys key length 512 4096 1,024 8,192 4,096 32,768 20,480 163,840

Deprecated Keys 32 + key bits 544 4128 1,088 8,256 4,352 33,024 21,760 165,120

Current Hash key length 512 4096 512 4,096 2,048 16,384 10,240 81,920

Total bits 3,712 28,800 14,848 115,200 74,240 576,000

Total bytes 464 3,600 1,856 14,400 9,280 72,000

Expressed in KB 0.5 3.6 1.9 14.4 9.3 72

Storage per machine for # machines on network Q/512 Q/4096 Y/512 Y/4096 5Y/512 5Y/4096

96 Devices (KB) 10.8 85.6 12.2 96.4 19.6 154.0

192 Devices (KB) 19.1 151.2 26.8 211.4 68.0 532.2

384 Devices (KB) 35.5 282.3 55.9 441.2 164.7 1288.3

512 bits 4096 bits SHA 384+

Message #1

Receive 1 1 1

Decode 32 256 0

Fetch Block 2 2 0

Validate/Derive 16 128 512

Format Challenge 16 128 512

Message #3

Receive 1 1 1

Decode 32 256 0

Validate/Derive 16 128 512

Acknowledge 1 1 1

Total CPU Cycles 117 901 1,539

Vol. 9, No. 1 Medellin: Generation, Regeneration and Validation of Binary Secret…

40

Table 5 identifies the number of cycles required for each operation under the

dialogue mentioned in Figure 7. The assumptions made for each are as follows:

 Receive: one cycle to receive the message (store in buffer).

 Decode: for the bit-based keys it is two messages (user name and

password) using a 32-bit chip, bitwise operations (e.g., (512/32) * 2 = 32

CPU-cycles).

 Fetch block (from the block chain): one for fetch and one for the receive.

 Validate/Derive: bit-wise operations similar to the ones in decode for the

bit keys, 512 -digit division for the SHA key.

 Format Challenge: same as previous operation.

 Acknowledge: one cycle to send standard “ACK” message.

Results Discussion

The results may be found in the appendix are for a low interaction system (in

practice the interactions in process control may be much higher). In addition, the

frequency of key negotiation will depend on the ability to isolate the processes

from potential attack and the necessity to regenerate encryption keys. Those

considerations will need to be evaluated by the designer of the system in addition

to the specific component of the blockchain itself. This document has provided

one example of the gated component but the variations to the payloads in the

model are very large.

An important concept illustrated above is the radical difference in cpu cycles

depending on the algorithm used for generation and regeneration of keys between

IoT devices. Some of these may be able to devote a high degree of cycles as for

example in the ARM Cortex-MO Processor which can yield a 0.87 MIPS (million

instructions per second) at a speed of 2.25MHz and is a three-stage cycle

processor
2
. Given a typical 20% “headroom” (additional processing unused) it can

deliver around 0.232 million full instruction capacity and a simple key negotiation

would not begin to scratch the surface. However, more cycles would be required if

the SHA negotiation were something more resilient such as prime number keys

(something that is utilized in higher safety systems for example).

In addition, however, there are other processors that have considerably less

power such as those mentioned in Lallement et al. (2017) which may still be

industrially viable but with much less cpu power (e.g., 7Hz) to devote to

protection. These processors do exist in implementations and need more care in

determining which protection algorithm to use so they do not spend most of their

effort in processing large keys.

2
https://static.docs.arm.com/ddi0432/c/DDI0432C_cortex_m0_r0p0_trm.pdf?_ga=2.84689169.908

795371.1542781838-925179195.1542781838. [Accessed 17 March 2021]

https://static.docs.arm.com/ddi0432/c/DDI0432C_cortex_m0_r0p0_trm.pdf?_ga=2.84689169.908795371.1542781838-925179195.1542781838
https://static.docs.arm.com/ddi0432/c/DDI0432C_cortex_m0_r0p0_trm.pdf?_ga=2.84689169.908795371.1542781838-925179195.1542781838

Athens Journal of Sciences March 2022

41

Potential in Other Technologies

Section “Resource Consumption Evaluation” assumed that the IoT processors

will physically process the instructions required. In addition, it has assumed that

the regeneration of the keys is evenly distributed (at least through the experiment)

and can count on a static space where adversaries can try to hack into the system.

This section discusses potential variations in cloud computing and the ability to

provide some resilience in quantum processor attacks through randomization.

Cloud Computing

Cloud technology affords great flexibility and efficiency in managing

computing resources. What used to cost millions and take years to build can now

be achieved in fractional time and cost. Cloud computing can help in this model by

providing logic-gated arrays in virtual clouds.

These “virtual gated arrays” (sometimes also called “FPGA” or Field

Programmable Gated Arrays) can be designed with gated sequences in mind and

can also be scaled to address the needs of a particular project with little effort or

time. Virtual FPGAs as they are called can now be sourced from many of the

public clouds and instead of having to purchase the hardware, one can now design

in that environment and deploy very quickly and inexpensively.

Figure 9 illustrates a potential implementation of the algorithm in Virtual

FPGAs, taking the load off the IoT processors themselves by managing all

communication (and protection) in the cloud while delivering payloads in a secure,

isolated channel. Several offerings exist to both house the processors in a virtual

environment and also the blockchain operations in public clouds (such as Amazon

Web Services).

Figure 9. Hypothetical Architecture in a Public Cloud

Virtual FPGA Virtual FPGA

Other Services

External Networks

A “Cloud”

reserved circuit segments on the chips

single channel I/O
single channel I/O

Vol. 9, No. 1 Medellin: Generation, Regeneration and Validation of Binary Secret…

42

Quantum Computing

Quantum computing is a promising technology enabling massive processing

in fractional time. Peter Shor introduced an algorithm that was able to overcome

the finding of such primes considered later useful in deciphering the SHA style

cryptography. This was later confirmed by Spiller in finding such prime numbers

using Shor’s algorithm. While not commercially viable at this point, in the future

these designs could potentially find answers to primary key exchanges and

cryptography fractions of what it takes today.

Prime numbers are finite & finding them can be quite complex. Several

algorithms exist to confirm the existence of primality (Xu et al. 2017, Nakamoto

2019). It is conceivable that a quantum computer could break the secrets of the

model presented in this article. However, one must also consider that the

algorithms can be regenerated at random intervals adding infinity to the puzzle.

Others such as those documented in sub-subsection “Regeneration of Keys” can

be used to randomize and also confuse the attacker requiring them to initiate again

(and on, and on….).

One additional word on the above, the regeneration of keys consumes

additional resources and one must not be careless to fall into regeneration in

intervals that are very frequent because that is wasteful. Rather, one needs to

design the system with an analysis of the attacker strength and provide for

sufficient regeneration in order to defeat it. In the end however, if a sufficiently

powerful quantum computer is used, these efforts might not be enough.

Conclusion

This document presented a method for interaction between logic gates,

blockchain and key generation that has some definite savings in computation for

the IoT. This is an initial discussion on a new approach to key generation and

regeneration. Risk areas still exist in this method and they are being explored as

this document is being submitted for consideration. The author believes in

adequate protection based on the asset values and potential for real intrusion. This

document advocates for a different approach that can increase or decrease

computational complexity (and resources) depending on the protection objectives.

References

Arnberg A, Van Ermel Scherer R, Medellin J (n.d.) Device for implementing ubiquitous

connectivity and protection software for IoT devices. US Patent Application 62/371,

003.

Bartelt T (2011) Industrial automated systems; instrumentation and motion control. Clifton

Park, New York: Delmar Cengage Learning.

Christidis K, Devetsikiotis M (2020) Blockchains and smart contracts for the internet of

things. IEEE Access 4(1): 2292–2303.

Athens Journal of Sciences March 2022

43

Dinh TTA, Wang J, Chen G, Liu R, Ooi BC, Tan K-L (2017) BLOCKBENCH: a

framework for analyzing private blockchains. Retrieved from: https://arxiv.org/pdf/

1703.04057.pdf. [Accessed 19 March 2019]

Dorri A, Kanhere SS, Jurdak R (2017a) Towards an optimized blockchain for IoT. In 2017

IEEE/ACM Second International Conference on Internet-of-Things Design and

Implementation (IoTDI), 173–178.

Dorri A, Kanhere SS, Jurdak R, Gauravaram P (2017b) Blockchain for IoT security and

privacy: the case study of a smart home. In 2017 IEEE International Conference on

Pervasive Computing and Communications Workshops (PerCom Workshops), 618–

623.

Ferguson N, Schneier B, Kohno T (2010) Cryptography engineering, design principles

and practical applications. Indianapolis, Indiana: Wiley Publishing, Inc.

Huang S-Y, Cheng K-T (2002) Formal equivalence checking and design debugging.

Norwell, Massachusetts: Kluwer Academic Publishers.

Johnsonbaugh R (2018) Discrete mathematics. 8th Edition. New York: Pearson Education,

Inc.

Knapp E, Langill J (2015) Industrial network security, securing critical infrastructure

networks for smart grid, SCADA and other industrial control systems. 2nd Edition.

Waltham, Massachusetts: Syngress Elsevier.

Kozierok C (2017) The TCP/IP guide, a comprehensive, illustrated internet protocols

reference. San Francisco, California: No Starch Press, Inc.

Lallement G, Abouzeid F, Cochet M, Daveau J-M, Roche P, Autran J-L, et al. (2017) A

2.7pJ/cycle 16MHz with 4.3nW power-off ARM Cortex-M0+ core in 28nm FD-SOI.

Leuven, Belgium: ESSCIRC, hal-01788172.

Li D, Du R, Fu Y, Au MH (2019) Meta-key: a secure data-sharing protocol under

blockchain-based decentralized storage architecture. IEEE Networking Letters 1(1):

30–33.

Liang X, Wu T (2017) Exploration and practice of inter-bank application based on

blockchain. In The 12th International Conference on Computer Science & Education

(ICCSE 2017), 219–224.

Medellin J, Thornton M (2017) Simulating resource consumption in three blockchain

consensus algorithms. In “MSV „17” International Conference on Modeling,

Simulation & Visualization Methods, 21–27.

Medellin J, Thornton M (2018) Performance characteristics of two blockchain consensus

algorithms in a VMWare hypervisor. In International Conference on Grid & Cloud

Computing and Applications “GCA „18”, 10–17.

Monk S (2017) Programming FPGAs, getting started with Verilog. New York: McGgraw

Hill.

Muralidharan S, Murthy C, Nguyen B, et al. (2018) Hyperledger fabric: a distributed

operating system for permissioned blockchains. Retrieved from: https://arxiv.org/

pdf/1801.10228.pdf. [Accessed 19 March 2019]

Nakamoto S (2019) Bitcoin: a peer-to-peer electronic cash system. Retrieved from:

www.bitcoin.org. [Accessed 19 March 2019]

Ongaro D, Ousterhout J (2014) In search of an understandable consensus algorithm. In

Proceedings ATC‟14 USENIX Annual Technical Conference USENIX, 305–319.

Salman T, Zolanvari M, Erbad A, Jain R, Samaka M (2018) Security services using

blockchains: a state of the art survey. IEEE Communications Surveys & Tutorials

21(1): 858–880.

Soni J, Goodman R (2017) A mind at play, how Claude Shannon invented the information

age. New York: Simon & Schuster.

https://arxiv.org/pdf/%201703.04057.pdf
https://arxiv.org/pdf/%201703.04057.pdf
https://arxiv.org/%20pdf/1801.10228.pdf
https://arxiv.org/%20pdf/1801.10228.pdf
http://www.bitcoin.org/

Vol. 9, No. 1 Medellin: Generation, Regeneration and Validation of Binary Secret…

44

Spivey J (1988) Understanding Z, A Specification Language and its Formal Semantics.

Cambridge, UK: Cambridge University Press.

Stallings W (2018) Cryptography and network security, principles and practice. 7th

Edition. London, United Kingdom: Pearson Education Limited.

Xu X, Weber I, Staples M, Zhu L, Bosch J, Bass L, et al. (2017) A taxonomy of

blockchain-based systems for architecture design. In 2017 IEEE International

Conference on Software Architecture, 243–252.

Athens Journal of Sciences March 2022

45

Appendix

A1. Formal Requirements Definition

This section outlines the basic formal requirements for implementation of the

blockchain model. The schemas and operations are enumerated and then the key

ones are formally described in Z.

A1.1 Schemas and Operations

The specification is based on schemas (collections of data primitives) and

change operations (dynamic effects) on those schemas. The schemas and

operations for the blockchain and member segments of the system are as follows, a

checkmark appears next to each if they will be used in the evaluation:

 Schema: Blockchain √ & Operation: AddBlockchain √

 Schema: Message1 & Operation: Message1CreateSend

 Operation: Message1Validate √

 Schema: Message2 & Operation: Message2CreateSend √

 Schema: Message3 & Operation: Message3CreateSend

 Schema: Message4 & Operation: ACK4CreateSend √

A1.2 Sample Schemas and Operations in Detail

The following Z language sample definitions are from the complete

specification (it is voluminous and will be published in the future). The Z language

guarantees the correctness of the specification by mathematical proofs and only

those artifacts are translated into actual code (Spivey 1988).

Figure 10. Schemas and Operations in Z

Vol. 9, No. 1 Medellin: Generation, Regeneration and Validation of Binary Secret…

46

A2. Simulation and Results

A structured simulation was constructed in the c language using the gcc

compiler in Linux using the -o option. The simulation was run for 20 quarters

using the method described. Three key lengths were used (512 & 4096 bit binary

and SHA 384+, assumed at 512 byte), the results are in Table 6.

Table 6. Simulation Results; Key Negotiation for a Single Member

The results in Table 6 are for a single member. This simulation is for a very

low requirement in a particular IoT network (for example low risk refrigerated

warehouse with zones that vary minimally or for a set of refrigerators in long term

storage that do not require daily operation).

 KEY NEGOTIATION AND CPU CYCLE RESULTS FOR 20 QUARTERS

--

Quarter 1 Keys Negotiated = 220 512bit= 25740 4096bit= 198220 sha= 338580

Quarter 2 Keys Negotiated = 170 512bit= 19890 4096bit= 153170 sha= 261630

Quarter 3 Keys Negotiated = 198 512bit= 23166 4096bit= 178398 sha= 304722

Quarter 4 Keys Negotiated = 187 512bit= 21879 4096bit= 168487 sha= 287793

--

Year 1 Keys Negotiated 775 512bit= 90675 4096bit= 698275 sha= 1192725

--

Quarter 5 Keys Negotiated = 119 512bit= 13923 4096bit= 107219 sha= 183141

Quarter 6 Keys Negotiated = 169 512bit= 19773 4096bit= 152269 sha= 260091

Quarter 7 Keys Negotiated = 129 512bit= 15093 4096bit= 116229 sha= 198531

Quarter 8 Keys Negotiated = 231 512bit= 27027 4096bit= 208131 sha= 355509

--

Year 2 Keys Negotiated 648 512bit= 75816 4096bit= 583848 sha= 997272

--

Quarter 9 Keys Negotiated = 204 512bit= 23868 4096bit= 183804 sha= 313956

Quarter 10 Keys Negotiated = 158 512bit= 18486 4096bit= 142358 sha= 243162

Quarter 11 Keys Negotiated = 169 512bit= 19773 4096bit= 152269 sha= 260091

Quarter 12 Keys Negotiated = 146 512bit= 17082 4096bit= 131546 sha= 224694

--

Year 3 Keys Negotiated 677 512bit= 79209 4096bit= 609977 sha= 1041903

--

Quarter 13 Keys Negotiated = 117 512bit= 13689 4096bit= 105417 sha= 180063

Quarter 14 Keys Negotiated = 143 512bit= 16731 4096bit= 128843 sha= 220077

Quarter 15 Keys Negotiated = 120 512bit= 14040 4096bit= 108120 sha= 184680

Quarter 16 Keys Negotiated = 172 512bit= 20124 4096bit= 154972 sha= 264708

--

Year 4 Keys Negotiated 552 512bit= 64584 4096bit= 497352 sha= 849528

--

Quarter 17 Keys Negotiated = 192 512bit= 22464 4096bit= 172992 sha= 295488

Quarter 18 Keys Negotiated = 222 512bit= 25974 4096bit= 200022 sha= 341658

Quarter 19 Keys Negotiated = 169 512bit= 19773 4096bit= 152269 sha= 260091

Quarter 20 Keys Negotiated = 153 512bit= 17901 4096bit= 137853 sha= 235467

--

Year 5 Keys Negotiated 736 512bit= 86112 4096bit= 663136 sha= 1132704

--

Year 5 Cum. Keys Negotiated 3388 512bit= 396396 4096bit= 3052588 sha= 5214132

===

