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Properties of 3-Triangulations for p-Toroid 
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In this paper, a method for constructing a toroid and its decomposition into 
convex pieces is considered. A graph of connection for 3-triangulable toroid is 
introduced in such a way that these pieces are represented by graph nodes. It is 
shown that connected, nonorientable graph can serve as a graph of connection 
for some of the toroids. The relationship between graphs that can be realized on 
surfaces of different genus and corresponding toroids is considered. 
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Introduction 
 

Polyhedron and d-dimensional polytope are generalizations of the term 
polygon in 3-dimensional and d-dimensional space. We can also generalize the 
process of triangulation into higher dimensions. Originally, triangulation is dividing 
a polygon with n vertices by n − 3 diagonals into n − 2 triangles and this can always 
be done. We shall use the same term - triangulation for its generalization in higher 
dimensions, or more specifically 3-triangulation, d-triangulation. In these cases, 
using only the original vertices, for 3-triangulation we divide the polyhedron into 
tetrahedra and for d-triangulation the d-polytope into d-simplices. Triangulation 
problems especially in 2- and 3-dimensional space and other types of polyhedron 
decomposition have significant applications in engineering and other fields of 
research (Zhang et al. 2018, Zhang et al. 2020). 

But even for triangulation in 3-dimensional space, two new problems arise. 
The first is that it is not possible to triangulate certain non-convex polyhedra. One 
example is the famous Schönhardt’s polyhedron (Schönhardt 1928). Another 
problem is, although it is possible to triangulate all convex polyhedra, different 3-
triangulations of the same can have different numbers of tetrahedra (Edelsbrunner 
et al. 1990, Sleator et al. 1988, Stojanović 2005). This is the reason to consider the 
smallest (minimal) and the largest (maximal) number of tetrahedra in triangulation. 
It is shown that such values, linearly, resp. squarely depend on the number n of 
vertices. 

Some properties of 3-triangulation for p-toroids will be considered, when 
triangulation is possible. A polyhedron topologically equivalent to a p-torus (i.e., 
sphere with p handles, p N∈ is a given natural number) is a p-toroid. The 
inspiration for this consideration was Szilassi (2005) definition of the torus-like 
polyhedron, which he called toroid. Here term “toroid” will be used as a common 
name for p-toroids for any p N∈ , and Szilassi’s toroid would be called 1-toroid.  
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Under certain conditions, it is possible to 3-triangulate some toroids, although 
there are not convex. Examples of such 1-toroids are given in (Bokowski 2005, 
Császár 1949, Szilassi 1986, 2005, 2012); e.g., the Császár’s polyhedron is 1-toroid 
with the smallest number of vertices. It has 7 vertices and it is triangulable with 7 
tetrahedra. It was also discussed as a polyhedron without diagonals (Császár 1949, 
Szabó 1984, 2009). Additional examples of toroids are given in (Stojanović 2015, 
2017, 2021, 2022) and some properties of their 3-triangulations are considered. 

Here, after a brief overview of the previous results and the definitions of the 
necessary terms, a method for constructing a toroid based on a given graph as its 
graph of connection is given. Examples of p-toroids obtained in the introduced way 
will then be given with a discussion on the number p of the handles. Also for such 
toroids, the numbers of vertices and tetrahedra necessary for its 3-triangulation are 
calculated. These examples show that the number of tetrahedra is such that the 
lower limit given in the Theorem 1 (Stojanović 2022) is tight. 
 
 
Preliminaries 
 

The general properties of 3-triangulation of polyhedra are given first, and then 
properties for toroids. Necessary terms are introduced together with previously 
proven statements. Several examples are given to illustrate the introduced properties.   
 
3-Triangulations of Simple Polyhedra  
 

Although it is possible to triangulate all convex polyhedra, this is not the case 
with some of non-convex ones. A famous example of such a non-convex 
polyhedron was given by Schönhardt (1928) and shown in Figure 1. To obtain this 
polyhedron, we start with the trigonal prism A1B1C1A2B2C2 and triangulate its 
lateral faces with diagonals A1B2, B1C2 and C1A2. After that, we ‘twist’ the top basis 
A2B2C2 for a small amount in the positive direction. Then none of the tetrahedra 
with vertices in the set S = {A1, B1, C1, A2, B2, C2} would be inner. For example, the 
tetrahedron A1B1C1B2 has an edge C1B2 outside the Schönhardt’s polyhedron. 
Tetrahedra A1C1A2B2 and B1C1B2C2 also contain the edge C1B2. For other 
tetrahedra with vertices in S, the situation is combinatorially the same as in some of 
the previous cases. Therefore, this polyhedron cannot be triangulated. 
 
Figure 1. Schönhardt Polyhedron 
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Considering the smallest number of tetrahedra in the 3-triangulation of a 
polyhedron with n vertices we got that it is n − 3. E.g. such a polyhedron is pyramid 
Vn-1 with n − 1 vertices in the basis and the apex, i.e., a total of n vertices. We can 
3-triangulate it as follows: do any 2-triangulation of the basis into (n − 1) − 2 = n − 
3 triangles. The apex together with each of such triangles makes one of the 
tetrahedra in 3-triangulation.  

The triangular prism Π with bases A1B1C1 and A2B2C2 has 6 vertices and is 
also 3-triangulable with 3 tetrahedra. Actually, a triangular prism Π can be 
considered as a ‘pyramid’ with apex A2 and spatial pentagon 1 1 2 2 1A B B C C  as the 
basis.  

But not all polyhedra have the same property to have 3-triangulation with n − 3 
tetrahedra. For example, bipyramids with n − 2 (n ≥ 5) vertices in the basis and two 
apices can be triangulated in two different ways so that triangulations have 
respectively 2(n − 4) and n − 2 tetrahedra. Thus, a bipyramid with vertices A, B, C 
in the basis and apices V1 and V2 can be divided into two pyramids ABCV1 and 
ABCV2 in the first triangulation or into ABV1V2, BCV1V2 and CAV1V2 in the second. 
A special case of the bipyramid is the octahedron - a polyhedron with 6 vertices. It 
always gives 4 tetrahedra in 3-triangulation.  

3-Triangulations that give small and especially minimal number ( minT ) of 
tetrahedra are examined in (Edelsbrunner et al. 1990, Sleator et al. 1988, Stojanović 
2005).  
 
Toroids and 3-Triangulation 
 

We shall start with the term p-torus. In surface theory, it is defined as a cyclic 
polygon with paired sides. Any side s and its pair S are oppositely directed related 
to the fixed orientation of the polygon and then glued together. By a standard 
combinatorial procedure - the polygon can be divided and glued to a cyclic normal 
form a1b1A1B1a2b2A2B2...apbpApBp, as a p-torus. This combinatorial procedure is 
independent of the future spatial placement of the surface. So, from any spatial knot 
(as a topological circle in the space) we can form a p-torus. Of course, its surface 
can be 2-triangulated to be a surface of polyhedron. 

Based on Szilassi’s (1986) definition the term p-toroid is introduced 
(Stojanović 2021, Stojanović 2022). 
 
Definition 1. A polyhedron solid is called p-toroid, p N∈ , if it is topologically 
equivalent to a sphere with p handles (p-torus). 

 
As mentioned earlier, the term toroid will be used here as a common name for 

all p-toroids. 
Császár’s polyhedron is an example of a 1-toroid with the smallest number of 

vertices - 7. Its skeleton is the full graph with seven vertices that can be drawn on 
the torus, and so it has no diagonals. In Wolfram Demonstrations Project Szilassi 
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(Szilassi 2012) shows that Császár’s polyhedron is 3-triangulable with 7 tetrahedra 
and it is a 1-toroid. 

In (Szilassi 2005) Szilassi introduced regular 1-toroid. It is 1-toroid whose 
each face has a edges, and exactly b edges meet at each vertex. There are three 
classes of regular toroids, according to the number of edges incident with each face 
and each vertices. These classes are: T1 where a=3, b=6, T2 where a=4, b=4, T3 
where a=6, b=3. 

The Császár’s polyhedron is an example of a 1-toroid from class T1. An 
example of a regular 1-toroid from class T2 is given in Figure 2, marked here with 
P9, since it has 9 vertices. We can see that the P9 has 18 edges and 9 faces. 
 
Figure 2. 1-Toroid P9 

 
Source: Stojanović 2015. 
 

 An example of 2-toroid P14 given in (Stojanović 2017) is shown in Figure 3. It 
consists of two glued P9 and has 14 vertices, 32 edges and 16 faces.  
 
Figure 3. 2-Toroid P14 

 
Source: Stojanović 2017. 
 
Piecewise Convex Polyhedron and its Graph of Connection 

 
Since toroids are not convex when considering their 3-triangulations, we shall 

use the following definitions. 
 



Athens Journal of Sciences March 2023 
 

35 

Definition 2. A polyhedron is piecewise convex if it can be divided into finitely 
many convex polyhedra Pi, i = 1, …, m, with disjoint interiors. A pair of polyhedra 
Pi, Pj is said to be neighbouring if they have a common face called contact face. 

 
If the polyhedra Pi and Pj are not neighbouring, they may have a common edge 

e or a common vertex v. This is possible iff there is a sequence of neighbouring 
polyhedra Pi, Pi+1, …, Pi+k ≡ Pj such that the edge e, or the vertex v belongs to each 
contact face fl common to Pl and Pl+1, l ∈ {i, …, i + k − 1}. Otherwise, the 
polyhedra Pi and Pj do not have common points. 
 
Remark 1. Since a convex polyhedron can be 3-triangulated, the same holds for a 
piecewise convex one, especially for a piecewise convex toroid. 
Remark 2. Each 3-triangulable polyhedron is a collection of connected 
tetrahedra, so it is piecewise convex. 

 
In our investigation, we shall use the graph of connection for a piecewise 

convex polyhedron. 
 

Definition 3. If the polyhedron P is piecewise convex its graph of connection (or its 
connection graph), is a graph with nodes representing convex polyhedra Pi, i = 1, 
…, m, pieces of P, and edges representing contact faces between them. 

 
It is important to mention that the division of a polyhedron into convex pieces 

is not necessarily unique.  
In order to have the same number of handles for the considered toroid P and 

the number of basic cycles of the corresponding connection graph, we shall 
introduce the term optimized graph of connection. Namely, it may happen that in 
the connection graph made as before, exists some ‘false’ cycle that do not 
correspond to some handle of P. Such a situation will disturb us. So, let us consider 
a toroid P and its graph of connection G that have one or more false cycles. Take all 
the nodes that belong to the same false cycle of G and the corresponding convex 
pieces of P. The union of such convex pieces builds a new node of the optimized 
graph G*. In such a way we shall make new nodes for all the false cycles. The other 
nodes of the graph G remain in G* and we shall call them the old ones. The set of 
edges for G* consists of the previous edges between the old nodes, and the edges of 
G between some old node and some node belonging to a false cycle converted to 
the edge of G* between that old node and the new one.  

Note that it is not necessary for the new nodes of the optimized graph to 
correspond to convex polyhedra, they only correspond to simple piecewise convex 
polyhedra. 

In earlier papers of the author (Stojanović 2015, Stojanović 2017, Stojanović 
2022) there were proved the theorems for 1-toroids, 2-toroids and p-toroids about 
the minimal number of tetrahedra necessary for their 3-triangulation. Here we shall 
mention this one about p-toroids. 
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Theorem 1. If a p-toroid with n vertices can be 3-triangulated, then the minimal 
number of tetrahedra necessary for its 3-triangulation is min 3( 1)T n p≥ + − . 

 
In Stojanović (2021) it was considered how to construct a toroid P starting 

from a given graph G, in such a way that G would be a graph of connection for P. It 
is also shown that if for some simple polyhedron S the graph G is its skeleton, then 
the number p of the handles of the appropriate toroid P is the same as the number 
of faces f of S minus one, i.e. 1p f= − . Actually, to the question of whether the 
graph G has to be considered as “planar” or “spherical”, answer is that it has to be 
“planar”. Therefore, “outer face” surrounding these kinds of graphs should not be 
taken into account as some representing a handle. 
 
 
Constructing p-Toroid from a Given Graph of Connection  
 

Further properties and methods of constructing toroids based on the given 
graph will be considered here. 

 
Theorem 2. If the graph G is the skeleton of some polyhedron π (not necessarily 
simple) with f faces, then there exists a p-toroid P′  whose optimized graph of 
connection is a subdivision of the graph G.  
Proof. For a given graph G which is the skeleton of some polyhedron π, we shall 
form a corresponding subdivided graph G′  by splitting each edge of G and adding 
a new node between the splitted parts. Let us mark the old nodes in gray and the 
new ones in black. 

Starting from the graph G′ , we shall form a toroid P′  in such a way that each 
of the black nodes represents polyhedra of type Π and each of the gray nodes ν of 
G′  represents polyhedra of type Vk, where k is the number of edges from ν. Since 
the nodes ν of G′  were originally vertices of the polyhedron π, k ≥ 3 is always 
satisfied. Pieces of type Π and Vk can be connected in the following way: if 

1 2, , , kA A A are vertices in the basis of Vk and V is the apex, then the contact faces 
of Vk, k ≥ 3 and one of the bases of neighbouring polyhedra of type Π would be 

1i iA A V+ , {1, , 1}i k∈ − , 1kA AV . If necessary, either the polyheda Π or Vk could 
be slightly deformed; especially polyheda Π could be with skew placed bases. 

In this construction, the faces of the polyhedron π will be transformed into 
handles of P′  because the inserted prisms Π allows the pyramids Vk to be far 
enough apart to form them. So, graph G′  is an optimized graph of connection for 
toroid P′ . 

Note that the graph G′  is visually similar to the toroid P′ , because the prisms 
Π looks like strings, and thus represent edges of P′ , while the pyramids Vk 
represent the vertices of P′ . This is the reason why in the figures that illustrate the 
following examples we shall use the graph G′  instead of the corresponding toroid 
P′  and follow in parallel what happens to the mutually corresponding toroid P′  
and graph G′ . 
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To calculate the number of tetrahedra in 3-triangulation, we mention that Π 
has 6 vertices and is 3-triangulable with 3 tetrahedra, while Vk has k+1 vertex and is 
3-triangulable with k − 2 tetrahedra. Counting the vertices of P′ , it is sufficient to 
consider only the vertices of the pyramids of type Vk, because all the vertices of the 
prisms Π belong to some of the contact faces. 

 
Example 1 
 

We shall start with the 1-toroid P9 given in Figure 2 as a polyhedron π. Let us 
denote with h the number of handles of the starting polyhedron. Since P9 is a 1-
toroid it holds h = 1. We shall then construct the corresponding graph G′  and 
toroid P′ , as in the Theorem 2. For each of the 9 vertices of P9, there are 4 edges 
that are incident to it, so we shall use V4 as a component corresponding to the gray 
nodes of the graphG′ . Since P9 has18 edges, we shall use 18 prisms Π obtained 
form black nodes of G′ . 

 
Figure 4. Skeleton of Polyhedron P9 as a Graph G′of 10-Toroid 

1

2
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Considering the number of handles for the obtained toroid P′ , we shall do 

more cutting in accordance with the definition of p-torus. The first 3 cutting are 
shown on the left side of Figure 4. After that, the only handle of P9 will lead to two 
boundaries, i.e. two cycles of G′ . The inside one is marked in blue and the outside 
in red. Then we have the situation as on the right side of Figure 4. We can see that 
it would be necessary 7 more cuttings to get a graph without a cycle or a 
corresponding polyhedron without handles. So, the constructed toroid P′  has p = 
10 handles. 

The number of vertices of P′  is 9 5 45n = ⋅ = , while the number of tetrahedra 
in the 3-triangulation is 9 2 18 3 72T = ⋅ + ⋅ = . Theorem 1 guarantees for P′  that 

min 45 3(10 1) 72T ≥ + − = . Thus, in this case, the lower limit given in Theorem 1 is 
reached. 

We can conclude that the faces and the two boundaries obtained from the 
handle of P9 lead to the handles of P′  excluding “outer face”. Since the number of 
faces of P9 is f = 9, h = 1 and the number of handles of P′  is 10, it holds 

2 1p f h= + − . 
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Example 2 
 

The 2-toroid P14 will be used as a polyhedron π, i.e. h = 2 in this example. For 
P14 it is also valid that it has 14 vertices, whereby 10 of them are incident to 4 edges 
and 4 of them are incident to 5 edges. So, the 10 components that correspond to the 
gray nodes of the graph G′will be pyramids V4 and 4 of them V5. There are 32 
edges of P14 leading to 32 prisms Π. Note that for P14 the number of faces f = 16. 
 
Figure 5. Skeleton of Polyhedron P14 as a Graph G′of 19-Toroid 
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In the cutting process, the first 3 of them are shown in the first part of Figure 5. 
As in the previous example, after this part of process, two boundaries will remain, 
marked in blue and green. The next 4 cutting are shown in the second part of Figure 
5 with indicated previous green and dashed (invisible, behind green cycle) blue 
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boundary. The green cycle gives the next cut and will not appear in the last part of 
process. It is also indicated that two blue ones remain - inner boundaries, the old 
and the new one, and also one red - outer boundary. In the end, there will remain a 
planar graph with 12 cycles (and one “outer”, which is not taken into account). 
There are p = 19 handles of the new toroid P′ . The number of handles p is also 
obtained by taking the number of faces f and two times the number of handles h of 
P14. So, again is true 2 1p f h= + − . 

Calculating the number of vertices of P′  we obtain 10 5 4 6 74n = ⋅ + ⋅ =  and the 
number of tetrahedra in 3-triangulation is 10 2 4 3 32 3 128T = ⋅ + ⋅ + ⋅ = . By Theorem 
1, the lower limit for the number of tetrahedra is min 74 3(19 1) 128T ≥ + − =  and it 
is reached again. 
 
 
Conclusions 
 

Using the concepts of piecewise convex polyhedra and of graph of connection, 
the properties of 3-triangulations for p-toroid, if any, are investigated. Based on the 
given graph as its connection graph, a p-toroid is constructed. Also, two examples 
of graphs and corresponding toroids are given. In the both cases, the considered 
graphs are skeletons of toroids. So, it was interesting to determine how many 
handles the toroid induced by the mentioned construction would have. 

For p-toroids the minimal required number of tetrahedra for 3-triangulation is 
important property. That was the reason to examine also that number in the given 
examples. The result is that the lower limit obtained in the previous papers of the 
author has been reached. 
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