
Athens Journal of Sciences- Volume 9, Issue 1, March 2022 – Pages 47-64

https://doi.org/10.30958/ajs.9-1-3 doi=10.30958/ajs.9-1-3

The Fixpoint Combinator in Combinatory Logic – A Step

towards Autonomous Real-time Testing of Software?

By Thomas Fehlmann
*
 & Eberhard Kranich

±

Combinatory Logic is an elegant and powerful logical theory that is used in

computer science as a theoretical model for computation. Its algebraic structure

supports self-application and is Turing-complete. However, contrary to Lambda

Calculus, it untangles the problem of substitution, because bound variables are

eliminated by inserting specific terms called Combinators. It was introduced by

Schönfinkel (1924) and Curry (1930). Combinatory Logic uses just one algebraic

operation, namely combining two terms, yielding another valid term of

Combinatory Logic. Terms in models of Combinatory Logic look like some sort

of assembly language for mathematical logic. A Neural Algebra, modeling the

way we think, constitutes an interesting model of Combinatory Logic. There are

other models, also based on the Graph Model (Engeler 1981), such as software

testing. This paper investigates what Combinatory Logic contributes to modern

software testing.

Keywords: combinatory logic, combinatory algebra, autonomous real-time

testing, recursion, software testing, artificial intelligence

The Organon

Aristotle’s legacy regarding formal logic has been transferred to us in a

collection of his thoughts compiled into a set of six books called the Organon

around 40 BCE by Andronicus of Rhodes or others among his followers

(Aristoteles 367-344 BCE). The Organon with its syllogisms was the dominant

form of Western logic until 19
th
-century advances in mathematical logic.

Engeler recently noted the apparent lack of something that we today consider

fundamental for axiomatic geometry: relations. The question is why. Aristotle had

the means of developing this concept as well; however, he chose not to do so.

Aristotle had the means of combining predicates. It is therefore possible to

construct an adequate model for Aristotle’ syllogism based on the structures of

Combinatory Logic. Relations then become part of the model. Engeler shows that

Aristotle had no need for relations because the main model he used – the

Euclidean Geometry – does not require relations (Engeler 2020).

*
Senior Researcher, Euro Project Office AG, Switzerland.

±
Senior Researcher, Euro Project Office AG, Switzerland.

https://doi.org/10.30958/ajs.9-1-3

Vol. 9, No. 1 Fehlmann & Kranich: The Fixpoint Combinator in Combinatory…

48

Introduction

A model of Combinatory Logic is an algebraic structure implementing

combinators in a non-trivial way. Such a model is called Combinatory Algebra. As

a minimum, it contains implementations for the combinator (identity), the

combinator for extracting parts of another term, and the combinator that

substitutes parts of a term by some other combinator. Another famous combinator

is the Fixpoint Combinator , explaining recursion and possible infinite iteration.

These specific combinators are represented as Constants in the language of

Combinatory Logic, whereas other terms may contain Variables. These general

terms are called Combinatory Terms (Bimbó 2012, p. 2); the combination of any

two terms and is written as .

Given a problem as a term in some suitable model, what should be its

solution? A problem is something that displays specific behavior, sometimes

unpredictable, and produces specific effects, often unwanted. Also, a certain

persistence is part of a problem; problems that disappear by themselves are not

particularly exciting.

A fixpoint point with the property that (), for any term

of Combinatory Logic, is thus something like a solution to the problem . You can

apply the solution combinator as many times as necessary and the problem

solution remains stable and confined.

When we encounter the problem of how to test a piece of software , and we

have a test suite with the fixpoint property, it looks like a solution to our

testing problem. Since we can measure tests, by counting its test size, we can

assess what means minimal effort for a test, and thus can get an optimum.

The clue to Combinatory Logic is that “everything is a function” – and

indeed, a unary function. Whenever anything can be understood as function

depending on two variables – () – it is an application of a unary function

 on a variable . Thus, () () () ; always

assuming association to the left. This is known as Currying, converting n-ary

functions into a sequence of unary functions.

Combinatory Algebras

Combinatory Algebras are models of Combinatory Logic (Curry and Feys

1958, Curry et al. 1972). Such algebras are closed under a combination operation

 for all terms of the algebra ; and two distinct Combinators and can

be defined with the following properties:

 (1)

and

 () (2)

Athens Journal of Sciences March 2022

49

where are elements in the combinatory algebra
1
.

Thus, the combinator acts as projection, and is a substitution operator for

terms in the combinatory algebra. Like an assembly language, the - terms

become quite lengthy and are barely readable by humans, but they work fine as a

foundation for computer science.

The power of these two operators is best understood when we use them to

define further, more manageable, and more reasonable combinators. Church

(Church, 1941) presented a list of functions that can be implemented as

combinators, and Zachos investigated them in the settings of Combinatory Logic

(Zachos 1978). Bimbó (2012, p. 6) gives a good overview; however, without

reference to the original contributors. We present here only a few.

Identity

The identity combinator is defined as

 (3)

Indeed, () . Association is to the left.

Functionality by the Lambda Combinator

Church’s Lambda Calculus is a formal language that can be understood as a

prototype programming language (see Church 1941, Barendregt 1977).

Lambda calculus can be expressed by - terms. We define recursively the

Lambda Combinator for a variable as follows:

 (4)

 if different from (5)

 () (6)

The definition (5) holds for any variable term in the combinatory algebra.

We can extend the definition of the Lambda combinator by getting rid of the

specific variable . For any combinatory term , the Abstraction Operator is
defined on recursively by applying to all sub-terms of . Applying to

any other combinatory term replaces all occurrences of the variable in the

term by and is written as () .

The abstraction operator binds weaker than the combination operator. Thus,

 binds all variables in , such that we can omit parentheses as in

 (). Lambda abstraction provides a much more readable and

intuitively understandable notation for terms of Combinatory Logic.

1
The use of variables named is borrowed from Engeler (2020).

Vol. 9, No. 1 Fehlmann & Kranich: The Fixpoint Combinator in Combinatory…

50

The Fixpoint Combinator

Given any combinatory term , the Fixpoint Combinator generates a

combinatory term , called Fixpoint of , that fulfills (). This

means that can be applied as many times as wanted to its fixpoint and still yields

back the same combinatory term.

In linear algebra, such fixpoint combinators yield an eigenvector solution to

some problem ; for instance, when solving a linear matrix. It is therefore tempting

to say, that is a solution for the problem . For more details, consult Fehlmann

(2016).

Using Lambda Calculus notation, the fixpoint combinator can be written as

(Barendregt 1984):

 (()) (()) (7)

Translating (7) into an - term proves possible, becomes a bit lengthy but

demonstrates how Combinatory Logic works.

By applying (6), (5):

 ()

Then applying (6) and (4)

 ()

 ()

yields

 () () ()

and therefore

 (()) (())

 (() ()) (() ())

 (() ()) (() ())

 ((())) ((()))

Now solving the remaining -terms:

 ()

 () ()

 () (())

considering

and

 () .

Athens Journal of Sciences March 2022

51

The latter holds by first applying (6), then (5) and (4). Moreover

 () ()

 (() ()) ()

applying again (6) and (5).

Putting things together:

 (()) (())

 ((() (())) ((() ()) ()))

 ((() (())) ((() ()) ()))

Applying to any combinatory term now explicitly transports on the top

of the formula and keeps the rest of the structure of such that can be applied

repeatedly.

This exercise should give the reader an impression how Combinatory Logic

works.

Applying the fixpoint combinator to some combinator Z in the Lambda-

style is much simpler:

 (()) (())

 (()) (())

 (()) (())

by applying the Lambda combinator twice, replacing the two twice by

 (). Thus, this explains reasoning as a repeated substitution process.

When applying , or , or any other equivalent fixpoint combinator to a

combinatory term Z, reducing the term by repeatedly using rule (1) or (2) does not

always terminate. An infinite loop can occur, and must sometimes occur,

otherwise we would always find a solution to any problem that can be stated

within a programming language. Thus, Turing would be wrong and all finite state

machines would reach a finishing state (Turing 1937).

Thus, the fixpoint combinator is not the solution of all our practical problems.

But Engeler teaches us in his Neural Algebra fixpoints can be approximated using

a Construction Operator (Engeler 2019), see below.

For more details about the foundations of Mathematical Logic, see for

instance Potter (2004).

Arrow Terms

The Graph Model of Combinatory Logic (Engeler 1995) is a model of

Combinatory Logic with explains how to combine topics in areas of knowledge.

Combination is not only on the basic level possible; you can also explain how to

Vol. 9, No. 1 Fehlmann & Kranich: The Fixpoint Combinator in Combinatory…

52

combine topics on the second level; sometimes called meta-level. Intuitively, we

would expect such a meta-level describing knowledge about how to deal with

different knowledge areas.

Whenever two terms and are embodied in a combinatory algebra, the

application of onto is also a term of this combinatory algebra, denoted as

 .

Let be the set of all assertions over a given domain. Examples include

statements about customer’s needs, solution characteristics, methods used,

program states, test conditions, etc. These statements are assertions about the

domain we are dealing with. This could be a business domain, or the state of some

software, i.e., the description of the values for all controls and data.

An Arrow Term is recursively defined as follows:

o Every element of is an arrow term.

o Let be arrow terms. Then

 * + (8)

is also an arrow term. Thus, arrow terms are relations between finite subsets of

arrow terms and another arrow term, emphasized as successor.

For instance, in software testing, we use arrow terms to represent test cases. On

the base level, the left-hand sides represent test data, the term is the

known expected response of the test case (8). Higher levels of arrow terms

represent test strategies and tests of tests.

The left-hand side of an arrow term is a finite set of arrow terms and the right-

hand side is a single arrow term. This definition is recursive. The arrows are a

formal graph notation; they might suggest cause-effect, not logical imply.

The Graph Model as an Algebra of Arrow Terms

We can extend the definition of arrow terms to become a combinatory algebra,

allowing for the combination of arrow terms.

Denote by () the power set containing all Arrow Terms of the form (8).

The formal, recursive, definition of the Graph Model as a power set, in set-

theoretical language, is given in equation (9):

 ()
 ()

 () {* + | () }
(9)

for () is the set of all (finite and infinite) subsets of the union of

all ()

 () ⋃ ()

 (10)

Athens Journal of Sciences March 2022

53

The elements of () are arrow terms of level . Terms of level are

Assertions, terms of level Rules. A set of rules is called Rule Set (Fehlmann

2016). In general, a rule set is a finite set of arrow terms. We call infinite rule sets a

Knowledge Base. Hence, knowledge is a potentially unlimited collection of rules

sets containing rules about assertions regarding our domain.

Combining Knowledge Bases

We can combine knowledge bases sets as follows:

 * | * + + (11)

Arrow Term Notation

To avoid the many set-theoretical parenthesis, the following notations, called

Arrow Schemes, are applied:

o for a finite set of arrow terms, denoting some finite indexing function

for arrow terms.

o for a singleton set of arrow terms: * + for an arrow term .

o for the empty set, such as in the arrow term .

o for the union of two sets and of arrow terms.

o () for a potentially infinite set of arrow terms, where is an arrow term.

Note that arrow schemes denote sets when put into outermost parenthesis.

Without an index, the set might be infinite; an index makes the set finite.

The indexing function cascades; thus, denotes the union of a finite number

of sets of arrow schemes

 ⋃

 (12)

In terms of these conventions, () denotes a rule set; i.e., a non-empty

finite set of arrow terms, each having at least one arrow. Thus, such set has level 1

or higher. Moreover, it has two selection functions, and , selecting a finite

number of arrow terms for and .

With this notation, the application rule for and reads:

 (() ()) * | + (13)

Arrow Terms – A Model of Combinatory Logic

The algebra of arrow terms is a combinatory algebra and thus a model of

Combinatory Logic. It is called the Graph Model.

Vol. 9, No. 1 Fehlmann & Kranich: The Fixpoint Combinator in Combinatory…

54

The following definitions demonstrate how arrow terms implement the

combinators and fulfilling equations (1) and (2).

o () is the Identification; i.e., () () ()
o () selects the 1

st
 argument:

 () () (() ()) () () () ()

o () selects the 2nd argument:
 () () (() ()) () () () ()

o ((())

 () ())

Therefore, the algebra of arrow terms is a model of Combinatory Logic.

The proof that the arrow terms’ definition of fulfils equation (2) is somewhat

more complex. Readers interested in that proof are referred to Engeler (1981, p.

389). With and , an abstraction operator can be constructed that builds new

knowledge bases. This is the Lambda Theorem; it is proved along the same way as

Barendregt’s Lambda combinatory (Barendregt 1977). See also in Fehlmann

(1981, p. 37).

The Role of the Indexing Function in Arrow Terms

The arrow in the terms of the Graph Model is somewhat confusing. It is easily

mistaken as representing Predicate Logic; however, this must be viewed with care.

Interpreting the arrow as an implication in predicate logic is not per se dangerous.

In some sense, logical imply is a transition from preconditions to conclusion and

arrow terms are fine for representing them. The problem is that if the left-hand side

of an arrow term, which is an otherwise unstructured set, is interpreted as a

conjunction of predicates – a sequence of logical AND-clauses – you run into a

conflict with the undecidability of first-order logic. Arrow terms would then

reduce to either of the form or . This reduces the model to become

the trivial one.

As an example, see Bimbó (2012, p. 237ff). There she explains how typed

Combinatory Logic gets around the triviality problem. Instead of the indexing

functions, selecting finite sets of arrow terms on the left-hand side, she postulates

proofs for the predicates.

Thus, the indexing function for selecting elements of a finite set of arrow

terms is a key element of the Graph Model. Interested readers will find related

considerations in the paper of Fehlmann and Kranich (2020). For the application

of the Graph Model to testing, the indexing function means selection of test cases

and test data, and this is always a collection of program state predicates that do

typically not leave the program under test in a consistent state.

Athens Journal of Sciences March 2022

55

Neural Algebra

Engeler uses the Graph Model as a model how the brain thinks (Engeler 2019).

A directed graph, together with a firing law at all its nodes, constitutes the

connective basis of the brain model . The model itself is built on this basis by

identifying brain functions with parts of the firing history. Its elements may be

visualized as a directed graph, whose nodes indicate the firing of a neuron. As

before, we consider (), constructed as in (10). The elements of () are called

Cascades. Cascades describe firing between nodes (neurons) when represented by

finite sets of arrow terms where are sub-cascades, while the right sub-

cascade describes the characteristic leave of its firing history graph. The Neural

Algebra is defined as a collection of cascades representing brain functions in the

brain model, closed under applications and union. With the application rule (13),
we have an algebraic structure; the application representing brain functions,

interpreted as thoughts.

The Fixpoint Combinator in the Neural Algebra

The fixpoint combinator can be written as an arrow scheme; however, this

calculation is better left to some suitable rewriting tool, as otherwise this article

would exceed all reasonable length. Applying to an arbitrary arrow scheme

might result in an infinite loop of arrow schemes, representing a never-ending

computation. Combinatory Logic, as any kind of programming, may result in an

infinite loop in its model, and it is not decidable when this happens.

If infinite loops occur, or infinite sequences of digits like for real numbers that

are not rationales, we need the notion of controlling operators that approximate the

possibly infinite solution, and metrics for measuring how near the approximations

to the solutions are, and get even nearer when required.

Reasoning, Problem Solving and Controlling

Within this setting, it is possible to define models for reasoning and problem

solving. However, not only flat reasoning, also for solving problems, even if their

fixpoint is infinite. For a controlled object , the Controlling Operator solves

the control problem . The brain function gathers all faculties that may

help in the solution. The control problem is a repeated process of substitution, like

finding the fixpoint of a combinator. However, since cascades are always finite –

all brain activity remains finite, unfortunately – solving the control problem is by a

series of finite Attractors, a control sequence determined by

 (14)

starting with an initial . This process is called Focusing. The details can be found

in Engeler (2019, p. 301). We will rely on the observation that attractors represent

reasoning in a neural algebra.

Vol. 9, No. 1 Fehlmann & Kranich: The Fixpoint Combinator in Combinatory…

56

Attractors are ordered by inclusion (14), meaning that the solution space

becomes smaller and smaller until a smallest possible solution is found that cannot

be further reduced by the controlling operator. It is possible that this ultimate

solution remains empty.

The controlling operator is closely linked to the fixpoint operator . If has a

solution , then is of the form for some suitable cascade . Thus,

not all combinators have a solution; the related control sequence may end with

the empty cascade, obviously. These considerations share a stunning resemblance

with transfer functions, whose solution profiles are also approximations rather than

precise solutions (Fehlmann 2016, p. 14).

The controlling operator is not like one of the basic or the fixpoint combinators

but is more of a prescription, how to find suitable attractors. Engeler (2019, p.

300ff) presents in an elegant way representations of basic thought processes, e.g.,

reflection, discrimination, simultaneous and joint control, but also learning,

teaching, focusing with eyes, and comprehension.

Since the number of cascades that a brain can produce is finite and limited –

by the lifespan of the brain – solution to the fixpoint control problems turn out to

be finite attractor sequences, characterizing thought processes.

Transfer Functions

For managing complex systems, transfer functions are used to analyze controls

and approximate the expected result (Fehlmann 2016).

An obvious interpretation of arrow terms is by transfer functions. In Quality

Function Deployment (QFD), the building blocks – and the origin – are cause-

effect relations as used in Ishikawa Diagram (Ishikawa and Loftus 1990). These

diagrams describe the cause-effect relations between topics and are considered the

initial form of QFD matrices. Converting a series of Ishikawa diagrams into a QFD

matrix is straightforward (see Fehlmann 2016, p. 231). Thus, transfer functions can

be described by finite sets of arrow terms.

Deming Chains

Composition of transfer functions is called a Deming Chain (Fehlmann 2016,

p. 100) because Deming identified the value chains in manufacturing processes

(Deming 1986). Akao called it Comprehensive QFD, also known as QFD in the

Large. He drafted extensive Deming chains in this famous book on QFD (Akao

1990).

For transfer functions, the Graph Model provides similar services as for tests.

The model proves that transfer functions have universal applicability and power

for explaining cause-effect, and they provide a framework for automation also for

Deming chains (Fehlmann 2001).

Athens Journal of Sciences March 2022

57

The Algebra of Tests

Very interesting instantiations of the Graph Model can be found in Software

Testing, especially when seen from an economical viewpoint. In fact, test cases are

best described as arrow terms, with the left-hand sides describing program states

before executing the test, and the right-hand side describing the response of the

test case. Software testing is the key to digitalization and to software-intense

products that perform safety-critical tasks.

Test cases are a mapping of arrow terms onto Data Movement Maps. Data

movement maps model the software under test by identifying the data groups

moved by the software, based on the ISO standard 19761 COSMIC (ISO/IEC

19761 2011). This has been explained in more detail in Fehlmann (2020). The data

movements induce a sizing valuation on this algebra by counting the number of

data movements executed per test case.

When we speak of test cases, we always intend a suitable data movement map

with it; thus, the same arrow term can be mapped to several data movement maps,

counting as separate test cases.

State Assertions

For our Test Algebra, we now assume to be the set of all state assertions for

a given program. We use the term “program” but mean a system that might consist

of coded software, services, or anything yielding results electronically. Learning

machines also are “programs” in that sense even if it is not the code that implements

learning, rather the learned knowledge itself. Elements of are descriptions of the

system status, or the knowledge such as system has, at a certain moment. In the

sequel, the arrow term together with its associated data movement map

represents a test case, that, given test data , yields as the expected, correct

result (Fehlmann 2020, p. 85ff).

If is a test case, specifies a set of test data that holds before

executing the test, and the state of the program after execution. The finite

set represents the states before execution of possible unrelated threads of the

program, or services involved.

Testing Complex Systems

Usually, unit tests that ensure the proper functioning of software modules are

available because they originate from the software development process (Junit

Team 1997ff). The integration of modules and components and building systems

of systems, or other complex products, requires many more tests, among them

end-to-end tests that cause huge efforts. Most often, the time slots available for

testing are used up to accommodate additional or forgotten user requirements.

Consequently, with respect to functionality, the more important tests become when

creating complex products, the less tests are executed, by lack of time and

resources. Attempts to execute tests automatically do not address the lack of good

test cases for complex products. There are the test cases that need to be created

Vol. 9, No. 1 Fehlmann & Kranich: The Fixpoint Combinator in Combinatory…

58

automatically. This approach is called Autonomous Real-time Testing, to point out

that testing effort always must remain limited. It addresses the problem how to

automatically create test cases by Artificial Intelligence, namely by generating test

cases using Combinatory Logic and selecting the relevant ones using ISO/IEC

16355 (ISO/IEC 16355-1 2015). The approach is explained in Fehlmann (2020).

Combining Tests

The definition (13) explains how to combine test cases. To apply one set of

test cases to another , it is required that for testing the assertion , test cases

 exist such that () in has effectively been tested. Consult last the

paper of Fehlmann and Kranich (2020) for more information about the existential

quantifier in (13).

The intuitionistic, or constructive, variant of the Axiom of Choice requires not

only the existence of test providing valid test data as response, but construction

instructions for the existence of such tests, respectively the related test cases. This

means that it is not enough to know the existence of tests, but you need to know

how to construct them. This is possibly the reason why test automation has proven

to be so hard.

And for those who consider such reasoning too theoretical, let us provide a

rather practical argument: programmers who want to set up test concatenation

 for automatic testing, need access to the test cases in that provide the

responses needed for , for combining with . Otherwise, combining tests is

unsafe or cannot be automated. Thus, with the combinatory algebra of arrow terms,

mathematical logic meets both intuitionism and programming.

Combination Limitations

Combining tests in a Combinatory Algebra is unlimited indeed because there

is no typing involved that governs applicability. By (13), you can combine test

cases across test stories as deemed appropriate; all that counts are that the test

cases remain executable. This means that two test cases must not only be linked by

its assertions, but also executable code must exist that combine these two test

cases. In terms of software, two data movement maps representing the test case

executions must exist that overlap.

The Size of Tests

For a testing framework, we need to be able to measure the size of tests. The

standard ISO/IEC 19761 COSMIC for measuring functional size serves as

measuring method. The functional size of the associated data movement map is

the size of a test case, denoted by (
), where

 () and
 () are arrow terms of level 0; i.e., assertions about the state of the program.

 (
) is the number of unique data movements touched when executing

the test case
 . This is the recursion base.

Athens Journal of Sciences March 2022

59

Then the following equations (15) recursively define the size of tests:

⌊ ⌋ ()
⌊ ⌋ () () ()

⌊ ⌋ ∑⌊ ⌋ ⌊ ⌋

(15)

The definition holds for all arrow terms in the algebra of tests.

The addition does not take into consideration whether data movements are

unique; thus, the size of two test cases is always the sum of the sizes. When

speaking about tests, we do not use the term knowledge base for sets of arrow

terms, but rather Test Story for a set of test cases. Test stories typically share a

common intent, or business value.

The Functional Size of Combinators

Applying the definition (15) to the combinators , and yields an infinite

size for each of them, because the arrow term sets are infinite. This is conformant

to the observation that when expressing these combinators as terms in the Lambda

calculus, they are closed insofar as they do not contain free variables nor constants.

Autonomous Real-time Testing

In Fehlmann (2020), we coined the term Autonomous Real-time Testing

(ART) to describe software tests that are

o Executed automatically in a system during operations, or when pausing

operations;

o Started from a base test using recombination and other operations of

combinatory algebra by adding autonomously generated test cases;

o Controlled by transfer functions assuring relevance for users’ values.

In previous papers and the book referenced about, we have explained how to

keep the growth of test cases under control, using the Convergence Gap as a hash.

The convergence gap in transfer functions measures the gap between the needs –

of the customer, the user, certification authority, or else – and the achieved test

coverage. Consult the paper of Fehlmann and Kranich (2020).

Attractors

While the fixpoint combinator works as above on sets of test cases, in most

cases, it returns infinite tests as “solutions” – something not too practical. However,

we can construct attractors for neural algebra, approximating the infinite testing

set, as good as we wish. This creates a new problem for us, namely, to assess:

when is testing good enough?

Vol. 9, No. 1 Fehlmann & Kranich: The Fixpoint Combinator in Combinatory…

60

While good practices can provide answers – e.g., by looking at the remaining

defect rate (Fehlmann and Kranich 2014) – a more theoretical answer should

include at least the requirement that attractors cover functionality. That is the

significance of the Convergence Gap, explained in Fehlmann (2020, p. 10).

Let denote a finite set of user stories, and another set of test stories,

usually somewhat larger than the set of user stories. The matrix maps test

stories to user stories and becomes a transfer function, if each cell contains the size

⌊() ⌋ of all test cases () belonging to some test story and

referring to some user story, or FUR . This yields a matrix:

 (⌊() ⌋) (16)

The indices of the matrix run over integers .

The transfer function maps test stories to user stories, and we call it Test

Coverage Matrix because you can assess how good test stories cover user stories.

Let user stories be prioritized, say by some Goal Profile . The goal profile

characterizes priorities by a unit vector in the space of the alternatives under

consideration. Then the transfer function can be applied to a Solution Profile ,

describing the importance of the test stories, and is the result of applying to

this solution profile. Obviously ; however, the difference ‖ ‖ is

interesting. If this difference is small, then the solution profile represents an

optimum selection of test stories, meaning that tests cover what is relevant to the

user’s goal profile.

Optimum solution profiles can be calculated using the eigenvector method

(Fehlmann 2016, p. 34). Let be the Principal Eigenvector of , solving the

eigenvalue problem (17) for some .

 (17)

The principal eigenvector is called the Achieved Profile of the transfer

function . Both, and are Profiles. This means, their vector length ‖ ‖

respectively ‖ ‖ are both one, where ‖ ‖ represents the Euclidean Norm

for vectors. The difference between a goal profile and an achieved profile is called

Convergence Gap:

 ‖ ‖ (18)

The convergence gap is a metric that measures how well a transfer function

explains the observed profile with suitable controls. The controls are the test

stories; the observed profile compares with the goal profile of the user stories’

relevance for the user of the software or the system. Note that computing the

achieved profile is very often not straightforward, as it is in our case where we can

make use of simple linear algebra.

We can now construct attractors as a series of test coverage

matrices that approximate the test suite that we need to cover our functional

Athens Journal of Sciences March 2022

61

requirements. However, the attractors must all keep the convergence gap und

control, meaning that for a certain and all attractors holds:

 () ‖ ‖ (19)

Thus, our constructor must construct an ascendant series such

that both (19) and (20) holds:

(20)

The constructor therefore is an intelligent search in a wide range of potential

attractors, keeping the convergence gap small enough. Such a series of attractors is

called bound, namely by the convergence gap. In fact, bound attractors constitute a

formal way to solve all kind of issues normally tackled by Artificial Intelligence.

The hash functions used for measuring the convergence gap, might be considerably

more complicated than in the case of test size.

Optimum Test Size

For a test coverage matrix (⌊() ⌋) , the total test size of is

 ⌊ ⌋ ∑(⌊() ⌋)

 (21)

If , then ⌊ ⌋ ⌊ ⌋ ⌊ ⌋ also holds.

Combinations of tests can be used, as well as applying any special combinator

such as projection or substitution to generate new test cases.

Bound attractors build up a test suite by adding more tests to the test coverage

matrix . The convergence gap must not necessarily decrease. In contrary, adding

more tests can spoil the convergence gap, for instance if some test story gains too

much weight and inflate the respective user stories’ achieved profile.

Constructing a suitable constructor is all but simple, nor straightforward,

because adding more tests does not solve a problem. In view of executing such

tests on a machine, the number of tests must not only remain finite but also limited

to some manageable number. Thus, the question how to select relevant test stories

out of the many possible combinations must be answered. An answer is proposed

in Fehlmann and Kranich (2019). Moreover, based on sensitivity analysis for

linear matrices, the authors will present sample attractors for software and system

testing at the upcoming (2022) ATINER’s conference on Information Technology

& Computer Science (Fehlmann and Kranich 2022). Sensitivity analysis speeds up

the selection of the new test cases. Thus, it seems that the problem of effectively

create autonomous tests for large and complex systems can be solved.

For practical applications, combining unit tests from related domains such as

steering control of an autonomous vehicle with weather forecast is always feasible

Vol. 9, No. 1 Fehlmann & Kranich: The Fixpoint Combinator in Combinatory…

62

to construct attractors for a system test of this autonomous vehicle. The

convergence gap enforces that such test combinations cover the full range of test

cases relating to both steering control, and process weather forecast services;

otherwise, some test stories would grow beyond limits.

There is an optimum number of attractors delivering enough tests to fit the

test intensity required by the user of the system, and test size that still can be

executed within a limited time frame. Computing that optimum is an important

task for product management, and, depending upon safety and privacy criticality,

must be carefully chosen to make such a product acceptable for the society.

Conclusions

It has been shown that Aristotle’s Mental Completion leads to feasible

solutions for actual challenges and problems. His understanding of recursion as a

mentally completed inductive definition of a concept (Engeler 2020) allows

developing the techniques necessary for testing modern, complex systems of

systems, including cyber-physical systems that impact people’s life and health.

Following Engeler, we identified constructors as a general prescription for

constructing attractors that serve as approximations to solutions for problems.

Effective methods and algorithms exist for such constructions in the algebra of

tests, as shown in Fehlmann and Kranich (2020), and in Fehlmann (2020). Linking

attractors to fixpoint operators, in a very practical setting, has potentially a high

economic impact in the Fourth Industrial Revolution (Schwaab 2017), in the realm

of cyber-physicals systems such as autonomous cars, intelligent medical

instruments, virtual reality, and more.

Open Questions

Why did Aristotle not invent relations? Because he had no use for them

(Engeler 2020, p. 12). Euclidean geometry went without relations. So why do we

not yet know combinators for software testing? Because we are probably just now

finding out what they could be good for?

The authors are currently developing ideas how actual constructors look for

software and system testing, as well as for Artificial Intelligence. However,

whether there are some general rules to follow, besides Combinatory Logic, or if

every testing domain requires its own constructors and attractor series, remains

open.

Obviously, there are more open questions than we can mention here. Maybe

this is a step toward the New Kind of Science that Stephen Wolfram (2002)

promised us in the early years of this century? Is the approach presented in this

paper potentially fruitful not only to Artificial Intelligence, Neuroscience, and

system testing? What else could we describe by a constructor and by attractors?

Thus, better understanding what we are doing, and why?

Athens Journal of Sciences March 2022

63

Why are we doing theoretical stuff like logic and other basic sciences? Maybe

the answer is because this is the way to new business models and more efficient

progress in applied sciences? Probably the only sure way? Because otherwise you

get lost in the jungle? Without hope for finding an exit.

Do we offer young engineers enough education in basic sciences? Once they

have mastered that, they can apply the basic findings to any applied technical or

scientific area they care for.

Acknowledgments

Thanks to Erwin Engeler who sent his former student the enjoyable paper

about Aristotle’ Relations that he wrote as a gift to his 90
th
 birthday and for all the

investigations into the Graph Model that he did. I hope we were able to share this

with our reviewers and readers.

Also, many thanks to all who contributed to this paper by pointing to

weaknesses and confusions. Special thanks to the reviewers who contributed with

their comments much for improving this paper.

References

Akao Y (1990) Quality function deployment - Integrating customer requirements into

product design. Portland, OR: Productivity Press.

Aristoteles (367-344 BCE) Organon. Übersetzt von Julius von Kirschmann, Hofenberg

ed. Berlin: Andronikos von Rhodos.

Barendregt HP (1977) The type-free lambda-calculus. In J Barwise (ed.), Handbook of

Mathematical Logic, 1091–1132. Amsterdam: North Holland.

Barendregt HP (1984) The lambda calculus – Its syntax and semantics. In Studies in Logic

and the Foundations of Mathematics. Amsterdam: North-Holland.

Bimbó K (2012) Combinatory logic - Pure, applied and typed. Boca Raton, FL: CRC Press.

Church A (1941) The calculi of lambda conversion. In Annals of Mathematical Studies no.

6. Princeton University Press.

Curry H (1930) Grundlagen der kombinatorischen Logik. (Basics of combinatory logic).

American Journal of Mathematics 52(3): 509–536.

Curry H, Feys R (1958) Combinatory logic, volume I. Amsterdam: North-Holland.

Curry H, Hindley J, Seldin J (1972) Combinatory logic, volume II. Amsterdam: North-

Holland.

Deming W (1986) Out of the Crisis. Center for Advanced Engineering Study ed. Boston,

MA: Massachusetts Institute of Technology.

Engeler E (1981) Algebras and Combinators. Algebra Universalis 13(Dec): 389–392.

Engeler E (1995) The combinatory programme. Basel, Switzerland: Birkhäuser.

Engeler E (2019) Neural algebra on “how does the brain think?” Theoretical Computer

Science 777(Apr): 296–307.

Engeler E (2020) Aristotle’ relations: an interpretation in combinatory logic. arXiv:

History and Overview.

Fehlmann TM (1981) Theorie und Anwendung des Graphmodells der Kombinatorischen

Logik. (Theory and application of the graph model of combinatory logic). Zürich,

CH: ETH Dissertation 3140-01.

Vol. 9, No. 1 Fehlmann & Kranich: The Fixpoint Combinator in Combinatory…

64

Fehlmann TM (2001) QFD as algebra of combinators. In 8th International QFD

Symposium, ISQFD 2001. Tokyo, Japan.

Fehlmann TM (2016) Managing complexity – Uncover the mysteries with six sigma

transfer functions. Berlin, Germany: Logos Press.

Fehlmann TM (2020) Autonomous real-time testing – Testing artificial intelligence and

other complex systems. Berlin, Germany: Logos Press.

Fehlmann TM, Kranich E (2014) Exponentially Weighted Moving Average (EWMA)

prediction in the software development process. Rotterdam, NL: IWSM Mensura.

Fehlmann TM, Kranich E (2019) Testing artificial intelligence by customers’ needs.

Athens Journal of Sciences 6(4): 265–286.

Fehlmann TM, Kranich E (2020) Intuitionism and computer science – Why computer

scientists do not like the axiom of choice. Athens Journal of Sciences 7(3): 143–158.

Fehlmann TM, Kranich E (2022) A sensitivity analysis procedure for matrix-based

transfer functions. Athens Journal of Sciences (proposed).

ISO 16355-1 (2015) Applications of statistical and related methods to new technology and

product development process - part 1: general principles and perspectives of Quality

Function Deployment (QFD). Geneva, Switzerland: ISO TC 69/SC 8/WG 2 N 14.

ISO/IEC 19761 (2011) Software engineering – COSMIC: a functional size measurement

method. Geneva, Switzerland: ISO/IEC JTC 1/SC 7.

Ishikawa K, Loftus JH (1990) Introduction to quality control. Tokyo: 3A Corporation.

JUnit Team (1997ff) The 5
th
 major version of the programmer-friendly testing framework

for Java and the JVM. Retrieved from: https://junit.org/. [Accessed 28 January 2022]

Potter MD (2004) Set theory and its philosophy. Oxford, UK: Oxford University Press.

Schönfinkel M (1924) Über die Bausteine der mathematischen Logik. (About the building

blocks of mathematical logic). Mathematische Annalen 92(3–4): 305–316.

Schwaab K (2017) The fourth industrial revolution. First Edition. New York: World

Economic Forum.

Turing A (1937) On computable numbers, with an application to the Entscheidungs

problem. In Proceedings of the London Mathematical Society 42(Series 2): 230–265.

Wolfram S (2002) A new kind of science. First Edition. Champaign, Illinois: Wolfram

Media.

Zachos E (1978) Kombinatorische Logik und S-Terme. (Combinatorial logic and S-terms).

Zurich: ETH Dissertation 6214.

https://junit.org/

