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Combinatory Logic is an elegant and powerful logical theory that is used in 

computer science as a theoretical model for computation. Its algebraic structure 

supports self-application and is Turing-complete. However, contrary to Lambda 

Calculus, it untangles the problem of substitution, because bound variables are 

eliminated by inserting specific terms called Combinators. It was introduced by 

Schönfinkel (1924) and Curry (1930). Combinatory Logic uses just one algebraic 

operation, namely combining two terms, yielding another valid term of 

Combinatory Logic. Terms in models of Combinatory Logic look like some sort 

of assembly language for mathematical logic. A Neural Algebra, modeling the 

way we think, constitutes an interesting model of Combinatory Logic. There are 

other models, also based on the Graph Model (Engeler 1981), such as software 

testing. This paper investigates what Combinatory Logic contributes to modern 

software testing. 
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The Organon 

 

Aristotle’s legacy regarding formal logic has been transferred to us in a 

collection of his thoughts compiled into a set of six books called the Organon 

around 40 BCE by Andronicus of Rhodes or others among his followers 

(Aristoteles 367-344 BCE). The Organon with its syllogisms was the dominant 

form of Western logic until 19
th
-century advances in mathematical logic. 

Engeler recently noted the apparent lack of something that we today consider 

fundamental for axiomatic geometry: relations. The question is why. Aristotle had 

the means of developing this concept as well; however, he chose not to do so.  

Aristotle had the means of combining predicates. It is therefore possible to 

construct an adequate model for Aristotle’ syllogism based on the structures of 

Combinatory Logic. Relations then become part of the model. Engeler shows that 

Aristotle had no need for relations because the main model he used – the 

Euclidean Geometry – does not require relations (Engeler 2020).  
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Introduction 

 

A model of Combinatory Logic is an algebraic structure implementing 

combinators in a non-trivial way. Such a model is called Combinatory Algebra. As 

a minimum, it contains implementations for the   combinator (identity), the   

combinator for extracting parts of another term, and the   combinator that 

substitutes parts of a term by some other combinator. Another famous combinator 

is the Fixpoint Combinator  , explaining recursion and possible infinite iteration. 

These specific combinators are represented as Constants in the language of 

Combinatory Logic, whereas other terms may contain Variables. These general 

terms are called Combinatory Terms (Bimbó 2012, p. 2); the combination of any 

two terms   and   is written as    . 

Given a problem as a term   in some suitable model, what should be its 

solution? A problem is something that displays specific behavior, sometimes 

unpredictable, and produces specific effects, often unwanted. Also, a certain 

persistence is part of a problem; problems that disappear by themselves are not 

particularly exciting.  

A fixpoint point     with the property that       (   ), for any term   

of Combinatory Logic, is thus something like a solution to the problem  . You can 

apply the solution combinator   as many times as necessary and the problem 

solution remains stable and confined. 

When we encounter the problem of how to test a piece of software  , and we 

have a test suite     with the fixpoint property, it looks like a solution to our 

testing problem. Since we can measure tests, by counting its test size, we can 

assess what means minimal effort for a test, and thus can get an optimum. 

The clue to Combinatory Logic is that “everything is a function” – and 

indeed, a unary function. Whenever anything can be understood as function 

depending on two variables –  (   ) – it is an application of a unary function 

      on a variable  . Thus,  (   )   ( )  (   )        ; always 

assuming association to the left. This is known as Currying, converting n-ary 

functions into a sequence of unary functions. 

 

 

Combinatory Algebras 

 

Combinatory Algebras are models of Combinatory Logic (Curry and Feys 

1958, Curry et al. 1972). Such algebras are closed under a combination operation 

    for all terms of the algebra    ; and two distinct Combinators   and   can 

be defined with the following properties: 

 

         (1) 

and 

              (   ) (2) 
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where       are elements in the combinatory algebra
1
.  

Thus, the combinator   acts as projection, and   is a substitution operator for 

terms in the combinatory algebra. Like an assembly language, the  -  terms 

become quite lengthy and are barely readable by humans, but they work fine as a 

foundation for computer science. 

The power of these two operators is best understood when we use them to 

define further, more manageable, and more reasonable combinators. Church 

(Church, 1941) presented a list of functions that can be implemented as 

combinators, and Zachos investigated them in the settings of Combinatory Logic 

(Zachos 1978). Bimbó (2012, p. 6) gives a good overview; however, without 

reference to the original contributors. We present here only a few. 

 

Identity 

 

The identity combinator is defined as  

         (3) 

 

Indeed,                 (   )   . Association is to the left. 

 

Functionality by the Lambda Combinator 

 

Church’s Lambda Calculus is a formal language that can be understood as a 

prototype programming language (see Church 1941, Barendregt 1977). 

Lambda calculus can be expressed by  -  terms. We define recursively the 

Lambda Combinator    for a variable   as follows: 

 

        (4) 

          if   different from   (5) 

               (    ) (6) 

 

The definition (5) holds for any variable term   in the combinatory algebra. 

We can extend the definition of the Lambda combinator by getting rid of the 

specific variable  . For any combinatory term  , the Abstraction Operator     is 
defined on   recursively by applying    to all sub-terms of  . Applying      to 

any other combinatory term   replaces all occurrences of the variable   in the 

term   by   and is written as (    )  . 

The abstraction operator binds weaker than the combination operator. Thus, 

    binds all variables   in    , such that we can omit parentheses as in 

            (   ). Lambda abstraction provides a much more readable and 

intuitively understandable notation for terms of Combinatory Logic. 

 
  

                                                 
1
The use of variables named       is borrowed from Engeler (2020).  
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The Fixpoint Combinator 

 

Given any combinatory term  , the Fixpoint Combinator   generates a 

combinatory term    , called Fixpoint of  , that fulfills        (   ). This 

means that   can be applied as many times as wanted to its fixpoint and still yields 

back the same combinatory term.  

In linear algebra, such fixpoint combinators yield an eigenvector solution to 

some problem  ; for instance, when solving a linear matrix. It is therefore tempting 

to say, that     is a solution for the problem  . For more details, consult Fehlmann 

(2016). 

Using Lambda Calculus notation, the fixpoint combinator can be written as 

(Barendregt 1984):  

 

       (     (   )) (     (   )) (7) 

 

Translating (7) into an  -  term proves possible, becomes a bit lengthy but 

demonstrates how Combinatory Logic works. 

By applying (6), (5): 

 

                (   )                  

           

 

Then applying (6) and (4) 

 

        (           )  

  (     )  

yields 

 

      (   )    (   ) (     )  

and therefore 

 

      (     (   )) (     (   ))  

     (  (   ) (     )) (  (   ) (     ))  

    (     (   ) (     )) (     (   ) (     ))  

    (  (     (   ))         ) (  (     (   ))         )  

 

Now solving the remaining  -terms: 

 

      (   )                 

         (   ) (           )  

    (   ) (  (   )  )  

considering 

            

and  

                      (   )  .  
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The latter holds by first applying (6), then (5) and (4). Moreover 

 

                         

                      (           ) (   )  

                      (  (   ) (   )) (   )  

applying again (6) and (5). 

Putting things together: 

 

      (     (   )) (     (   ))  

 
   (  (  (   ) (  (   )  )) (  (  (   ) (   )) (   ))) 

        (  (  (   ) (  (   )  )) (  (  (   ) (   )) (   ))) 
 

 

Applying   to any combinatory term   now explicitly transports   on the top 

of the formula and keeps the rest of the structure of   such that   can be applied 

repeatedly.  

This exercise should give the reader an impression how Combinatory Logic 

works. 

Applying the fixpoint combinator   to some combinator Z in the Lambda-

style is much simpler:  

 

 

   (     (   )) (     (   ))   

 (     (   )) (     (   )) 

        (     (   )) (     (   )) 

 

 

by applying the Lambda combinator twice, replacing the two     twice by 

     (   ). Thus, this explains reasoning as a repeated substitution process. 

When applying  , or   , or any other equivalent fixpoint combinator to a 

combinatory term Z, reducing the term by repeatedly using rule (1) or (2) does not 

always terminate. An infinite loop can occur, and must sometimes occur, 

otherwise we would always find a solution to any problem that can be stated 

within a programming language. Thus, Turing would be wrong and all finite state 

machines would reach a finishing state (Turing 1937). 

Thus, the fixpoint combinator is not the solution of all our practical problems. 

But Engeler teaches us in his Neural Algebra fixpoints can be approximated using 

a Construction Operator (Engeler 2019), see below. 

For more details about the foundations of Mathematical Logic, see for 

instance Potter (2004). 

 

 

Arrow Terms 

 

The Graph Model of Combinatory Logic (Engeler 1995) is a model of 

Combinatory Logic with explains how to combine topics in areas of knowledge. 

Combination is not only on the basic level possible; you can also explain how to 
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combine topics on the second level; sometimes called meta-level. Intuitively, we 

would expect such a meta-level describing knowledge about how to deal with 

different knowledge areas.  

Whenever two terms   and   are embodied in a combinatory algebra, the 

application of   onto   is also a term of this combinatory algebra, denoted as 

   . 

Let   be the set of all assertions over a given domain. Examples include 

statements about customer’s needs, solution characteristics, methods used, 

program states, test conditions, etc. These statements are assertions about the 

domain we are dealing with. This could be a business domain, or the state of some 

software, i.e., the description of the values for all controls and data.  

An Arrow Term is recursively defined as follows: 

 

o Every element of   is an arrow term. 

o Let           be arrow terms. Then 

 *       +    (8) 

 

is also an arrow term. Thus, arrow terms are relations between finite subsets of 

arrow terms and another arrow term, emphasized as successor. 

For instance, in software testing, we use arrow terms to represent test cases. On 

the base level, the left-hand sides         represent test data, the term   is the 

known expected response of the test case (8). Higher levels of arrow terms 

represent test strategies and tests of tests. 

The left-hand side of an arrow term is a finite set of arrow terms and the right-

hand side is a single arrow term. This definition is recursive. The arrows are a 

formal graph notation; they might suggest cause-effect, not logical imply. 

 
The Graph Model as an Algebra of Arrow Terms 

 

We can extend the definition of arrow terms to become a combinatory algebra, 

allowing for the combination of arrow terms.  

Denote by  ( ) the power set containing all Arrow Terms of the form (8). 

The formal, recursive, definition of the Graph Model as a power set, in set-

theoretical language, is given in equation (9): 

 

 

     ( )        
    ( )        

  ( )  {*       +   |            ( )    } 
(9) 

 

for              ( ) is the set of all (finite and infinite) subsets of the union of 

all   ( )  
 

  ( )  ⋃    ( )

   

 (10) 
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The elements of   ( ) are arrow terms of level  . Terms of level   are 

Assertions, terms of level   Rules. A set of rules is called Rule Set (Fehlmann 

2016). In general, a rule set is a finite set of arrow terms. We call infinite rule sets a 

Knowledge Base. Hence, knowledge is a potentially unlimited collection of rules 

sets containing rules about assertions regarding our domain. 

 

Combining Knowledge Bases 

 

We can combine knowledge bases sets as follows: 

 

     * | *          +           + (11) 
 

Arrow Term Notation 

 

To avoid the many set-theoretical parenthesis, the following notations, called 

Arrow Schemes, are applied: 

 

o    for a finite set of arrow terms,   denoting some finite indexing function 

for arrow terms. 

o    for a singleton set of arrow terms:    * + for an arrow term  . 

o   for the empty set, such as in the arrow term    . 

o       for the union of two sets    and    of arrow terms. 

o ( ) for a potentially infinite set of arrow terms, where   is an arrow term. 

 

Note that arrow schemes denote sets when put into outermost parenthesis. 

Without an index, the set might be infinite; an index makes the set finite.  

The indexing function cascades; thus,      denotes the union of a finite number 

of sets of arrow schemes 

 

                               ⋃    

 

   

 (12) 

 

In terms of these conventions, (    )  denotes a rule set; i.e., a non-empty 

finite set of arrow terms, each having at least one arrow. Thus, such set has level 1 

or higher. Moreover, it has two selection functions,   and  , selecting a finite 

number of arrow terms for   and     . 

With this notation, the application rule for   and   reads: 

 

     ((    )  (  ))  * |             + (13) 
 

Arrow Terms – A Model of Combinatory Logic 

 

The algebra of arrow terms is a combinatory algebra and thus a model of 

Combinatory Logic. It is called the Graph Model. 
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The following definitions demonstrate how arrow terms implement the 

combinators   and   fulfilling equations (1) and (2). 

 

o   (    ) is the Identification; i.e., (    )  ( )  ( ) 
o   (      ) selects the 1

st
 argument: 

   ( )  ( )  ((      )  ( ))  ( )  (   )  ( )  ( ) 

o    (      ) selects the 2nd argument: 
   ( )  ( )  ((      )  ( ))  ( )  (    )  ( )  ( ) 

o   ((   (    ))
 
 (    )  (         ))  

 

Therefore, the algebra of arrow terms is a model of Combinatory Logic. 

The proof that the arrow terms’ definition of   fulfils equation (2) is somewhat 

more complex. Readers interested in that proof are referred to Engeler (1981, p. 

389). With   and  , an abstraction operator can be constructed that builds new 

knowledge bases. This is the Lambda Theorem; it is proved along the same way as 

Barendregt’s Lambda combinatory (Barendregt 1977). See also in Fehlmann 

(1981, p. 37). 

 

The Role of the Indexing Function in Arrow Terms 

 

The arrow in the terms of the Graph Model is somewhat confusing. It is easily 

mistaken as representing Predicate Logic; however, this must be viewed with care. 

Interpreting the arrow as an implication in predicate logic is not per se dangerous. 

In some sense, logical imply is a transition from preconditions to conclusion and 

arrow terms are fine for representing them. The problem is that if the left-hand side 

of an arrow term, which is an otherwise unstructured set, is interpreted as a 

conjunction of predicates – a sequence of logical AND-clauses – you run into a 

conflict with the undecidability of first-order logic. Arrow terms would then 

reduce to either of the form      or    . This reduces the model to become 

the trivial one.  

As an example, see Bimbó (2012, p. 237ff). There she explains how typed 

Combinatory Logic gets around the triviality problem. Instead of the indexing 

functions, selecting finite sets of arrow terms on the left-hand side, she postulates 

proofs for the predicates.  

Thus, the indexing function for selecting elements of a finite set of arrow 

terms is a key element of the Graph Model. Interested readers will find related 

considerations in the paper of Fehlmann and Kranich (2020). For the application 

of the Graph Model to testing, the indexing function means selection of test cases 

and test data, and this is always a collection of program state predicates that do 

typically not leave the program under test in a consistent state. 
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Neural Algebra  

 

Engeler uses the Graph Model as a model how the brain thinks (Engeler 2019). 

A directed graph, together with a firing law at all its nodes, constitutes the 

connective basis of the brain model  . The model itself is built on this basis by 

identifying brain functions with parts of the firing history. Its elements may be 

visualized as a directed graph, whose nodes indicate the firing of a neuron. As 

before, we consider  ( ), constructed as in (10). The elements of  ( ) are called 

Cascades. Cascades describe firing between nodes (neurons) when represented by 

finite sets of arrow terms      where    are sub-cascades, while the right sub-

cascade   describes the characteristic leave of its firing history graph. The Neural 

Algebra is defined as a collection of cascades representing brain functions in the 

brain model, closed under applications and union. With the application rule (13), 
we have an algebraic structure; the application representing brain functions, 

interpreted as thoughts. 

 

The Fixpoint Combinator in the Neural Algebra 

 

The fixpoint combinator   can be written as an arrow scheme; however, this 

calculation is better left to some suitable rewriting tool, as otherwise this article 

would exceed all reasonable length. Applying   to an arbitrary arrow scheme 

might result in an infinite loop of arrow schemes, representing a never-ending 

computation. Combinatory Logic, as any kind of programming, may result in an 

infinite loop in its model, and it is not decidable when this happens.  

If infinite loops occur, or infinite sequences of digits like for real numbers that 

are not rationales, we need the notion of controlling operators that approximate the 

possibly infinite solution, and metrics for measuring how near the approximations 

to the solutions are, and get even nearer when required. 

 

Reasoning, Problem Solving and Controlling 

 

Within this setting, it is possible to define models for reasoning and problem 

solving. However, not only flat reasoning, also for solving problems, even if their 

fixpoint is infinite. For a controlled object  , the Controlling Operator   solves 

the control problem      . The brain function   gathers all faculties that may 

help in the solution. The control problem is a repeated process of substitution, like 

finding the fixpoint of a combinator. However, since cascades are always finite – 

all brain activity remains finite, unfortunately – solving the control problem is by a 

series of finite Attractors, a control sequence            determined by 

 

               (14) 
 

starting with an initial   . This process is called Focusing. The details can be found 

in Engeler (2019, p. 301). We will rely on the observation that attractors represent 

reasoning in a neural algebra. 
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Attractors are ordered by inclusion (14), meaning that the solution space 

becomes smaller and smaller until a smallest possible solution is found that cannot 

be further reduced by the controlling operator. It is possible that this ultimate 

solution remains empty.  

The controlling operator is closely linked to the fixpoint operator  . If   has a 

solution    , then   is of the form       for some suitable cascade  . Thus, 

not all combinators   have a solution; the related control sequence may end with 

the empty cascade, obviously. These considerations share a stunning resemblance 

with transfer functions, whose solution profiles are also approximations rather than 

precise solutions (Fehlmann 2016, p. 14). 

The controlling operator is not like one of the basic or the fixpoint combinators 

but is more of a prescription, how to find suitable attractors. Engeler (2019, p. 

300ff) presents in an elegant way representations of basic thought processes, e.g., 

reflection, discrimination, simultaneous and joint control, but also learning, 

teaching, focusing with eyes, and comprehension. 

Since the number of cascades that a brain can produce is finite and limited – 

by the lifespan of the brain – solution to the fixpoint control problems turn out to 

be finite attractor sequences, characterizing thought processes. 

 

 

Transfer Functions 

 

For managing complex systems, transfer functions are used to analyze controls 

and approximate the expected result (Fehlmann 2016). 

An obvious interpretation of arrow terms is by transfer functions. In Quality 

Function Deployment (QFD), the building blocks – and the origin – are cause-

effect relations as used in Ishikawa Diagram (Ishikawa and Loftus 1990). These 

diagrams describe the cause-effect relations between topics and are considered the 

initial form of QFD matrices. Converting a series of Ishikawa diagrams into a QFD 

matrix is straightforward (see Fehlmann 2016, p. 231). Thus, transfer functions can 

be described by finite sets of arrow terms. 

 

Deming Chains 

 

Composition of transfer functions is called a Deming Chain (Fehlmann 2016, 

p. 100) because Deming identified the value chains in manufacturing processes 

(Deming 1986). Akao called it Comprehensive QFD, also known as QFD in the 

Large. He drafted extensive Deming chains in this famous book on QFD (Akao 

1990). 

For transfer functions, the Graph Model provides similar services as for tests. 

The model proves that transfer functions have universal applicability and power 

for explaining cause-effect, and they provide a framework for automation also for 

Deming chains (Fehlmann 2001).  
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The Algebra of Tests 

 

Very interesting instantiations of the Graph Model can be found in Software 

Testing, especially when seen from an economical viewpoint. In fact, test cases are 

best described as arrow terms, with the left-hand sides describing program states 

before executing the test, and the right-hand side describing the response of the 

test case. Software testing is the key to digitalization and to software-intense 

products that perform safety-critical tasks. 

Test cases are a mapping of arrow terms onto Data Movement Maps. Data 

movement maps model the software under test by identifying the data groups 

moved by the software, based on the ISO standard 19761 COSMIC (ISO/IEC 

19761 2011). This has been explained in more detail in Fehlmann (2020). The data 

movements induce a sizing valuation on this algebra by counting the number of 

data movements executed per test case.  

When we speak of test cases, we always intend a suitable data movement map 

with it; thus, the same arrow term can be mapped to several data movement maps, 

counting as separate test cases.  

 

State Assertions 

 

For our Test Algebra, we now assume   to be the set of all state assertions for 

a given program. We use the term “program” but mean a system that might consist 

of coded software, services, or anything yielding results electronically. Learning 

machines also are “programs” in that sense even if it is not the code that implements 

learning, rather the learned knowledge itself. Elements of   are descriptions of the 

system status, or the knowledge such as system has, at a certain moment. In the 

sequel, the arrow term      together with its associated data movement map 

represents a test case, that, given test data   , yields   as the expected, correct 

result (Fehlmann 2020, p. 85ff).  

If      is a test case,      specifies a set of test data that holds before 

executing the test, and     the state of the program after execution. The finite 

set    represents the states before execution of possible unrelated threads of the 

program, or services involved.  

 

Testing Complex Systems 

 

Usually, unit tests that ensure the proper functioning of software modules are 

available because they originate from the software development process (Junit 

Team 1997ff). The integration of modules and components and building systems 

of systems, or other complex products, requires many more tests, among them 

end-to-end tests that cause huge efforts. Most often, the time slots available for 

testing are used up to accommodate additional or forgotten user requirements. 

Consequently, with respect to functionality, the more important tests become when 

creating complex products, the less tests are executed, by lack of time and 

resources. Attempts to execute tests automatically do not address the lack of good 

test cases for complex products. There are the test cases that need to be created 
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automatically. This approach is called Autonomous Real-time Testing, to point out 

that testing effort always must remain limited. It addresses the problem how to 

automatically create test cases by Artificial Intelligence, namely by generating test 

cases using Combinatory Logic and selecting the relevant ones using ISO/IEC 

16355 (ISO/IEC 16355-1 2015). The approach is explained in Fehlmann (2020). 

 

Combining Tests 

 

The definition (13) explains how to combine test cases. To apply one set   of 

test cases to another  , it is required that for testing the assertion  , test cases 

     exist such that (    ) in   has effectively been tested. Consult last the 

paper of Fehlmann and Kranich (2020) for more information about the existential 

quantifier in (13). 

The intuitionistic, or constructive, variant of the Axiom of Choice requires not 

only the existence of test providing valid test data as response, but construction 

instructions for the existence of such tests, respectively the related test cases. This 

means that it is not enough to know the existence of tests, but you need to know 

how to construct them. This is possibly the reason why test automation has proven 

to be so hard. 

And for those who consider such reasoning too theoretical, let us provide a 

rather practical argument: programmers who want to set up test concatenation 

    for automatic testing, need access to the test cases in   that provide the 

responses needed for  , for combining   with  . Otherwise, combining tests is 

unsafe or cannot be automated. Thus, with the combinatory algebra of arrow terms, 

mathematical logic meets both intuitionism and programming. 

 

Combination Limitations 

 

Combining tests in a Combinatory Algebra is unlimited indeed because there 

is no typing involved that governs applicability. By (13), you can combine test 

cases across test stories as deemed appropriate; all that counts are that the test 

cases remain executable. This means that two test cases must not only be linked by 

its assertions, but also executable code must exist that combine these two test 

cases. In terms of software, two data movement maps representing the test case 

executions must exist that overlap. 

 

The Size of Tests  

 

For a testing framework, we need to be able to measure the size of tests. The 

standard ISO/IEC 19761 COSMIC for measuring functional size serves as 

measuring method. The functional size of the associated data movement map is 

the size of a test case, denoted by    (  
    ), where   

    ( ) and    
  ( ) are arrow terms of level 0; i.e., assertions about the state of the program. 

   (  
    ) is the number of unique data movements touched when executing 

the test case   
    . This is the recursion base.  
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Then the following equations (15) recursively define the size of tests: 

 

 

⌊ ⌋            ( ) 
⌊    ⌋     (    )          ( )         ( ) 

⌊    ⌋  ∑⌊  ⌋  ⌊ ⌋

 

                            
(15) 

 

The definition holds for all arrow terms in the algebra of tests. 

The addition does not take into consideration whether data movements are 

unique; thus, the size of two test cases is always the sum of the sizes. When 

speaking about tests, we do not use the term knowledge base for sets of arrow 

terms, but rather Test Story for a set of test cases. Test stories typically share a 

common intent, or business value. 

 

The Functional Size of Combinators 

 

Applying the definition (15) to the combinators      , and   yields an infinite 

size for each of them, because the arrow term sets are infinite. This is conformant 

to the observation that when expressing these combinators as terms in the Lambda 

calculus, they are closed insofar as they do not contain free variables nor constants.  

 

Autonomous Real-time Testing 

 

In Fehlmann (2020), we coined the term Autonomous Real-time Testing 

(ART) to describe software tests that are 

 

o Executed automatically in a system during operations, or when pausing 

operations; 

o Started from a base test using recombination and other operations of 

combinatory algebra by adding autonomously generated test cases; 

o Controlled by transfer functions assuring relevance for users’ values. 

 

In previous papers and the book referenced about, we have explained how to 

keep the growth of test cases under control, using the Convergence Gap as a hash. 

The convergence gap in transfer functions measures the gap between the needs – 

of the customer, the user, certification authority, or else – and the achieved test 

coverage. Consult the paper of Fehlmann and Kranich (2020).  

 

Attractors 

 

While the fixpoint combinator   works as above on sets of test cases, in most 

cases, it returns infinite tests as “solutions” – something not too practical. However, 

we can construct attractors for neural algebra, approximating the infinite testing 

set, as good as we wish. This creates a new problem for us, namely, to assess: 

when is testing good enough? 
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While good practices can provide answers – e.g., by looking at the remaining 

defect rate (Fehlmann and Kranich 2014) – a more theoretical answer should 

include at least the requirement that attractors cover functionality. That is the 

significance of the Convergence Gap, explained in Fehlmann (2020, p. 10). 

Let    denote a finite set of user stories, and    another set of test stories, 

usually somewhat larger than the set of user stories. The matrix       maps test 

stories to user stories and becomes a transfer function, if each cell contains the size 

⌊(    ) ⌋ of all test cases (    )  belonging to some test story    and 

referring to some user story, or FUR   . This yields a matrix: 

 

   (⌊(    ) ⌋)    (16) 

 

The indices of the matrix run over integers      . 

The transfer function   maps test stories to user stories, and we call it Test 

Coverage Matrix because you can assess how good test stories cover user stories.  

Let user stories be prioritized, say by some Goal Profile  . The goal profile 

characterizes priorities by a unit vector in the space of the alternatives under 

consideration. Then the transfer function   can be applied to a Solution Profile  , 

describing the importance of the test stories, and    is the result of applying   to 

this solution profile. Obviously     ; however, the difference ‖   ‖ is 

interesting. If this difference is small, then the solution profile   represents an 

optimum selection of test stories, meaning that tests cover what is relevant to the 

user’s goal profile. 

Optimum solution profiles can be calculated using the eigenvector method 

(Fehlmann 2016, p. 34). Let    be the Principal Eigenvector of    , solving the 

eigenvalue problem (17) for some    . 

 

           (17) 

 

The principal eigenvector    is called the Achieved Profile of the transfer 

function  . Both,   and    are Profiles. This means, their vector length ‖ ‖    

respectively ‖  ‖    are both one, where ‖ ‖ represents the Euclidean Norm 

for vectors. The difference between a goal profile and an achieved profile is called 

Convergence Gap: 

 

                 ‖    ‖ (18) 

 

The convergence gap is a metric that measures how well a transfer function 

explains the observed profile with suitable controls. The controls are the test 

stories; the observed profile compares with the goal profile of the user stories’ 

relevance for the user of the software or the system. Note that computing the 

achieved profile is very often not straightforward, as it is in our case where we can 

make use of simple linear algebra. 

We can now construct attractors as a series            of test coverage 

matrices that approximate the test suite that we need to cover our functional 
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requirements. However, the attractors must all keep the convergence gap und 

control, meaning that for a certain     and all attractors    holds: 

 

                (  )  ‖      ‖    (19) 

 

Thus, our constructor   must construct an ascendant series            such 

that both (19) and (20) holds: 

 
              

            
(20) 

 

The constructor   therefore is an intelligent search in a wide range of potential 

attractors, keeping the convergence gap small enough. Such a series of attractors is 

called bound, namely by the convergence gap. In fact, bound attractors constitute a 

formal way to solve all kind of issues normally tackled by Artificial Intelligence. 

The hash functions used for measuring the convergence gap, might be considerably 

more complicated than in the case of test size.  

 

Optimum Test Size 

 

For a test coverage matrix   (⌊(    ) ⌋)   , the total test size of   is  

 

 ⌊ ⌋  ∑(⌊(    ) ⌋)   
   

       (21) 

 

If           , then ⌊  ⌋  ⌊  ⌋  ⌊  ⌋    also holds.  

 

Combinations of tests can be used, as well as applying any special combinator 

such as projection or substitution to generate new test cases.  

Bound attractors build up a test suite by adding more tests to the test coverage 

matrix  . The convergence gap must not necessarily decrease. In contrary, adding 

more tests can spoil the convergence gap, for instance if some test story gains too 

much weight and inflate the respective user stories’ achieved profile.  

Constructing a suitable constructor   is all but simple, nor straightforward, 

because adding more tests does not solve a problem. In view of executing such 

tests on a machine, the number of tests must not only remain finite but also limited 

to some manageable number. Thus, the question how to select relevant test stories 

out of the many possible combinations must be answered. An answer is proposed 

in Fehlmann and Kranich (2019). Moreover, based on sensitivity analysis for 

linear matrices, the authors will present sample attractors for software and system 

testing at the upcoming (2022) ATINER’s conference on Information Technology 

& Computer Science (Fehlmann and Kranich 2022). Sensitivity analysis speeds up 

the selection of the new test cases. Thus, it seems that the problem of effectively 

create autonomous tests for large and complex systems can be solved. 

For practical applications, combining unit tests from related domains such as 

steering control of an autonomous vehicle with weather forecast is always feasible 
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to construct attractors for a system test of this autonomous vehicle. The 

convergence gap enforces that such test combinations cover the full range of test 

cases relating to both steering control, and process weather forecast services; 

otherwise, some test stories would grow beyond limits. 

There is an optimum number of attractors delivering enough tests to fit the 

test intensity required by the user of the system, and test size that still can be 

executed within a limited time frame. Computing that optimum is an important 

task for product management, and, depending upon safety and privacy criticality, 

must be carefully chosen to make such a product acceptable for the society.  

 

 

Conclusions 

 

It has been shown that Aristotle’s Mental Completion leads to feasible 

solutions for actual challenges and problems. His understanding of recursion as a 

mentally completed inductive definition of a concept (Engeler 2020) allows 

developing the techniques necessary for testing modern, complex systems of 

systems, including cyber-physical systems that impact people’s life and health. 

Following Engeler, we identified constructors as a general prescription for 

constructing attractors that serve as approximations to solutions for problems. 

Effective methods and algorithms exist for such constructions in the algebra of 

tests, as shown in Fehlmann and Kranich (2020), and in Fehlmann (2020). Linking 

attractors to fixpoint operators, in a very practical setting, has potentially a high 

economic impact in the Fourth Industrial Revolution (Schwaab 2017), in the realm 

of cyber-physicals systems such as autonomous cars, intelligent medical 

instruments, virtual reality, and more. 

 

 

Open Questions 

 

Why did Aristotle not invent relations? Because he had no use for them 

(Engeler 2020, p. 12). Euclidean geometry went without relations. So why do we 

not yet know combinators for software testing? Because we are probably just now 

finding out what they could be good for?  

The authors are currently developing ideas how actual constructors look for 

software and system testing, as well as for Artificial Intelligence. However, 

whether there are some general rules to follow, besides Combinatory Logic, or if 

every testing domain requires its own constructors and attractor series, remains 

open. 

Obviously, there are more open questions than we can mention here. Maybe 

this is a step toward the New Kind of Science that Stephen Wolfram (2002) 

promised us in the early years of this century? Is the approach presented in this 

paper potentially fruitful not only to Artificial Intelligence, Neuroscience, and 

system testing? What else could we describe by a constructor and by attractors? 

Thus, better understanding what we are doing, and why? 
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Why are we doing theoretical stuff like logic and other basic sciences? Maybe 

the answer is because this is the way to new business models and more efficient 

progress in applied sciences? Probably the only sure way? Because otherwise you 

get lost in the jungle? Without hope for finding an exit. 

Do we offer young engineers enough education in basic sciences? Once they 

have mastered that, they can apply the basic findings to any applied technical or 

scientific area they care for. 
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