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Anisotropic Strange Stars with Nonlinear Equation of 
State 
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The modeling of superdense matter is an interesting research area and in the 
last decades, such models allow explain the behavior of massive objects as 
neutron stars, quasars, pulsars and white dwarfs. Taking local anisotropy into 
consideration, in this paper we present a new classes of solutions for the 
Einstein´s field equations in a spherically symmetric spacetime under the 
influence of an electric field considering a quadratic equation of state with a 
particular form the metric potential that depends on an adjustable parameter. 
The obtained solutions can be written in terms of elementary functions, namely 
polynomials and algebraic functions. The graphs generated   show that physical 
variables such as metric potentials, radial pressure, energy density, charge 
density, anisotropy, radial speed sound are consistent with realistic stellar 
models. The results of this research can be useful in the development and 
description of new models of compact structures. 
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Introduction 
 

The search of new solutions for the Einstein-Maxwell field equations is an 
important area of research because it allows describe compact objects with strong 
gravitational fields as neutron stars, white dwarfs and quark stars (Bicak 2006, 
Kuhfitting 2011). Within this context it is appropriate to mention the findings of 
Delgaty and Lake (1998) who constructed several analytic solutions that can 
describe realistic stellar configurations and satisfy all the necessary conditions to 
be physically acceptable. These exact solutions have also made it possible the way 
to study cosmic censorship and analyze the formation of naked singularities (Joshi 
1993). 

In the development of the first stellar models it is important to mention the 
pioneering research of Schwarzschild (1916), Tolman (1939), Oppenheimer and 
Volkoff (1939) and Chandrasekhar (1931). Schwarzschild (1916) obtained interior 
solutions that allows describing a star with uniform density, Tolman generated 
new solutions for static spheres of fluid, Oppenheimer, and Volkoff (1939) studied 
the gravitational equilibrium of neutron stars using Tolman’s solutions and 
Chandrasekhar (1931) produced new models of white dwarfs in presence of 
relativistic effects. 

A great number of exact models from the Einstein-Maxwell field equations 
have been generated by Gupta and Maurya (2011), Kiess (2012), Mafa Takisa and 
Maharaj (2013), Malaver and Kasmaei (2020), Malaver (2017, 2018a), Ivanov 
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(2002) and Sunzu et al. (2014). For the construction of these models, several forms 
of equations of state can be considered (Sunzu 2018). Komathiraj and Maharaj 
(2007), Malaver (2016), Bombaci (1997), Thirukkanesh and Maharaj (2008), Dey 
et al. (1998) and Usov (2004) assume linear equation of state for quark stars. Feroze 
and Siddiqui (2011) considered a quadratic equation of state for the matter 
distribution and specified particular forms for the gravitational potential and 
electric field intensity. Mafa Takisa and Maharaj (2013) obtained new exact 
solutions to the Einstein-Maxwell system of equations with a polytropic equation 
of state. Thirukkanesh and Ragel (2012) have obtained particular models of 
anisotropic fluids with polytropic equation of state which are consistent with the 
reported experimental observations. Malaver (2013) generated new exact solutions 
to the Einstein-Maxwell system considering Van der Waals modified equation of 
state with polytropic exponent. Malaver and Kasmaei (2020) proposed a new 
model of compact star with charged anisotropic matter using a cosmological 
Chaplygin fluid. Tello-Ortiz et al. (2020) found an anisotropic fluid sphere 
solution of the Einstein-Maxwell field equations with a modified Chaplygin 
equation of state. More recently, Malaver et al. (2022) obtained new solutions of 
Einstein’s field equations in a Buchdahl spacetime considering a nonlinear 
electromagnetic field.  

The analysis of compact objects with anisotropic matter distribution is very 
important, because that the anisotropy plays a significant role in the studies of 
relativistic spheres of fluid (Esculpi et al. 2007, Cosenza et al. 1982, Herrera 1992, 
Herrera and Nuñez 1989, Herrera et al. 1979, Herrera et al. 1984,  Malaver 2014a, 
Malaver 2014b, Malaver 2014c, Malaver 2015, Malaver 2016, Malaver 2017, 
Malaver 2018a, Malaver 2018b, Malaver 2018c, Malaver 2018d, Sunzu and 
Danford 2017, Bowers and Liang 1974). Anisotropy is defined as t rp p∆ = −    

where rp  is the radial pressure and tp is the tangential pressure. The existence of 
solid core, presence of type 3A superfluid (Sokolov 1980), magnetic field, phase 
transitions, a pion condensation and electric field (Usov 2004) are most important 
reasonable facts that explain the presence of tangential pressures within a star. 
Many astrophysical objects as X-ray pulsar, Her X-1, 4U1820-30 and SAXJ1804. 
4-3658 have anisotropic pressures. Bowers and Liang (1974) include in the 
equation of hydrostatic equilibrium the case of local anisotropy. Bhar et al. (2015) 
have studied the behavior of relativistic objects with locally anisotropic matter 
distribution considering the Tolman VII form for the gravitational potential with a 
linear relation between the energy density and the radial pressure. Malaver (2015, 
2018d), Feroze and Siddiqui (2011, 2014) and Sunzu et al. (2014) obtained 
solutions of the Einstein-Maxwell field equations for charged spherically 
symmetric spacetime by assuming anisotropic pressure. 

In this paper we generated new classes of exact solutions for anisotropic 
charged distribution with a consistent with quark matter. New models have been 
obtained by specifying a particular form for one of the metric potentials and for the 
electric field intensity. The paper has been organized as follows: In section 2, we 
present the Einstein´s field equations. In section 3, we have chosen a particular 
form for the metric potential and for the electric field intensity in order to obtain 
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the new models. In Section 4, physical requirements for the new models are 
described. In section 5, the models obtained are physically analyzed. In section 6, 
the conclusions of the work are presented.  
 
 
Einstein’s Field Equations 

  
We consider a spherically symmetric, static and homogeneous spacetime. In 

Schwarzschild coordinates the metric is given by: 
 

)θdφ+(dθr+dre+dte=ds 2(r)2(r)2 22222λ2 sinν−                       (1) 
 
where ( )rν and a ( )rλ are two arbitrary functions.  

 
Using the transformations, 2Cr=x , (r)e=Z(x) 2λ− and (r)e=(x)yA 2ν22

 with 
arbitrary constants A and c>0, suggested by Durgapal and Bannerji (1983), the 
Einstein-Maxwell field equations  according  to Feroze and Siddiqui (2011) can be 
written as: 

 
21 2Z
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− +                                             (2) 
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( )22 4CZ xE E

x
σ = +

                                                     (6) 
 

ρ  is the energy density, rp is the radial pressure, E  is electric field 

intensity, tp is the tangential pressure, σ is the charge density,  rt pp −=∆  is the 
measure of anisotropy and dots  denote differentiations with respect to x. 

With the transformations of Durgapal and Bannerji (1983), the mass within a 
radius r of the sphere take the form 
     

    
( ) ( )∫=

x

dxxx
C
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0

2/34
1 ρ                                       (7)  

 
 

In this paper, we asume the following quadratic equation of state  
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 βραρ += 2

rp                                                          (8)           
 
where α, β are arbitrary constant.  
 
 
The New Anisotropic Models  
 

With the Thirukanesh-Ragel-Malaver ansatz (Malaver 2014a, Horvath and 
Moraes 2020) we take the form for the metric potential Z(x), which is well 
behaved and regular in the origin. The electric field intensity E is continuous in the 
interior and finite at the centre of the star. So for Z(x) and E we have  
 

( )naxxZ −= 1)(                                                     (9) 

 ( )ax
ax

C
E

+
=

12

2

                                                      (10) 

 
In equation (9) n is an adjustable parameter. In this paper, we considered the 

particular cases n=1, 2.  
For the case n=1, with the equations (9) and (10) in eq. (2) we obtained for 

the energy density  
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Using eq. (11) in eq. (8) the radial pressure can be written as  
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Substituting (12), Z(x) and eq. (10) in eq. (3) we have  
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and integrating eq. (13)   
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1 11)( +
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                                   (14) 
 
where  1c  is the constant of integration  
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For convenience we have let  
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For the metric functions 
λ2e , 

ν2e  
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and the anisotropy ∆ can be written as 
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With n=2, the expression for the energy density is 
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replacing eq. (20) in eq. (8), we have for the radial pressure   
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Substituting eq. (21), Z(x) and eq. (10) in eq. (3) we obtain  
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Integrating eq. (22) we have  
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where 2c is the constant of integration  

 
Again for convenience  
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and for the metric functions λ2e , ν2e  and anisotropy ∆ we have  
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Conditions of the Physical Acceptability    
 
0 For a model to be physically acceptable, the following conditions should be 

satisfied (Delgaty and Lake 1998, Malaver 2014a):  
 
(i) The metric potentials λ2e and ν2e assume finite values throughout the 

stellar interior and are singularity-free at the center r=0.  
(ii) The energy density ρ   should be positive and a decreasing function 

inside the star. 
(iii) The radial pressure also should be positive and a decreasing function of 

radial parameter.   

(iv) The radial pressure and density gradients   0rdp
dr ≤   and  0d

dr
ρ ≤ for 

0 r R≤ ≤ .  
(v) The anisotropy is zero at the center r=0, i.e. Δ(r=0) =0.   
(vi) Any physically acceptable solution must satisfy the causality condition 

where the radial speed of sound 2
srv should be less than speed of light 

throughout the model, i.e., 0 ≤ 
ρd

dpv r
sr =
2 ≤1.  

(vii) The interior solution should match with the exterior of the Reissner-
Nordstrom spacetime, for which the metric is given by 

 

222222
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
+−−=

−

   (31)
 

 
Through the boundary r=R where M and Q are the total mass and the total 

charge of the star, respectively.  
The conditions (ii) and (iv) imply that the energy density must reach a 

maximum at the centre and decreasing towards the surface of the sphere. 
 
 

Physical Analysis of the New Models  
 

With n=1, the metric potentials 
λ2e and 

ν2e have finite values and remain 

positive throughout the stellar interior. At the center ( )2 0 1e λ = and 

( ) ( ) a
C

A ecAe 422
1

202 1
α

ν −∗−= . We show that in r=0 

( ) ( ) 00
)(2

0
)(2 =

′
=

′
== r

r
r

r ee νλ
 and this makes is possible to verify that the 

gravitational potentials are regular at the center. The energy density and radial 
pressure are positive and well behaved between the center and the surface of the 
star. In the center aCr 3)0( ==ρ  and γβα −+== CaCarpr 39)0( 22 ,   
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therefore the energy density will be non-negative in r=0 and ( 0)rp r =  > 0. In the 

surface of the star r R=  and we have ( ) 0rp r R= =  and 
aCC

R
93

3
−

= . For 

the radial pressure and density gradients we obtain  
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In order to maintain of causality, the radial sound speed should be within the 
limit 0 ≤ 2

srv ≤1 in the interior of the star (Delgaty and Lake 1998, Herrera 1992). 
In this model, we have:                                                                                   
 

 0 ≤ ( )[ ]
( ) βα

ρ
+

+
−+

== 2

22
2

1
132

aCr
aCraCraC

d
dpv r

sr ≤1                                 (34) 

 
On the boundary r=R, the solution must match the Reissner–Nordström 

exterior space–time as 
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and therefore, the continuity of 
λ2e and 

ν2e across the boundary r=R is 
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λ2e = 2

221
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Then for the matching conditions, we obtain: 
 

  ( )
2

2422

1
22

aCR
aCRRCaa

R
M

+
++

=                                          (37) 

 



Athens Journal of Sciences September 2023 
 

189 

For the case n=2, we have for the metric potentials ( )2 0 1e λ = , 
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 at the centre 

r=0. Again the gravitational potentials are regular in the origin. The energy density 
and radial pressure also are positive and well behaved in the stellar interior. In the 
center aCr 6)0( ==ρ  and CaCapr βα 636 22 += , therefore the energy density 
will be non-negative in r=0 and ( 0)rp r =  > 0. In the surface of the star  r R=  

and we have ( ) 0rp r R= =  and
( )

aC
aaaC

R
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12121110 2 +−+−
= . For the radial 

pressure and density gradients we obtain  
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The causality condition implies that  

 

0 ≤ βα +
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On the boundary r=R, the solution must match the Reissner–Nordström 

exterior space–time and therefore for the matching conditions, we obtain: 
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Figures 1, 2, 3, 4, 5 and 6 present the dependence of ρ  , d
dr
ρ  , rp , rdp

dr
, 2

srv

and  Δ with the radial coordinate respectively with a=0.1, α=0.25, β=0.5, C=1 for 
n=1 and n=2.  
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Figure 1. Energy Density against Radial Coordinate. It has been Considered that 
n=1(Solid Line); n=2 (Long-Dash Line) 

  
Figure 2. Density Gradient against Radial Coordinate. It has been Considered 
that n=1(Solid Line); n=2 (Long-Dash Line) 
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Figure 3. Radial Pressure against Radial Coordinate. It has been Considered that 
n=1(Solid Line); n=2 (Long-Dash Line) 

 
 
Figure 4. Radial Pressure Gradient against Radial Coordinate. It has been 
Considered that n=1(Solid Line); n=2 (Long-Dash Line)  
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Figure 5. The Radial Speed of Sound against Radial Coordinate. It has been 
Considered that n=1(Solid Line); n=2 (Long-Dash Line) 

 
 
Figure 6. Anisotropy against Radial Coordinate. It has been Considered that 
n=1(Solid Line); n=2 (Long-Dash Line) 

 
 
In Figure 1 is shown that the energy density remains positive, continuous and 

is monotonically decreasing function throughout the stellar interior. In Figure 2 it 
is noted that for the radial variation of energy density gradient d

dr
ρ < 0 in the two 
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cases studied. The radial pressure showed the same behavior by the energy 
density, that is, it is growing within the star and vanishes at a greater radial 
distance and its results are shown in Figure 3. The presence of a quadratic term in 
the equation of state causes an increase in the maximum values. Again, according 

to Figure 4, the profile of rdp
dr

 shows that radial pressure gradient is negative 

inside the star for n=1 and n=2. Figure 5 shows that the condition 0 ≤ 2
srv ≤1 is 

maintained throughout the interior of the star and satisfy the causality, which is a 
physical requirement for the construction of a realistic star (Joshi 1993). The 
anisotropic factor is plotted in Figure 6 and it shows that vanishes at the centre of 
the star, i.e., Δ(r=0) =0 (Delgaty and Lake 1998).  

 
 

Conclusions   
 

In this paper we have generated new models of anisotropic stars considering 
the Thirukkanesh-Ragel-Malaver ansatz for the gravitational potential and a 
quadratic equation of state. These models may be used in the description of 
compact objects in absence of charge and in the study of internal structure of 
strange quark stars. We show that the developed configuration obeys the physical 
conditions required for the physical viability of the stellar model. The radial 
pressure, energy density, anisotropy and all the metric coefficients are regular at 
the origin and well behaved in the stellar interior. 

The constants α and β have been chosen in order to maintain the causality 
condition and the regularity of metric potentials inside the radius of the star. The 
new solutions match smoothly with the Reissner–Nordström exterior metric at the 
boundary r=R, because matter variables and the gravitational potentials of this 
work are consistent with the physical analysis of these stars. It is expected that the 
results of this research can contribute to modeling of relativistic compact objects 
and configurations with anisotropic matter distribution. 
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