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This article operationalizes a mathematical root of trust that can be scaled into 

protection for Internet of Things (IoT) devices. The initial discussion focuses on 

gated arrays and the generation of 4-way binary keys. Randomization is used in 

generation of input and sequence keys giving a unique secret key. The 

probability of successful attack depends on the number of devices and ordinary 

implementations are well into one in a billion or more. The paper uses the 

“epoch” concept; a time-dimensioned interval where more blocks are added to 

the blockchain. The epochs are selected at random and voting, duration, 

frequency and key roles are also randomized increasing resiliency. The model 

does not require constant update of IoT storage; only until such time as 

communication with others is initiated or a request is received. The substantial 

savings in processing requirements are significant in IoT. A detailed discussion 

of the management of the blockchain is provided as well as the necessary blocks 

enabling the approach. The paper includes a sample dialogue using standard 

TCP/IP communication structures with security protocols and closing remarks 

aim at extrapolation to cloud and quantum computing. 
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Introduction 
 

Logic operations, blockchain and key validation/encryption are common terms 

used in a variety of technologies implemented for protection of computers. This 

paper proposes a model for interaction of these concepts into an approach that is 

operationally efficient for devices in the Internet of Things (IoT). These 

technologies are well known but the ability to have them interact at the right time 

for protection in this way is novel. The approach specifically lends itself to use in 

processors that must conserve energy (Huang and Cheng 2002). 

This paper is organized into related work, logic gates, blockchain and key 

exchanges to set preparatory material. Next, the discussion focuses on explaining 

the randomized election process and key generation, the blockchain components 

and the interaction of devices along the TCP/IP layers using this model. A 

simulation-experiment gives an example of the order of magnitude in this 

approach versus traditional computation-intensive ones. Finally, a brief discussion 

of extensibility into cloud and quantum computing is provided.  
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Related Work 

 

Previous work is in three categories; logic gates, blockchain patterns and secret 

keys.  

 

Logic Operations (Logic Gates) 
 

Logic operations are symbols that operate on two binary input numbers (1 or 

0) and yield a third binary outcome. In Figure 1, three operations; OR, NAND and 

NOT are illustrated in the top part, common symbols for representing them are 

shown and are used in design for circuits and chips. The matrix below shows the 

corresponding “truth table” for each “gate” operation above. The format of the 

truth table shows what happens to the output (Z) when two inputs are entered. 

There are 4 possible combinations in the two input numbers 1 and 0 with a set of 4 

outcomes for the OR and the NAND gates in the example. The NOT X gate only 

contains 1 input which can have 2 possible values of Z.  

 

Figure 1. Sample Gate Symbols & Truth Tables 

 
 

There are 6 operations and outcomes from 2-way binary gates (Ferguson et al. 

2010). The truth tables for those gates can be found in Figure 2 (the model that is 

presented in section “Model Heuristics and Base Operations” requires the usage of 

2 way gates, the 1 way gate has been omitted).  
 

Figure 2. Inputs, Outputs & Gated Outcomes for Different Scenarios 

 
 

A key reason for usage of logic gates is their energy/voltage requirements. 

Binary result computations based on logic gates will use comparatively low CPU 

cycles (therefore less energy) versus the requirements of decimal or other base 

OR NAND NOT

X Y Z

1 1 1

1 0 1

0 1 1

0 0 0

X Y Z

1 1 0

1 0 1

0 1 1

0 0 1

X Z

1 0

0 1

         Inputs Logic Gate Outputs (Z)

Scenario X Y OR NOR AND NAND XOR XNOR

1 1 1 1 0 1 0 0 1

2 1 0 1 0 0 1 1 0

3 0 1 1 0 0 1 1 0

4 0 0 0 1 0 1 0 1
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numbering systems. In the case of the division operation, computation of the result 

can take up to 1 cycle per bit
1
 (some typical algorithms like the SHA 384 or higher 

will contain a payload of 512 hexadecimal values or 512*16=8192 CPU cycles to 

compute the result). Most algorithms that require key validation today rely on 

usage of extensive division, multiplication and other operations (Ferguson et al. 

2010). By this very virtue, they are more computationally intensive and therefore 

require more energy to derive. This document assumes and experiments with logic 

gates to achieve significant resource conservation. Conservation of computational 

resources is vital to smaller processors (Monk 2017).  

 

Blockchain Design Patterns 

 

Blockchain is a variation of shared data intelligence made famous by 

Nakamoto (2019); although the author is unknown, it has had a significant impact 

on creating the concept of shared value exchanges that do not necessarily need to 

occur through a third-party intermediary. The most famous of these exchange 

operations is bitcoin. There are literally hundreds of medium exchanges where 

willing buyers and sellers can contribute value in order to transact between 

themselves without an intermediary.  

This article is not about the usage of such “shared intelligence” to create an 

exchange for value, rather the usage of the blockchain pattern as a medium for 

disseminating factual information related to secret keys between participants. 

Recent academic developments have begun to explore the secrecy and 

computational advantages of blockchain to communicate in a trust-worthy fashion 

between members of particular communities (Dinh et al. 2017, Dorri et al. 2017a). 

Some recent examples of alternate use of blockchain include distribution of sign-

on credentials or authentication of agents (Li et al. 2019, Dorri et al. 2017b). These 

studies rely on exchanging a secret known to the sender and receiver and can be 

validated by trusted parties who are members of the blockchain (Salman et al. 

2018). 

In precursor articles, the author has written about blockchain in the context of 

usage of this design pattern mostly on the consensus architecture requirements and 

implementation (Medellin and Thornton 2018). In those studies, comparisons were 

made to the Byzantine General’s Problem; a common shared context problem 

used to teach the concepts of consensus between participants. This particular 

technique is complex and very computational but serves as the yardstick to 

measure efficiency. The focus of this document will branch into measurement of 

binary operations versus those referenced in higher number system operations to 

arrive at consensus. 

Although there is no authoritative set of components for the blockchain 

design pattern, there are some typical components. The typical components of the 

block chain are: the block architecture, a smart contract (which is optional), a 

consensus model (the ability to validate previous blocks), a set of participants – 

typically elastic as to volume and a method for encryption using a unique number 

(the “nonce”) which is used once in that encryption (Liang and Wu 2017, 
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Christidis and Devetsikiotis 2020, Ongaro and J. Ousterhout 2014, Muralidharan 

et al. 2018, Ferguson et al. 2010). A partial graphical representation of a typical 

blockchain set of blocks and attributes is diagrammed and presented in Figure 3.  

 

Figure 3. Partial Blockchain Sequence and Block 

 
 

Secret Keys (Trust and Encryption) 
 

Human beings have used the concept of secrets for perhaps millennia. Secrets 

have been used to preserve and communicate critical information in key situations 

(Soni and Goodman 2017). These concepts have evolved through the ages and are 

inherited by computer systems today.  

Modern systems create trust between each other by using mathematical 

formulae that have finite answers. Two computer systems will exchange a 

particular sequence of numbers and apply a secret formula to determine the 

veracity of the sequence being received (Johnsonbaugh 2018). If the item checks 

out then communication can proceed. There are multiple formulae that can be used 

but the most popular rely on the modulo operations. In modulo operations, a 

number is divided by another number and the remainder whole-number 

component is the result. For example, 9 modulo 6 is 3 (9 divided by 6 is 1 with a 

remainder of 3).  

Diffie and Hellman are credited with a widely-used algorithm to validate 

identity by usage of remainder modulo operations. In this algorithm, actors in send 

messages to each other encoded with their private keys and arrive at the same 

number (Kozierok 2017). This is then used to perform encryption on data. The 

basic DH key exchange is shown below in Figure 4. 
 

  

AETiC 2019, Vol. 3, No. 4 19 

the record of a transaction, i t is also possible to store a method in a BC. Because items stored in a 

properly implemented and functioning BC are immutable, w hen these items are in the form of an 

agreed set of actions between two parties, they essential ly obey the legal definition of a “ contract.”  

That is, if two nodes agree upon a set of actions and that set of actions is validated by the BC 

community to be those that were originally agreed upon, and furthermore, a record of these actions 

are stored in the immutable BC data structure that also guards against nonrepudiation, then a 

contract has been executed among the two parties that originally proposed and agreed upon the set 

of actions. This type of object, when used in a BC, is referred to as a “ smart contract.”  A  smart contract 

is a reference to a set of procedures that the block w ill provide, and in some cases w ill  cause to be 

executed, when the conditions of the contract are met [14]. The scope and specifications of a smart 

contract are a design consideration. 

 

Figure 1. Diagram of Blockchain Architecture w ith Partial Detail 

Smart contracts can be implemented as a block that defines a set of procedures in the actual data 

payload or a conditional reference to another part of the BC that contains other types of data. The 

smart contract, w hen invoked by a special block type, w ill produce a result that operates on the input 

data of that another block. A  smart contract may contain the algorithm for processing the additional 

data or may reference a specific location for those instructions [15]. 

A  BC requires several different types of algorithms to function properly. Some of these include 

hash functions both for the construction of the structures as well as possibly serving as sources for a 

mining puzzle. A lgorithms are needed to maintain the ADTs, to maintain valid replications of the 

ledger, to update invalid copies of the ledger, to support the consensus model, to ensure the privacy 

of sensitive data, and a host of other support functions. In most BC implementations, it is desirable 

to encrypt portions of or the entire ledger, thus cryptographic methods and support functions such 

as nonce generators are important design considerations [16]. 

While there are other considerations, the final one that we w ish to describe here is the consensus 

model.  Broadly, consensus is the process w hereby the participants agree in adding the new block 

to the chain [17]. An important aspect of the BC pattern is the avoidance of a centralized authority 

that may become corrupted either through a fault or via some malicious intent. For this reason, it is 

important that the model be computationally distributed rather than a naïve approach such as a 

centralized voting accumulator as such a centralized consensus model w ould negate the benefits 

sought through the deployment of a distributed ledger. The consensus model provides the method 

whereby sufficient proof of validity of a transaction is provided by a given set of node in order to 

append the block and commit i t to permanent storage in the chain. Two of the most common 

consensus methods at this writing are based on Proof-of-Work (PoW) [18] and Byzantine Fault 

Tolerance A lgorithms (BFTA) [19]. 

The consideration of the design of the consensus model must necessarily involve aspects of the 

application. For example, if the BC community consists of nodes that run on computationally 

l ightweight CPUs, the consensus model must not require excessive CPU cycles to complete.  

A lternatively, if performance is the prime factor, then the consensus model should be one that rapidly 

 www.aetic.theiaer.org 
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Figure 4. DH Rules and Example 

Source: adapted from Stallings (2018). 

 

This article will use a similar approach to conveying trust to other members 

except that the algorithm to decode the primary message will be regenerated in 

different binary operations that will be stored along the blockchain’s historical 

blocks. 

 

TCP/IP Concepts  

 

A key assumption of the model in section “Model Heuristics and Base 

Operations” relies on the usage of TCP/IP as described in Kozierok (2017). The 

operation of that set of protocols assumes the disaggregation of a message, 

transmission through physical media and aggregation in the destination. In 

summary, messages are prepended with routing and lower level information as the 

data travels down the stack. They are finally transmitted through the physical layer 

and are de-constructed by each of the layers until they arrive at the application. We 

are particularly concerned in the handshake that will take place at the with the PPP 

(point to point) sub-protocol of the ICMP protocol shown in Figure 5.  
 

  

Alice Bob

Alice & Bob share a

Prime number q &

an integer α, such

that α < q & α is a

primitive root of q

Alice & Bob share a

Prime number q &

an integer α, such

that α < q & α is a

primitive root of q

Alice generates a private

key XA such that XA < q

Bob generates a private

key XB such that XB < q

Alice calculates a public

key YA= α^XA mod q

Bob calculates a public

key YB= α^XB mod q

Alice receives Bob’s YB Bob receives Alice’s YA

Alice calculates shared

secret key 

K=YB^YA mod q

Bob calculates shared

secret key

K=YA^YB mod q

Alice Bob
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40^248 
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Figure 5. The TCP IP Layers and Protocols 

 
Source: compnetworkgingsec.com. 

 

The PPP dialogue is established at the start of a session and it allows for the 

usage of CHAP a more modern version of authentication that can be used on the 

internet layer segment of the protocol. When the two machines are establishing a 

joint session, the following dialogue occurs: 
 

1. Machine A sends PPP frames to the target address on the network. 

2. The receiving Machine B can respond in one of three ways: 
 

Configure-ACK: parameters accepted, acknowledge and continue. 

Configure-NAK: parameters rejected (and which ones). 

Configure-Reject: ignore. 

Challenge (if challenge met, then ACK). 

 

Section “Model Heuristics and Base Operations” contains a specific example 

of how the protocol tool set is deployed within the model. 

 

 

Model Heuristics and Base Operations 

 

In this section, the base matrix, the blockchain components and the base 

operations are discussed. 
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The Base Matrix 
 

The first thing proposed in this model is a base matrix that has five columns 

and contains 4096 rows (more or less data points can be used). Each line contains 

the following column components: 
 

 The sequence number (“N”). 

 The private key used in that sequence number (“P”). 

 The secret key in that sequence number (“Q”). 

 The gate used in that sequence number (“G”). 

 The public key in that sequence number (“X”). 

 

The base matrix structure is shown in Table 1. The actual matrix values have 

only binary numbers (0 or 1). The sequence is assumed by location. 

 

Table 1. Sample Matrix Structure 

 
 

The first line above has the components of P:F(0), Q:T(1), G:00(XOR), 

X:T(1), N:0. Those values correspond to using the XOR gate on inputs 0,1 and 

obtaining the number 1. This matrix is never fully implemented in any block on 

the blockchain rather it is computed by the members each time the members 

validate each other before beginning exchange of messages.  

 

Blockchain Components 
 

The blockchain components are included in this section. 
 

Blockchain Block 

The blockchain block is described in Table 2 and discussed immediately 

following it. 
 

Table 2. The Model‟s Blockchain Block 
Component Contents 

Epoch ID Sequential number for the epoch 

Manager secret key and 

epoch 
4096 bit key + original epoch of admission 

Public key 4096 bit key generated by manager for the epoch 

Gate sequence 4096 x 2 bit key corresponding to the gate being used 

Admitted Secret Keys Sequences of 4096 bits for new members 

Deprecated epoch/keys Deprecated sequences of previous members 

Current hash 
Previous hash XOR public key XOR gate sequence XOR manager 

epoch XOR manager secret key XOR current epoch XOR nonce 

P Q G X N

F (0) T (1) 00(XOR) T (1) 0

. . . . .

T (1) F (0) 01(XNOR) T (0) 4095
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In Table 2, the epoch id corresponds to the time period of operation (this can 

be a sequential number or can include the sequential time number and the time 

clock where the epoch began or variation thereof). The manager key and epoch are 

the secret key assigned to the manager upon admission and the epoch in which that 

operation was performed. The public key is the bit sequence of 4096 digits assigned 

by the manager corresponding to the epoch. The gate sequence is the sequence of 

4096 gates corresponding to 2 bits for designating one of 6 binary gates for the 

epoch being communicated and is optional (if not noted, then the previous epoch’s 

is assumed carried forward). The admitted secret keys are the new members’ 

secret keys for the epoch and must be unique for the epoch, while the next line 

(deprecated key) corresponds to original epoch and secret key of the members that 

are being removed. The current hash is a secret number that is known to members 

to conclude the epoch. All of the above are generated by the manager. 

 

Blockchain Operations 

The blockchain operations that are required for this algorithm consist of the 

consensus method enabled through the manager, the epoch, the election, 

administrative tasks and conclusion of the epoch. This algorithm relies on epochs 

and randomization of their duration as explained in Medellin and Thornton (2017). 

The current manager at random selects a manager for the next epoch, directs when 

that epoch will begin and produces the next key components of the blockchain. 

The following paragraphs explain the concepts in greater detail. 

The consensus method is mathematical and is enabled by the random election 

of a member to perform the duties necessary in the next epoch. A recommended 

approach is to elect at a minimum one manager and one alternate (which will 

“wake up” sometime after the manager had to have operated and will assume the 

duties if one has not done so). Additional alternate managers can be designated in 

order to increase robustness. 

The manager is notified by the previous epoch manager as part of the 

conclusion of their duties. This previous manager has executed a randomized 

election by generation of random numbers, partitioning of previous admittances in 

to a continuous space, assignment of numbers and then assignment to one manager 

and n-number of alternate managers with instructions to wake up at a random-

generated time in the future to execute the next epoch. As mentioned above, the 

election of a new manager is supervised by the existing manager and is done by 

announcing the election (for example through individual point to point to all IPv6 

addresses or member IDs admitted but not deprecated in the chain). This 

communication dialogue requests their participation, not all machines need to 

participate, however those that can must; selection will be from the acknowledging 

members. 

The echo of the machines will be to provide the difference between their 

secret key total and a random number generated times 4095. The closest (meaning 

the one with the least numeric difference to that number generated by the 

manager) and next closest will be assigned as the manager and alternate for the 

next epoch (if only one alternate is to be used). Only they will be notified of their 

role and a set of gates will be configured in their IoT arrays to correspond to the 
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logic needed to become a manager as the conclusion of the existing epoch is being 

executed (for execution of duties in the next epoch). Notification of new 

parameters will happen in broadcast for those that are in that communication 

mode, otherwise adjacent machines will be used in the IP protocol to bring 

themselves current (Kozierok 2017). 

As mentioned above, the manager is responsible for execution of the 

administrative tasks of generating a new Public key and generation of new gate 

sequences. Typically, both of these will not be done in a single epoch, only 

occasionally will the gate sequence be targeted for regeneration. Based on that 

data, the members will re-generate their internal secret key in the base matrix to 

reflect the current epoch. The model relies heavily on the ability to traverse 

through the blockchain in order to ensure proper results, this is shown in Figure 6. 

 

Figure 6. Blockchain Traversal Example 

 
 

Admission and deprecation of participants will follow a similar process to 

what other blockchain algorithms indicate. This will depend on the actual 

blockchain software to be used (the “fabric”) (Xu et al. 2017). But those duties will 

also be administered by the manager. After these tasks, the manager will become 

dormant and the epoch will continue until a new one is declared by new managers 

or alternates. 

 

Implementation in TCP/IP PPP and TCP/IP CHAP 

The preferred method of implementation is by usage of the PPP and CHAP 

Protocols. PPP initiation begins with first message frames sent containing the user 

name and password. Once that has been initially validated, the responding machine 

would send back a challenge using CHAP (challenge/acknowledge). If that 

challenge was correct then an acknowledgement would occur and the two machines 

would use private keys to encrypt messages. 

 

Initial Dialogue Between Members 

If two members have not previously communicated or have done so in an 

outdated time frame they must establish trust. The objective of the initial dialogue 

between two members will be to validate the two parties and establish trusted 

communication between them. This process is modeled in TCP/IP because it is 

(1) (2)

(3)

(1) Structure of Block

(2) Backward traversal 

through blockchain

(3)   Forward walk 

through blockchain

Epoch ID

Mgr. Secret 
Key & Epoch

Public Key

Gate Seq.

Admitted 
Secret Keys

Deprecated
Epoch/Secret K

Current Hash
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probably the most utilized of communication protocols in modern computing and 

because of its inherent robustness in modeling dialogues on the internet (Kozierok 

2017). This example dialogue is provided for illustrative purposes, many other 

approaches are valid as well. The steps are as follows (it assumes no regeneration 

of the gate sequence, see Figure 7 also): 

 

1. Participant A consults their blockchain store for the current hash. 

Participant A sends their original epoch of admittance hash XOR 

encrypted with the current hash (as a user name) and their original 

admission secret key XOR encrypted with that epoch’s hash (as a 

password) in message #1 through TCP/IP PPP. 

2. Participant B XOR decrypts message #1 with the current hash (for a prior 

epoch hash) and looks for A’s admission secret key in that epoch and any 

possible deprecation since. If it has been deprecated the process stops. B 

prepends their epoch of admission key to their admission secret key and 

XOR encrypts with the current hash prepended with the current epoch and 

sends that as a challenge to A.  

3. Participant A receives message #2 and XOR decrypts the value of B’s 

admission epoch and secret key. It then uses that computed secret key as 

the encryption key. A next XOR encrypts the computed encryption with 

the current gate sequence and sends to Participant B as reply to the 

challenge in message #3. 

4. Participant B receives message #3 and XOR decrypts with the current 

gate sequence. If it matches the encryption key sent then an acknowledge 

is sent and handshaking is over.  

 

Figure 7. Handshaking Dialogue 

 
Guide: Op=Operation, Send=Transmit, Rec=Receive. 

Participant A Participant B

(1) Consult Blockchain

Op: get current hash

Op: encrypt original epoch and secret 

key with current hash and epoch hash

Send message #1 to B------à(2) Rec: original epoch hash / epoch and secret 

key encrypted with hash

Op: consult B/C for hash

Op: decrypt message with hash & get prior epoch

Op: get prior hash of epoch, decrypt secret key

Op: verify blockchain: no deprecation

Op: If ok, encrypt B’s epoch of admit + that secret

key with epoch and hash

(3)ß------------------------------Send message #2

Rec: B’s admit epoch & secret key 

Op: XOR decrypt B’s with hash & epoch

Op: Compute implied B’s secret key for encryption

Op: XOR B’s implied secret key with gate sequence 

Send message #3------------à(4) Rec message #3

Op: XOR decrypt B’s w gate sequence & verifies

computation

ß---------------------------------Send: ACK (message #4)
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Regeneration of Keys 

A critical aspect of the model is the ability to regenerate the secret key for 

each member through instruction to do so from an existing manager. The secret 

key for members may be regenerated by taking their private key, the gate 

sequences and the public key. In addition to regeneration of the secret key through 

public keys, regeneration of the secret key could be done through usage of new 

gate sequences instead of the public key (input would be the private key, the 

public key and a new gate sequence for a new secret key).  

Another area of expanded regeneration in this model is the ability to stack the 

gated algorithm and instead of using one set of gates one would use multiple sets 

of gate sequences in parallel to add further complexity protection. These areas 

have not been researched at the moment and are expected to be further detailed at 

a future point in additional research. 

 

 

Attack Resiliency 
 

A protection scheme’s ability to resist intrusion depends on how robust the 

scheme is and how potentially dangerous such exploits are to the correct 

functioning of the protected asset (Knapp and Langill 2015). A powerful aspect of 

the model documented in this article is the ability to increase or decrease the 

mathematical frequency and payload of the keys used to validate identity. In some 

cases, the requirement may be for a very high level of protection and in some it 

will not require as much. This translates into more computational abilities required 

to fulfill them and therefore more resources (Arnberg et al. Patent Application).  

In the two subsections below these implications are discussed by using the 

base matrix of 4096 rows and 4 columns described above and testing against the 

probability of a brute-force attack (one in which all possible payloads are used). In 

the second subsection, additional variations are discussed to further complicate the 

attack surface. 

 

Attacks on the Previously-Described Base Matrix 
 

Previous segments have described a 4 by 4096 binary base matrix. In order 

for the attacker to begin an attack, they must have a valid secret key of admission, 

that epoch’s hash, the prior epoch hash and the current epoch’s hash. All of these 

are binary arrays of 4096 rows and the attacker would have to guess these 

correctly (see Table 3 for attack success probabilities). 
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Table 3. Brute Force Attack Success Probabilities 

 
 

Table 3 depicts the number of machines (#) and the combined probabilities of 

success in initiating a brute force attack in a static protection scheme if the model 

was never regenerated through a new gate sequence or new primary keys. In this 

case, the protection level might be adequate for somewhere around 1,500 to 1,900 

IoT machines; the raw probability numbers for the 1,536 members is in one in 242 

sextillions which would be an extremely high level of protection in most cases. In 

addition, however, a key aspect of this paper’s contribution is the ability to vary 

and regenerate parameters based on epochs which will add further complexity and 

protection versus attacks; that will be discussed next. 

 

The Dynamic Nature of the Model 

 

Upon admission of a new member into the network, the manager will generate 

a private key consisting of a binary value list (for example, 4096 as per the 

description above) and will compute the value of the member’s secret key by 

taking the generated private key with the epoch’s public key as inputs and using 

the existing gate sequence. The private key and the blockchain payload thus far 

will be communicated to the newly admitted member. The secret key will be 

published in the epoch’s blocks.  

One of the duties of a manager is to publish a new public key in each epoch (a 

new set of gates can also be published). Each member has the responsibility of 

regenerating their current secret key by using their private key and the new public 

key as inputs to the gate sequence. This current secret key is crucial in the hand-

shaking algorithm. As discussed above, the frequency of epochs is a random 

variable selected by the current manager; the manager at random (within tolerances 

of the number of members and the volume/speed of the network) will announce 

when the next epoch will begin to the next manager/alternate(s). 

The regeneration of the secret keys during every epoch by every member 

creates another layer of computational complexity for an attacker. Similar to the 

added complexity afforded by the SHA algorithms this incremental iterative 

requirement is significant since not only must the attacker know the current 

parameters but be able to traverse the blockchain in order to continue the dialogue 

with the intended machine (Stallings 2018). Even if the brute force attack is 

successful in generating sequence of relevant keys the attacker must have 

knowledge of the blockchain in order to respond to the challenge. The traversal of 

# P(x) Secret Key P(x) Hash Key P(x) Epoch Hash P(x) Epoch P(x) Combined     

1 1 / (2^ 4096 ) 1 / (2^ 4096 ) 1 / (2^ 4096 ) 1 / (2^ 4096 ) 1 / Extremely high #

2 1 / (2^ 2048 ) 1 / (2^ 2048 ) 1 / (2^ 2048 ) 1 / (2^ 2048 ) 1 / Extremely high #

.		.		.		. .		.		.		. .		.		.		. .		.		.		. .		.		.		. .		.		.		.

128 1 / (2^ 32 ) 1 / (2^ 32 ) 1 / (2^ 32 ) 1 / (2^ 32 ) 1 / (2^ 1,048,576 )

256 1 / (2^ 16 ) 1 / (2^ 16 ) 1 / (2^ 16 ) 1 / (2^ 16 ) 1 / (2^ 65,536 )

512 1 / (2^ 8 ) 1 / (2^ 8 ) 1 / (2^ 8 ) 1 / (2^ 8 ) 1 / (2^ 4,096 )

1024 1 / (2^ 4 ) 1 / (2^ 4 ) 1 / (2^ 4 ) 1 / (2^ 4 ) 1 / (2^ 256 )

1536 1 / (2^ 3 ) 1 / (2^ 3 ) 1 / (2^ 3 ) 1 / (2^ 3 ) 1 / (2^ 81 )

2048 1 / (2^ 2 ) 1 / (2^ 2 ) 1 / (2^ 2 ) 1 / (2^ 2 ) 1 / (2^ 16 )
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blocks is very necessary in order to be able to respond, an incorrect response is 

ignored and the machine under attack simply does not continue.  

As more epochs occur and more blocks are added to the blockchain the added 

complexity for lack of knowledge will be overwhelming on the attacker. The 

attacker will need to have intimate knowledge of prior epochs going back to the 

attacked machine’s admission in order to respond (including if there are 

deprecations of that machine or if gate sequences have been regenerated). The 

distance of these transformations will increase in similar fashion as that described 

in the SHA protocol transformations (at one point will exceed the number of 

transformations in SHA by the additional epochs beyond the transformations in 

the particular SHA version being used) (Stallings 2018). A diagram of this 

distancing process can be seen in Figure 8, if gate change or deprecation events are 

introduced they will require either evaluation or regeneration of private keys 

further adding complexity for the attacker 

 

Figure 8. Increased Complexity Through More Blockchain Blocks 

 
 
 

Resource Consumption Evaluation 

 

This section presents a simulation experiment on the model.  

 

Formal Requirements 
 

The formal requirements are included in the appendix and heavily rely on the 

Z language (pronounced z-ēd) and is included in the appendix.  

 

Experimental Model Construction 
 

The experimental model focuses on simulating a very simple Modbus/TCP 

IoT Operational Technology (OT) network as described in Bartelt (2011) and 

includes the following messages: 
 

(1)

(2)

(1) Attacker succeeds in obtaining a   

valid combination that is stored in a 

prior epoch (a machine’s prior admit).

(2) Attacked machine traverses blocks

and computes transformations through

knowledge of the blockchain.

(3) Attacked responds with challenge

derived from the transformations found.

AS THE BLOCKCHAIN GROWS, 
THE ABILITY OF A SUCCESSFUL 

ATTACK IS GREATLY DIMINISHED

(3)
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 Device status (90 messages). 

 Correction sequence (13 messages). 

 Correction feedback acknowledge (13 messages). 

 Additional 116 messages distributed at random (twice the amount of the 

previous 3) over the 90-day period. 

 

The simulation is executed in quarter year intervals for a 5-year period, and 

calculates the cpu cycles required for different size key exchanges. One is for a 

512-bit sequence (a smaller subset of the 4096 previously described), another is 

for the 4096-bit sequence and a third is for 512 bytes. The third is introduced to 

compare to SHA 384 or higher order SHA protocols. 

The simulation for the model described in this document assumes the load of 

16 epochs with evenly distributed machines until 96, 192 and 384 machines are 

admitted into the blockchain eco-system for the bit-based keys. The 512- decimal 

simulation admits 96, 192 and 384 in one load operation for each instantiation. 

Keys are regenerated every quarter year, 2% of the machines are admitted and 

deprecated every period and there are up to 116*2=232 key exchanges per machine 

per period. D-RAFT elections are not included in the simulation since they only 

impact one machine (except for the acknowledgement from the participant 

machines). 

 

Estimation of Non-Volatile Storage Requirements 

The usage of blockchain requires the provision of non-volatile storage where 

the blocks will reside. A critical assumption of the blockchain model is the ability 

to replicate the data in all the devices that are participants in the network. This 

characteristic requires estimation of the storage requirements for each (a function 

of the number of devices, the structure of the blockchain blocks and the number/ 

types of blocks that will be added to the blockchain as operations occur). The 

model requires that admission keys be stored, new public keys and gate sequences, 

deprecation of keys and finally the items which are required for management (the 

manager key/admission epoch, the epoch ID and the current hash). Table 4 

identifies the storage requirements for the 96, 192 and 384-member machine 

networks. It estimates the initial load and then estimates the addition/ deprecation 

of 2 devices a quarter for every 96 devices. The summary lines at the bottom 

identify the non-volatile storage requirements for the blockchain at the quarter, 

year and 5 year marks only for the bit-based keys (the totals are rounded up to 

ensure the blocks will be written). 
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Table 4. Base Load & Operating Store Non-volatile Storage Requirements per 

Device 

 
 

Estimating CPU-Cycle Requirements 

The estimated CPU-cycle requirements for three different scenarios (512 

binary array, 4096 binary array and SHA 384+) are given in Table 5 (a description 

of the assumptions follows). 

 

Table 5. Estimated CPU-Cycle Loads Under Various Keys 

 

Base Load Store Component Blockchain Base Load 

Item Assumption 512 bit 4096 bit 512 bit 4096 bit 512 bit 4096 bit 512 bit 4096 bit

# Devices >>> 16 Epochs 96 96 192 192 384 384

Epoch key length 512 4096 8,192 65,536 8,192 65,536 8,192 65,536

Mgr. Key+Epoch 32 + key bits 544 4128 8,704 66,048 8,704 66,048 8,704 66,048

Primary Key key length 512 4096 8,192 65,536 8,192 65,536 8,192 65,536

Gate Sequence key length 512 4096 0 0 0 0 0 0

Admit Secret Key key length 512 4096 49,152 393,216 98,304 786,432 196,608 1,572,864

Deprecated Key 32 + key bits 544 4128 0 0 0 0 0 0

Current Hash key length 512 4096 8,192 65,536 8,192 65,536 8,192 65,536

Total bits 82,432 655,872 131,584 1,049,088 229,888 1,835,520

Total bytes 10,304 81,984 16,448 131,136 28,736 229,440

Expressed in KB 10.3 82 16.5 131.2 28.7 229.4

Operating Store Component 512 bit 4096 bit Regeneration,	Admission	&	Deprecation	@	2	mach./qtr.

Time Period >>> Quarter Quarter Year Year 5 Year 5 Year

Epoch 32 bits 32 32 32 32 128 128 640 640

Mgr. Key+Epoch 32 + key bits 544 4128 544 4,128 2,176 16,512 10,880 82,560

Primary Key key length 512 4096 512 4,096 2,048 16,384 10,240 81,920

Gate Sequence key length 512 4096 0 0 0 0 0 0

Admit Secret Keys key length 512 4096 1,024 8,192 4,096 32,768 20,480 163,840

Deprecated Keys 32 + key bits 544 4128 1,088 8,256 4,352 33,024 21,760 165,120

Current Hash key length 512 4096 512 4,096 2,048 16,384 10,240 81,920

Total bits 3,712 28,800 14,848 115,200 74,240 576,000

Total bytes 464 3,600 1,856 14,400 9,280 72,000

Expressed in KB 0.5 3.6 1.9 14.4 9.3 72

Storage per machine for # machines on network Q/512 Q/4096 Y/512 Y/4096 5Y/512 5Y/4096

96 Devices (KB) 10.8 85.6 12.2 96.4 19.6 154.0

192 Devices (KB) 19.1 151.2 26.8 211.4 68.0 532.2

384 Devices (KB) 35.5 282.3 55.9 441.2 164.7 1288.3

512 bits 4096 bits SHA 384+ 

Message #1

Receive 1 1 1

Decode 32 256 0

Fetch Block 2 2 0

Validate/Derive 16 128 512

Format Challenge 16 128 512

Message #3

Receive 1 1 1

Decode 32 256 0

Validate/Derive 16 128 512

Acknowledge 1 1 1

Total CPU Cycles 117 901 1,539
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Table 5 identifies the number of cycles required for each operation under the 

dialogue mentioned in Figure 7. The assumptions made for each are as follows: 

 

 Receive: one cycle to receive the message (store in buffer). 

 Decode: for the bit-based keys it is two messages (user name and 

password) using a 32-bit chip, bitwise operations (e.g., (512/32) * 2 = 32 

CPU-cycles). 

 Fetch block (from the block chain): one for fetch and one for the receive. 

 Validate/Derive: bit-wise operations similar to the ones in decode for the 

bit keys, 512 -digit division for the SHA key. 

 Format Challenge: same as previous operation. 

 Acknowledge: one cycle to send standard “ACK” message.  

 

Results Discussion 
 

The results may be found in the appendix are for a low interaction system (in 

practice the interactions in process control may be much higher). In addition, the 

frequency of key negotiation will depend on the ability to isolate the processes 

from potential attack and the necessity to regenerate encryption keys. Those 

considerations will need to be evaluated by the designer of the system in addition 

to the specific component of the blockchain itself. This document has provided 

one example of the gated component but the variations to the payloads in the 

model are very large. 

An important concept illustrated above is the radical difference in cpu cycles 

depending on the algorithm used for generation and regeneration of keys between 

IoT devices. Some of these may be able to devote a high degree of cycles as for 

example in the ARM Cortex-MO Processor which can yield a 0.87 MIPS (million 

instructions per second) at a speed of 2.25MHz and is a three-stage cycle 

processor
2
. Given a typical 20% “headroom” (additional processing unused) it can 

deliver around 0.232 million full instruction capacity and a simple key negotiation 

would not begin to scratch the surface. However, more cycles would be required if 

the SHA negotiation were something more resilient such as prime number keys 

(something that is utilized in higher safety systems for example).  

In addition, however, there are other processors that have considerably less 

power such as those mentioned in Lallement et al. (2017) which may still be 

industrially viable but with much less cpu power (e.g., 7Hz) to devote to 

protection. These processors do exist in implementations and need more care in 

determining which protection algorithm to use so they do not spend most of their 

effort in processing large keys. 

 

 

  

                                                           
2
https://static.docs.arm.com/ddi0432/c/DDI0432C_cortex_m0_r0p0_trm.pdf?_ga=2.84689169.908

795371.1542781838-925179195.1542781838. [Accessed 17 March 2021] 

https://static.docs.arm.com/ddi0432/c/DDI0432C_cortex_m0_r0p0_trm.pdf?_ga=2.84689169.908795371.1542781838-925179195.1542781838
https://static.docs.arm.com/ddi0432/c/DDI0432C_cortex_m0_r0p0_trm.pdf?_ga=2.84689169.908795371.1542781838-925179195.1542781838
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Potential in Other Technologies 
 

Section “Resource Consumption Evaluation” assumed that the IoT processors 

will physically process the instructions required. In addition, it has assumed that 

the regeneration of the keys is evenly distributed (at least through the experiment) 

and can count on a static space where adversaries can try to hack into the system. 

This section discusses potential variations in cloud computing and the ability to 

provide some resilience in quantum processor attacks through randomization. 

 

Cloud Computing 
 

Cloud technology affords great flexibility and efficiency in managing 

computing resources. What used to cost millions and take years to build can now 

be achieved in fractional time and cost. Cloud computing can help in this model by 

providing logic-gated arrays in virtual clouds.  

These “virtual gated arrays” (sometimes also called “FPGA” or Field 

Programmable Gated Arrays) can be designed with gated sequences in mind and 

can also be scaled to address the needs of a particular project with little effort or 

time. Virtual FPGAs as they are called can now be sourced from many of the 

public clouds and instead of having to purchase the hardware, one can now design 

in that environment and deploy very quickly and inexpensively. 

Figure 9 illustrates a potential implementation of the algorithm in Virtual 

FPGAs, taking the load off the IoT processors themselves by managing all 

communication (and protection) in the cloud while delivering payloads in a secure, 

isolated channel. Several offerings exist to both house the processors in a virtual 

environment and also the blockchain operations in public clouds (such as Amazon 

Web Services). 

 

Figure 9.  Hypothetical Architecture in a Public Cloud 

 
  

Virtual FPGA Virtual FPGA

Other Services

External Networks

A “Cloud”

reserved circuit segments on the chips

single channel I/O
single channel I/O
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Quantum Computing 
 

Quantum computing is a promising technology enabling massive processing 

in fractional time. Peter Shor introduced an algorithm that was able to overcome 

the finding of such primes considered later useful in deciphering the SHA style 

cryptography. This was later confirmed by Spiller in finding such prime numbers 

using Shor’s algorithm. While not commercially viable at this point, in the future 

these designs could potentially find answers to primary key exchanges and 

cryptography fractions of what it takes today.  

Prime numbers are finite & finding them can be quite complex. Several 

algorithms exist to confirm the existence of primality (Xu et al. 2017, Nakamoto 

2019). It is conceivable that a quantum computer could break the secrets of the 

model presented in this article. However, one must also consider that the 

algorithms can be regenerated at random intervals adding infinity to the puzzle. 

Others such as those documented in sub-subsection “Regeneration of Keys” can 

be used to randomize and also confuse the attacker requiring them to initiate again 

(and on, and on….).  

One additional word on the above, the regeneration of keys consumes 

additional resources and one must not be careless to fall into regeneration in 

intervals that are very frequent because that is wasteful. Rather, one needs to 

design the system with an analysis of the attacker strength and provide for 

sufficient regeneration in order to defeat it. In the end however, if a sufficiently 

powerful quantum computer is used, these efforts might not be enough. 

 

 

Conclusion 
 

This document presented a method for interaction between logic gates, 

blockchain and key generation that has some definite savings in computation for 

the IoT. This is an initial discussion on a new approach to key generation and 

regeneration. Risk areas still exist in this method and they are being explored as 

this document is being submitted for consideration. The author believes in 

adequate protection based on the asset values and potential for real intrusion. This 

document advocates for a different approach that can increase or decrease 

computational complexity (and resources) depending on the protection objectives.  
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Appendix 

 

A1. Formal Requirements Definition 

 

This section outlines the basic formal requirements for implementation of the 

blockchain model. The schemas and operations are enumerated and then the key 

ones are formally described in Z. 

 

A1.1 Schemas and Operations 

The specification is based on schemas (collections of data primitives) and 

change operations (dynamic effects) on those schemas. The schemas and 

operations for the blockchain and member segments of the system are as follows, a 

checkmark appears next to each if they will be used in the evaluation: 
 

 Schema: Blockchain √ & Operation: AddBlockchain √ 

 Schema: Message1 & Operation: Message1CreateSend  

 Operation: Message1Validate √  

 Schema: Message2 & Operation: Message2CreateSend √ 

 Schema: Message3 & Operation: Message3CreateSend  

 Schema: Message4 & Operation: ACK4CreateSend √ 

 

A1.2 Sample Schemas and Operations in Detail 

The following Z language sample definitions are from the complete 

specification (it is voluminous and will be published in the future). The Z language 

guarantees the correctness of the specification by mathematical proofs and only 

those artifacts are translated into actual code (Spivey 1988). 
 

Figure 10. Schemas and Operations in Z 
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A2. Simulation and Results 

 

A structured simulation was constructed in the c language using the gcc 

compiler in Linux using the -o option. The simulation was run for 20 quarters 

using the method described. Three key lengths were used (512 & 4096 bit binary 

and SHA 384+, assumed at 512 byte), the results are in Table 6.  

 

Table 6. Simulation Results; Key Negotiation for a Single Member  

 
 

The results in Table 6 are for a single member. This simulation is for a very 

low requirement in a particular IoT network (for example low risk refrigerated 

warehouse with zones that vary minimally or for a set of refrigerators in long term 

storage that do not require daily operation). 

   KEY NEGOTIATION AND CPU CYCLE RESULTS FOR 20 QUARTERS 

----------------------------------------------------------------------------------------------------------

Quarter 1  Keys Negotiated = 220  512bit= 25740  4096bit= 198220  sha= 338580 

Quarter 2  Keys Negotiated = 170  512bit= 19890  4096bit= 153170  sha= 261630 

Quarter 3  Keys Negotiated = 198  512bit= 23166  4096bit= 178398  sha= 304722 

Quarter 4  Keys Negotiated = 187  512bit= 21879  4096bit= 168487  sha= 287793 

----------------------------------------------------------------------------------------------------------

Year 1   Keys Negotiated 775  512bit= 90675  4096bit= 698275  sha= 1192725 

----------------------------------------------------------------------------------------------------------

Quarter 5  Keys Negotiated = 119  512bit= 13923  4096bit= 107219  sha= 183141 

Quarter 6  Keys Negotiated = 169  512bit= 19773  4096bit= 152269  sha= 260091 

Quarter 7  Keys Negotiated = 129  512bit= 15093  4096bit= 116229  sha= 198531 

Quarter 8  Keys Negotiated = 231  512bit= 27027  4096bit= 208131  sha= 355509 

----------------------------------------------------------------------------------------------------------

Year 2   Keys Negotiated 648  512bit= 75816  4096bit= 583848  sha= 997272 

----------------------------------------------------------------------------------------------------------

Quarter 9  Keys Negotiated = 204  512bit= 23868  4096bit= 183804  sha= 313956 

Quarter 10  Keys Negotiated = 158  512bit= 18486  4096bit= 142358  sha= 243162 

Quarter 11  Keys Negotiated = 169  512bit= 19773  4096bit= 152269  sha= 260091 

Quarter 12  Keys Negotiated = 146  512bit= 17082  4096bit= 131546  sha= 224694 

----------------------------------------------------------------------------------------------------------

Year 3   Keys Negotiated 677  512bit= 79209  4096bit= 609977  sha= 1041903 

----------------------------------------------------------------------------------------------------------

Quarter 13  Keys Negotiated = 117  512bit= 13689  4096bit= 105417  sha= 180063 

Quarter 14  Keys Negotiated = 143  512bit= 16731  4096bit= 128843  sha= 220077 

Quarter 15  Keys Negotiated = 120  512bit= 14040  4096bit= 108120  sha= 184680 

Quarter 16  Keys Negotiated = 172  512bit= 20124  4096bit= 154972  sha= 264708 

----------------------------------------------------------------------------------------------------------

Year 4   Keys Negotiated 552  512bit= 64584  4096bit= 497352  sha= 849528 

----------------------------------------------------------------------------------------------------------

Quarter 17  Keys Negotiated = 192  512bit= 22464  4096bit= 172992  sha= 295488 

Quarter 18  Keys Negotiated = 222  512bit= 25974  4096bit= 200022  sha= 341658 

Quarter 19  Keys Negotiated = 169  512bit= 19773  4096bit= 152269  sha= 260091 

Quarter 20  Keys Negotiated = 153  512bit= 17901  4096bit= 137853  sha= 235467 

----------------------------------------------------------------------------------------------------------

Year 5   Keys Negotiated 736  512bit= 86112  4096bit= 663136  sha= 1132704 

----------------------------------------------------------------------------------------------------------

Year 5 Cum.  Keys Negotiated 3388  512bit= 396396  4096bit= 3052588  sha= 5214132 

===============================================================


