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Hydrothermal alteration minerals provide key indicators for mineral exploration, 
particularly in arid and inaccessible regions where field surveys are constrained. This 
study integrates remote sensing and GIS techniques to map alteration zones in the 
Red Sea Hills, NE Sudan, using Landsat 8 OLI and ASTER datasets. Preprocessing 
included FLAASH atmospheric correction and Minimum Noise Fraction (MNF) 
transformation to enhance spectral integrity. For Landsat 8 diagnostic band ratios 
and density slicing were applied to highlight ferric/ferrous iron oxides and 
clay/hydroxyl-bearing minerals, followed by supervised Parallelepiped classification 
of Sabins band ratios and Crosta transformations to delineate prospective alteration 
zones. ASTER VNIR-SWIR data enabled higher resolution mapping through Mineral 
Indices and Spectral Angle Mapper (SAM) classification against USGS spectral 
library endmembers. These approaches revealed three principal hydrothermal 
alteration zones: phyllic (muscovite, illite), argillic (kaolinite, alunite), and propylitic 
(epidote, chlorite). Results demonstrate that Landsat 8 is effective for regional-scale 
reconnaissance, but ASTER’s superior spectral resolution provides more accurate 
and mineralogically de-tailed alteration mapping. The study underscores the value of 
ASTER data for early-stage exploration in structurally complex, mineralized terranes 
such as the Arabian-Nubian Shield. 
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Introduction 

 
Remote sensing data from the multispectral Landsat 8 OLI (LC8) and the semi-

hyperspectral ASTER (AST) sensors play an important role in locating mineral deposits 
and in reducing the costs associated with prospecting and exploration (Crósta and 
Moore 1989, Debba et al. 2005, Carrino et al. 2015, Amer et al. 2016, Alimohammadi 
et al. 2015). Although commercial mineral deposits are limited in their genetic types 
and modes of occurrence, a wide range of geological criteria and indicators have been 
established to support remote sensing techniques in identifying these deposits. These 
indicators, observable in spaceborne and aerial imagery, include lithological features, 
rock alteration patterns, structural controls, and geobotanical evidence (Hunt 1979, 
Hunt and Ashley 1979, Gupta 2017). 
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Hydrothermal deposits typically form at shallow crustal depths, ranging from 
approximately 2 to 6 km below the surface. They are usually associated with extensive 
hydrothermal alteration (HA), which is zonal in nature. This zonation progresses 
outward and upward from an inner potassic zone, characterized by intense alteration 
and dominated by biotite and K-feldspar, into phyllic, argillic, and finally propylitic 
zones (Mars and Rowan 2006, Berger et al. 2014). The phyllic zone commonly 
consists of sericite and pyrite-rich rocks, while the ore zone includes disseminated 
chalcopyrite, molybdenite, pyrite, and other sulfide minerals. Much of the ore is 
concentrated near the boundary between the potassic and phyllic zones, often 
forming a cylindrical ore shell. The argillic zone is composed of rocks enriched in 
alunite and kaolinite, whereas the outer propylitic zone consists of weakly altered 
rocks with variable mineralogy, including chlorite, epidote, and calcite (Spatz et al. 
1995, Seedorff et al. 2005, Mars and Rowan 2006). These successive alteration 
zones (AZs), rich in characteristic minerals, provide an essential reference for 
mapping HA using both LC8 and AST data (Pour et al. 2018, Pour et al. 2019). 

In Sudan, several studies have successfully applied multispectral data from 
Landsat TM, ETM+, and LC8 sensors to delineate gossans, gold-bearing zones, and 
as-sociated sulfide mineralization. These studies have been guided by the distinct 
spectral signatures of gossans and AZs related to mineral deposits (Zeinelabdein and 
Albiely 2008, Abdelsalam et al. 2000, El Khidir 2006, El Khidir and Babikir 2013). 
The Gebeit area was selected as the study site due to the lack of availability of 
previous information, particularly from remote sensing investigations using LC8 
and AST data. In addition, the region holds significant economic importance as an 
active and prospective mining area. 

In this study, LC8 data, processed using various digital image processing 
algorithms and validated with spectral analysis of AST data, were used to delineate and 
map the AZs of hydrothermal minerals associated with gold-bearing sulfide deposits. 

 
 

Geological Setting 
 

The Red Sea Hills (RSHs) of Sudan form part of the Nubian Shield, which 
belongs to the Arabian-Nubian Shield (ANS) of northeastern Africa and the western 
Arabian Peninsula. The ANS extends along both sides of the RSHs, from Egypt in 
the northwest, the Sinai Peninsula in the north, and Saudi Arabia in the northeast, to 
Ethiopia and Yemen in the southwest and southeast, respectively (Johnsonet al. 2004, 
Johnson et al. 2011). The ANS is recognized as one of the major orogenic belts formed 
during the Neoproterozoic assembly of Greater Gondwana. It represents an accretionary 
orogenic belt composed predominantly of juvenile intra-oceanic island arcs, oceanic 
islands, and microcontinental fragments (Stern 1994). The ANS evolved between 900 
and 550 Ma as a result of the closure of the Mozambique Ocean (800-650 Ma) and 
the subsequent collision between East and West Gondwana (Stern 1994, Stern 2002). 
Kröner et al. (1987) divided the RSHs into five geologically distinct terranes, 
separated from each other by ophiolite-decorated suture zones. 

The study area is located within the Gebeit Terrane (Figure 1), which comprises 
arc-related, low-grade volcano-sedimentary sequences and syn-tectonic igneous 
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complexes in the area north of the Nakasib Suture (Vail 1985, Klemenic and Poole 
1988). Whole rock Rb/Sr isochron ages of approximately 720 Ma have been reported 
for volcanic and plutonic rocks within the terrane (Fitches et al. 1983, Almond and 
Ahmed 1987). Regionally, major ductile shearing, faulting, and compressional 
forces acting from the east to southeast are interpreted to have generated the 
dominant NE-trending structural fabric of the RSHs, including folds and faults, 
associated with ophiolite-decorated suture zones such as the Nakasib Suture 
(Almond and Ahmed 1987, Abdelsalam 2010). Younger NW-trending strike-slip 
shear zones, including Oko and Keraf shear zones, deform older these earlier 
structures like Nadasib suture (Abdelsalam 2010). 
 
Figure 1: Terranes and Suture Zones of the ANS, illustrating the Predominant Ages 
of Arc Magmatism within each Terrane and the Location of the Study Area 

 
Source: Modified after (Abdelsalam, 2010). 
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Materials and Methods 
 
Image Data and Data Preprocessing 
 
Landsat 8 OLI Data 

LC8 was launched on an Atlas V rocket from Vandenberg Air Force Base, 
California, USA, on February 11, 2013. It is the eighth satellite in the Landsat 
program, which has been continuously operated since the 1970s as a joint initiative 
between the U.S. Geological Survey (USGS) and NASA (Roy et al. 2014, Blondes et 
al. 2016). LC8 carries two primary instruments: the OLI (Operational Land Imager), 
which acquires data in nine spectral bands spanning the visible (Table 1), NIR (near-
infrared), and SWIR (shortwave infrared) regions (including a panchromatic band and 
a cirrus band), and the TIRS (Thermal Infrared Sensor), which records two longwave 
thermal bands (bands 10 and 11) (Wulder et al. 2008, Roy et al. 2014, Blondes et al. 
2016).  

In this study, a single optical multispectral LC8 scene was used, corresponding 
to path 172, row 45, acquired on June 5, 2025. The dataset was downloaded from the 
USGS EROS (Earth Resources Observation and Science) Center website. 

 
ASTER Data 

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 
is a multispectral sensor with high spatial, spectral, and radiometric resolution 
(Abrams, Hook and Ramachandran, 2002). AST data are recorded in 14 spectral 
bands using three subsystems: the VNIR (Visible and Near Infrared) subsystem, 
consisting of three bands with wavelengths from (0.52 to 0.86 µm) at 15 m spatial 
resolution; the SWIR (Shortwave Infrared) subsystem, comprising six bands with 
wavelengths from (1.6 to 2.43 µm) at 30 m spatial resolution; and the TIR (Thermal 
Infrared) subsystem, which includes five bands (Bands 10-14) spanning (8.125-
11.65 µm) at 90 m spatial resolution (Table 1). The instrument also has a long-track 
stereo capability, and each AST scene covers an area of 60 × 60 km², making it 
particularly suitable for regional mapping (Yamaguchi et al., 1999; Abrams, 2000; 
Yamaguchi et al., 2001; Abrams, Hook and Ramachandran, 2002). 

For this research, one AST scene was used. The dataset (Scene ID: 
00303032008081257) was acquired on August 12, 2008, and downloaded from the 
NASA Earthdata Search portal. 
 
Table 1. Overview of LC8 and AST Imaging Bands 

Satellite Band No. Covered Spectrum Wavelength (µm) Resolution (m) 
LC8 1 Coastal/Aerosol 0.43-0.45 30 
LC8 2 Blue 0.45-0.51 30 
LC8 3 Green 0.53-0.59 30 
LC8 4 Red 0.64-0.67 30 
LC8 5 NIR 0.85-0.88 30 
LC8 6 SWIR 1 1.57-1.65 30 
LC8 7 SWIR 2 2.11-2.29 30 
LC8 8 Panchromatic 0.50-0.68 15 
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LC8 9 Cirrus 1.36-1.38 30 
AST 1 VNIR 0.52 - 0.60 15 
AST 2 VNIR 0.63 - 0.69 15 
AST 3N VNIR 0.78 - 0.86 15 
AST 3B VNIR 0.78 - 0.86 15 
AST 4 SWIR 1.600 - 1.700 30 
AST 5 SWIR 2.145 - 2.185 30 
AST 6 SWIR 2.185 - 2.225 30 
AST 7 SWIR 2.235 - 2.285 30 
AST 8 SWIR 2.295 - 2.365 30 
AST 9 SWIR 2.360 - 2.430 30 
AST 10 TIR 8.125 - 8.475 90 
AST 11 TIR 8.475 - 8.825 90 
AST 12 TIR 8.925 - 9.275 90 
AST 13 TIR 10.25 - 10.95 90 
AST 14 TIR 10.95 - 11.65 90 

Source: Compiled from USGS Landsat 8 and NASA ASTER specifications 
 
Software 

Image processing was performed using ENVI (Environment for Visualizing 
Images) version 5.3 and ArcGIS version 10.8, installed on a high-performance 
computer. These software packages provided the necessary tools for preprocessing, 
spectral analysis, and spatial data integration. 

 
Data Preprocessing 

The LC8 data were geometrically corrected and georeferenced by the USGS 
prior to download. The data are provided in the UTM (Universal Transverse Mercator) 
coordinate system, zone 36N, based on the WGS84 datum, with all units expressed in 
meters. Atmospheric correction was carried out using the FLAASH (Fast Line-of-
sight Atmospheric Analysis of Spectral Hypercubes) model (Fraser and Green 1987). 
To improve signal quality and computational efficiency, the MNF (Minimum Noise 
Fraction) transformation was applied, enabling dimensionality reduction, noise 
segregation, and optimization for subsequent image analysis (Cooley et al. 2002, 
Shnain et al. 2024). 

Similarly, the AST data underwent atmospheric correction using the FLAASH 
technique, followed by post-processing band math to remove negative values. To 
enhance comparability, the six SWIR bands (30 m resolution) were resampled to 
match the three VNIR bands (15 m resolution), resulting in a nine-band semi-
hyperspectral dataset with a uniform spatial resolution of 15 m (Shnain et al., 2024). 

 
Landsat 8 OLI Data for Mineral Prospecting 

LC8 data are considered fundamental for mineral prospecting, especially in 
remote or inaccessible regions. They are extremely useful during the systematic 
exploration phase of mining and are widely applied to geological mapping and 
mineral exploration worldwide (Safari et al. 2018, Mwaniki et al. 2015). The LC8 
spectral range (0.325–2.5 μm) records solar-reflected light and includes several 
diagnostic absorption features of alteration minerals. These features are related to 
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vibrational overtones, electronic transitions, charge transfer, and conduction processes 
(Sabins and Lulla 1987). 

In this study, LC8 data were processed using two complementary approaches: 
(i) the Band Ratio (BR) technique, and (ii) Supervised Classification applied to 
Sabins BR and to the Feature Oriented Principal Component Selection (FOPCS) 
method. Both approaches were used to delineate HA zones (Sabins and Lulla, 1987). 
 
The Band Ratio Process for Mineral Prospecting 

BR is one of the most effective techniques for detecting alteration minerals such 
as ferrous and ferric iron oxides, as well as hydroxyl-bearing minerals (Sabins and 
Lulla 1987, Zhang et al. 2007). BR images are generated by dividing the digital 
number (DN) values of one spectral band by those of another (Sabins 1999, 
Lillesand et al. 2015). These images enhance spectral differences between minerals, 
minimize the influence of topography and solar illumination, and highlight 
absorption features associated with alteration. Gray-scale ratio images display pixels 
with the largest differences in reflectance between two bands. BRs are therefore 
widely used to emphasize iron oxide and clay or hydroxyl-bearing minerals, which 
are critical indicators of HA (Gupta 2017). To further enhance interpretation, density 
slicing was applied, converting the continuous tonal variations of the ratio images 
into discrete intervals corresponding to specified DN ranges (Sabins and Lulla 1987, 
Zhang et al. 2007). 
 
Supervised Classification 

Supervised classification is another powerful remote sensing technique for mapping 
mineral AZs. It involves the selection of sample Regions of Interest (ROIs) and the 
extraction of their spectral signatures across all bands. These signatures are used to 
compute statistical parameters that guide classification algorithms. In this study, the 
Parallelepiped classifier was used to assign each pixel to the most probable class, 
enabling accurate and detailed thematic mapping (Richards 2022, Lillesand et al. 2015). 
Supervised classification was applied to false-color composite (FCC) images generated 
from Sabins BR and from the FOPCS method to identify HA zones. 

 
Sabins Band Ratio FCC Image 

The Sabins FCC image was produced by assigning BR of 6/7, 4/6, and 4/2 to 
the red, green, and blue channels, respectively (Sabins 1999). This combination 
enhances the spectral expression of alteration minerals. The 6/7 ratio highlights 
clay-rich zones, since clay minerals show strong reflectance in Band 6 (SWIR1) and 
low reflectance in Band 7 (SWIR2), which appear reddish in the composite. The 4/2 
ratio enhances iron oxide-bearing areas, reflecting the absorption features in the blue 
region (Band 2) and the high reflectance in the red region (Band 4). These spectral 
properties allow iron-bearing minerals to be clearly distinguished (Pour and Hashim 
2012a, 2012b). 

 
The FOPCS (Feature Oriented Principal Component Selection) process 

The FOPCS method, also referred to as the Crosta technique, is a targeted 
principal component analysis (PCA) approach that uses only a subset of bands 
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selected to emphasize spectral features of interest (Crósta 1989, Loughlin 1991, 
Crósta et al. 2003). In this study, two band combinations were analyzed: the H-image, 
designed to enhance hydroxyl-bearing and clay minerals, and the F-image, intended 
to highlight iron oxide signatures. The eigenvector loadings of the resulting principal 
components were carefully examined to determine which components best represent 
the spectral properties of alteration minerals (Zhang et al. 2007). 

 
ASTER Data for Mineral Prospecting 

AST data, with their high spatial and spectral resolution, provide valuable coverage 
for identifying HA minerals and lithological units (Cooley et al. 2002). HA zones such 
as phyllic, argillic, and propylitic can be distinguished by their characteristic absorption 
features within AST’s spectral range. Specifically, the phyllic alteration zone, 
dominated by illite and muscovite (sericite), is characterized by a strong Al-OH 
absorption feature centered at 2.20 µm, which coincides with AST Band 6. The argillic 
zone, comprising kaolinite and alunite, shows a secondary Al-OH absorption feature at 
2.17 µm, corresponding to AST Band 5. The propylitic zone, characterized by 
chlorite and epidote, exhibits absorption features near 2.35 µm, coinciding with 
AST Band 8 (Mars and Rowan 2006, Pour et al. 2018, Testa et al. 2018). 

In the present study, AST VNIR - SWIR data were analyzed using two 
methods: mineral indices derived from BR and the SAM classifier. Both approaches 
were applied to detect (illite, muscovite, kaolinite, alunite, epidote, and chlorite) 
which are diagnostic minerals of (phyllic, argillic, and propylitic) AZs. 
 
Mineral Indices 

Mineral indices were calculated by applying specific BR that target diagnostic 
absorption features of selected minerals (Rowan and Mars 2003, Rowan et al. 2003). 
Preprocessing of the AST dataset included radiometric calibration and atmospheric 
correction of VNIR and SWIR bands. Lithological indices were also derived for the 
TIR bands, based on the distinct spectral properties of various minerals and rock 
types (Ninomiya, 2003; Van der Meer et al., 2012). 

Three indices were particularly applied in this study: 
 

Muscovite Index =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 7
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 6

  

Alunite Index =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 7
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 5

×
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 7
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 8

  

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 4
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 5

×
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 8
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 6

 
 
Spectral Angle Mapper (SAM) Classifier 

The SAM technique classifies pixels based on their spectral similarity to known 
reference spectra (Rajendran et al. 2013). Each pixel’s spectral vector is compared 
to library spectra of known minerals, and the similarity is quantified by measuring 
the angle between the vectors. Smaller angles indicate greater similarity. This 
procedure produces a spectral similarity map, in which each pixel is classified 
according to its closest match from the spectral library. The SAM output includes a 
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classified image displaying the distribution of alteration minerals and rule images 
showing the angular distance (in radians) between pixel spectra and reference 
spectra (Kruse et al. 1993, Rowan and Mars 2003, Van der Meer et al. 2012). 
 
Figure 2. Two-dimensional Illustration of Spectral Vectors r (reference spectrum) 
and n (pixel spectrum), showing the Spectral Angle (a) between them 

 
Source: Modified after (Kruse et al., 1993). 
 
 
Results 
 
Landsat 8 OLI Data Processing for Mineral Prospecting 

 
Multispectral LC8 data were processed to delineate and map AZs associated with 

mineralization. These zones are defined by the presence of key alteration minerals, 
including ferric and ferrous iron oxides such as hematite, goethite, and limonite, as 
well as clay and hydroxyl-bearing minerals such as kaolinite, montmorillonite, illite, 
and alunite. The diagnostic spectral features of these minerals serve as important 
indicators for identifying potential mineral deposits within a multispectral remote 
sensing framework. To avoid misinterpretation, alluvial wadi deposits were masked 
during the analysis, since they often contain weathered, altered, and fragmented rock 
material whose spectral signatures can obscure or distort the signals of the targeted 
alteration minerals. 

 
Band Ratio Images 

Selective BR were applied to highlight HA zones. Ratios 4/2, 6/5, and 6/7 were 
specifically used to identify ferrous iron oxides, ferric iron oxides, and hydroxyl-
bearing minerals, respectively. A low-pass filter was first applied to the ratio images 
to reduce noise. The resulting grayscale images were further enhanced through 
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density slicing, which emphasized the spectral responses associated with the target 
minerals. Finally, the density-sliced results were converted into vector classes, 
allowing the delineation and mapping of distinct AZs. 
 
Ferrous Iron Oxides and Ratio 

Ferrous iron oxides are characterized by high reflectance in the red portion of 
the spectrum (Band 4) and low reflectance in the blue region (Band 2) of LC8 data. 
For this reason, BR of 4/2 was used to delineate areas enriched in ferrous iron 
oxides. In the grayscale display, ferrous-rich areas appear in light tones, while in the 
density-sliced output they are highlighted in red (Figure 3a, b). 

 
Figure 3. BR 4/2 Image used for mapping Ferrous Oxides: (A) Grayscale Display, 
where High Values appear as Bright Tones; (B) Density-sliced Display, where High 
Values are highlighted in Red 

 

 
Source: Authors own elaboration 
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Ferric Iron Oxides Band Ratio 
Ferric iron oxides show diagnostic absorption in the near-infrared region (Band 

5) and high reflectance in the shortwave infrared region (Band 6). Consequently, the 
BR 6/5 effectively delineates ferric oxide-rich areas. These appear in light tones in the 
grayscale image and are displayed in red hues in the density-sliced image (Figure 4a, 
b). 
 
Figure 4. BR 6/5 Image used for mapping Ferric Oxides: (A) Grayscale Display, 
where High Values ap-pear as Bright Tones; (B) Density-sliced Display, where high 
values are highlighted in Red 

 

 
Source: Authors own elaboration 
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Hydroxyl Bearing Band Ratio 
Hydroxyl-bearing alteration minerals, including clays, micas, and amphiboles, 

exhibit distinct absorption features in the SWIR-2 region (Band 7) due to the strong 
Al - OH and Mg-OH vibrational absorptions. At the same time, they show high 
reflectance in the SWIR-1 region (Band 6). Accordingly, BR of 6/7 was used to 
identify hydroxyl-bearing mineral assemblages. In the outputs, these zones appear in 
bright tones in the grayscale image and in red hues in the density-sliced version 
(Figure 5a, b). 

 
Figure 5. BR 6/7 Image used for Mapping Clay Minerals: (A) Grayscale Display, 
where High Values appear as Bright Tones; (B) Density-sliced display, where High 
Values are highlighted in Red 

 

 
Source: Authors own elaboration 
 
  



Vol. X, No. Y Ibrahim & Papadimitriou: Mapping Hydrothermal Alteration Minerals…    
 

12 

GIS Spatial Analysis 
The BR images derived from ratios 4/2, 6/5, and 6/7 revealed three distinct types 

of potential AZs. Each was extracted as a separate class through density slicing and 
subsequently converted into vector format within a GIS environment. As shown in 
Figure 6a, ferrous oxide zones are represented in blue, ferric oxide zones in green, and 
clay-rich (hydroxyl-bearing) zones in red. To identify the most prospective zones of 
HA, a spatial intersection analysis was carried out. This procedure highlighted the 
areas of overlap among the three classes, rep-resenting the zones with the highest 
probability of being associated with hydrothermal mineralization. These priority 
targets are displayed in yellow in Figure 6b. 

 
Figure 6. (a) AZs Overlaid on the Satellite Image, showing High Values of the BR 
Images: 6/7 for Clay Minerals (red), 4/2 for Ferrous Oxides (blue), and 6/5 for 
Ferric Oxides (green). (b) Spatial Intersection Analysis of the vectorized Anomalous 
Values from the BR, highlighting the overlapping AZs in Yellow 

 

 
Source: Authors own elaboration 
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Supervised Classification 
 

In Supervised classification using the Parallelepiped method was applied to 
identify HA zones in both Sabins and Crosta FCC images. 
 
Sabins Band Ratio FCC Image 

The Sabins FCC image was generated by assigning BR of 6/7, 4/6, and 4/2 to the 
red, green, and blue channels, respectively (Sabins and Lulla 1987). The 6/7 ratio 
highlights clay-rich minerals, which show high reflectance in Band 6 (SWIR1) and 
low reflectance in Band 7 (SWIR2), resulting in reddish hues in the composite. Areas 
enriched in iron oxides are emphasized by the 4/2 ratio, which exploits strong 
absorption in Band 2 (blue) and high reflectance in Band 4 (red), producing blue hues. 
The 4/6 ratio is particularly effective for mapping ferrous iron oxides and appears in 
green hues. Collectively, the Sabins FCC image provides a clear delineation of HA 
zones associated with mineralization, which are represented by crimson -orange hues 
(Figure 7). 
 
Figure 7. Sabins FCC Image showing AZs associated with Mineralization, displayed 
in Crimson-orange Hues; (b) Classified AZs derived from the Sabins BR Image, 
displayed in Red 
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Source: Authors own elaboration 
 
Feature Oriented Principal Component Selection (FOPCS) 

FOPCS also known as the Crosta FCC method, is designed to emphasize only 
those spectral bands that contain diagnostic absorption features of iron oxides and 
clay-bearing minerals. For LC8 OLI data, the bands selected for mapping clay-
bearing minerals were Bands (2, 5, 6, and 7), whereas Bands (2, 4, 5, and 7) were 
chosen for detecting iron oxides. 

 
H Image (The Hydroxyl bearing and clay minerals) 

The H-image is produced from principal component analysis (PCA). In general, 
PC1 accounts for overall albedo of the selected bands and thus contains minimal 
spectral variability, while PC2 reflects the contrast between the NIR and SWIR 
regions. In this study, eigenvector analysis (Table 1) indicated that PC3 and PC4 
were the most effective components for delineating zones enriched in clay and 
hydroxyl-bearing minerals. 

 
Table 2. Eigenvector Statistics of Principal Components used for Hydroxyl-bearing 
Mineral mapping (H-image, FOPCS method) 

Eigenvector Band 2 Band 5 Band 6 Band 7 
PC 1 0.168356 0.432960 0.667114 0.582374 
PC 2 0.463554 0.725617 -0.169314 -0.479510 
PC 3 0.613774 -0.151658 -0.540803 0.554810 
PC 4 0.616486 -0.512859 0.483553 -0.350851 

Source: Authors own elaboration 
 

In this case, PC4 exhibited the strongest contrast between Bands 6 and 7, with 
Band 6 showing a strong positive loading and Band 7 a strong negative loading. 
This contrast makes PC4 particularly sensitive to hydroxyl-bearing minerals. To 
enhance the mapping of these minerals, which appear as dark pixels in the PC4 
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image, the image was negated (255 - DN), followed by the application of a low-pass 
filter to reduce noise. The resulting processed image is referred to as the H-image. 

 
F Image (The iron oxides rich areas) 

The FOPCS transformation applied to Bands 2, 4, 5, and 7 produced the F-
image. Eigenvector analysis (Table 2) indicated that either PC2 or PC4 effectively 
isolates iron oxide-rich zones due to the strong contrast observed among the visible 
bands, which is diagnostic of ferric iron minerals. 
 
Table 3. Eigenvector Statistics of Principal Components used for Iron Oxide mapping 
(F-image, FOPCS method) 

Eigenvector Band 2 Band 4 Band 5 Band 7 
PC 1 0.224696 0.476917 0.536085 0.659298 
PC 2 0.312708 0.443982 0.389090 -0.744112 
PC 3 0.736766 0.214905 -0.632033 0.107361 
PC 4 -0.555789 0.727493 -0.402189 -0.009802 

Source: Authors own elaboration 
 

PC4 exhibited the greatest contrast in eigenvector loadings between Bands 4 
and 2, making it particularly effective for mapping ferric iron oxide minerals. PC4 
was therefore selected as the F-image, and a low-pass filter was applied to reduce 
noise, resulting in the final F-image. 

The Crosta composite image (FCC) was then generated by assigning the 
hydroxyl-sensitive image (H-image) to the red channel, the iron oxide-sensitive 
image (F-image) to the blue channel, and a mathematically combined image (H-
image + F-image) to the green channel. This composite effectively highlights AZs 
enriched in both iron oxides and clay minerals, which appear in whitish-yellow hues 
(Figure 8). 
 
Figure 8. (a) Crosta FCC Image showing AZs associated with Mineralization, 
displayed in Whitish - Yellow Hues; (b) Classified AZs derived from the Crosta FCC 
Image, displayed in Red 
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Source: Authors own elaboration 
 
GIS Spatial Analysis 

The alteration classes obtained from the supervised classification of both Sabins 
and Crosta composites were converted into vector format for integration within a GIS 
environment. A spatial intersection analysis was then performed on the vectorized 
AZs, enabling the delineation of highly probable AZs. These priority zones are 
highlighted in red in (Figure 9). 

 
Figure 9. (a) Classified AZs derived from the Sabins and Crosta Methods Overlaid 
on the FCC Image; (b) Alteration Map generated through Spatial Intersection of 
the Sabins and Crosta Composites, with the most probable AZs displayed in Red 
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Source: Authors own elaboration 
 
ASTER Data Processing for Mineral Prospecting 

 
This section presents the application of two methods to AST VNIR-SWIR data 

for mapping hydrothermally altered minerals: (i) spectral BR indices and (ii) 
spectral analysis using the SAM classifier. These methods target minerals such as 
illite, muscovite, kaolinite, alunite, epidote, and chlorite, which display distinctive 
absorption and reflectance features, allowing the identification and delineation of 
hydro-thermal AZs, including phyllic, argillic, and propylitic zones. 

 
Figure 10. False Color Composite (FCC) of AST bands 4, 6, and 8 displayed in 
Red, Green, and Blue Channels, respectively, for the Study Area 

 
Source: Authors own elaboration 
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Mineral Indices 
 

Mineral indices were derived by applying spectral BR targeting the diagnostic 
absorption features of selected minerals. The indices used in this study include the 
Muscovite Index, the Alunite Index and the Kaolinite Index. 
 
Muscovite Mapping 

The Muscovite Index highlights the absorption feature at (2.20 μm, AST Band 
6), corresponding to Al-OH bearing minerals that define phyllic AZs. In the 
grayscale index image, muscovite-rich areas appear as bright tones, concentrated 
mainly in the upper left part of the study area and extending along a NNE structural 
trend. Additional occurrences are observed in the central lower region and near the 
upper right corner, The thresholded, color-coded image and its vectorized results 
highlight these muscovite-rich zones in red, delineating phyllic AZs (Figure 11a, b). 
 
Alunite Mapping 

The Alunite Index delineates the argillic AZs containing alunite and kaolinite 
minerals, which exhibit AL-O-H absorption features at (2.20 and 2.17 μm, AST 
band 5), respectively. The Alunite Index image shows brighter tone in the greyscale 
image distributed in the upper left corner of the image, the rest values are observed 
in the central lower part with the main NNE trend of the study area see (Figure 12 
a). The thresholding high value color coded image and vectorized results appear in 
blue color mapping the phyllic AZs (Figure 12 b). 

 
Kaolinite Mapping 

The Kaolinite Index delineates zones enriched in kaolinite, which define argillic 
alteration. In the grayscale display, kaolinite-rich zones appear as bright tones, 
concentrated in the upper left part of the study area and extending along the NNE 
structural trend. Additional occurrences are observed in the central upper and lower 
regions and near the upper right corner, all aligned with the same structural trend. In 
the color-coded and vectorized image, kaolinite-rich zones are mapped in green 
(Figure 13a, b). 
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Figure 11. Muscovite Index derived from AST Data: (a) BR image (Band 7/Band 
6), highlighting Muscovite-rich Zones; (b) Vectorized Output of mapped Muscovite, 
displayed in Red 

 

 
Source: Authors own elaboration 
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Figure 12. Alunite Index derived from AST Data: (a) BR Image ((Band 7/Band 5) 
× (Band 7/Band 8)), highlighting Alunite-rich Zones; (b) Vectorized Output of 
mapped Alunite, displayed in Blue 

 

 
Source: Authors own elaboration 
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Figure 13. Kaolinite Index derived from AST Data: (a) BR Image ((Band 4 / Band 
5) × (Band 8 / Band 6)), Highlighting Kaolinite-rich Zones; (b) Vectorized Output 
of mapped Kaolinite, displayed in Green 

 

 
Source: Authors own elaboration 
 
GIS Spatial Analysis 

The vectorized results of the mineral indices were integrated within a GIS 
environment to highlight areas with overlapping phyllic and argillic AZs, which serve 
as indicators of potential mineralization. The analysis revealed that the upper left 
corner of the study area represents the most probable zone for mineralization, owing 
to the strong concentration of alteration signatures. Additional zones of high index 
values were also identified in the central lower region and near the upper right corner 
of the study area, all aligned with the dominant NNE structural trend (Figure 14). 
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Figure 14. (a) Overlay of combined Phyllic and Argillic AZs on the FCC Image; 
(b) Integrated Results of Phyllic and ARGILLic AZs derived from Mineral Indices, 
highlighting the most probable mineralized Zones 

 

 
Source: Authors own elaboration 
 
Spectral Angle Mapper Classifier 

 
The SAM algorithm compares the spectral signature of a target object with 

reference spectra obtained from standardized laboratory spectral libraries, such as those 
provided by the USGS. In this study, spectra of common HA minerals associated with 
mineralization, specifically illite, muscovite, kaolinite, alunite, epidote, and chlorite, 
were selected from the USGS spectral library (Figure 15a). These reference spectra 
were subsequently resampled to match the spectral resolution and band configuration 
of the AST sensor (Figure 15b). 
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Figure 15. (a) Laboratory Spectra of HA Minerals from the USGS Spectral Library 
used in this Study; (b) The Same Reference Spectra resampled to match the Spectral 
Resolution and Band Configuration of AST Bands 

 

 
Source: Authors own elaboration 
 

Rule images were generated to highlight the surface distribution of the selected 
spectra. The SAM algorithm applies a default threshold value, but in this case thresh-
olds behave differently because lower values indicate a higher probability of a pixel 
belonging to the target class in the SAM rule image. Therefore, manual adjustment of 
the threshold was performed based on visual interpretation. The SAM-derived illite 
and muscovite images delineate phyllic AZs, which are represented in red. These 
zones are concentrated in the upper left corner of the study area and extend into the 
upper and central parts of the region (Figure 16). 
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Figure 16. SAM classifier Results from AST data: (a) Combined Distribution of Illite 
and Muscovite, displayed in Red; (b) Combined Illite and Muscovite overlaid on the 
AST FCC Image, Highlighting Phyllic AZs in Red Hues 

 

 
Source: Authors own elaboration 
 

For kaolinite and alunite, the classified image highlights areas of high values 
corresponding to argillic AZs. These zones are represented in green and are mainly 
concentrated in the upper left corner of the study area, with more limited occurrences 
observed in the central region (Figure 17). 
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Figure 17. SAM Classifier Results from AST Data: (a) Combined Distribution of 
Kaolinite and Alunite, Dis-played in Green; (b) Combined Kaolinite and Alunite 
overlaid on the AST FCC Image, Highlighting Argillic AZs in Green Hues 

 

 
Source: Authors own elaboration 

 
The SAM classification of epidote and chlorite was used to map propylitic AZs. 

These zones are represented in blue and are primarily concentrated in the left-central 
part of the study area (Figure 18). 
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Figure 18. SAM Classifier Results from AST Data: (a) Combined Distribution of 
Epidote and Chlorite, displayed in Blue; (b) Combined Epidote and chlorite Overlaid 
on the AST FCC Image, High Lighting Propylitic AZs in Blue Hues 

 

 
Source: Authors own elaboration 
 
GIS Spatial Analysis 

The SAM classification successfully mapped HA minerals, delineating phyllic, 
argillic, and propylitic zones. The resulting images illustrate the spatial distribution of 
these zones based on the diagnostic absorption features of their respective endmember 
minerals. The classified pixels were exported as shapefiles representing the extent of 
each alteration type. Spatial analysis was then conducted on these shapefiles to extract 
and delineate the most probable HA zones associated with mineralization (Figure 19a). 

The results of the AST SAM spectral analysis revealed several probable AZs 
within the study area. These zones are primarily concentrated in the upper left 
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corner, aligned with a NNE structural trend, with additional occurrences in the 
central region and smaller, scattered zones in the upper middle part of the area 
(Figure 19b). 
 
Figure 19. Results of SAM classification applied to AST VNIR-SWIR Data: (a) 
Alteration Map showing Phyllic (red), Argillic (green), and Propylitic (blue) Zones; 
(b) AST FCC Image (bands 4, 6, and 8 in RGB) overlaid with SAM-derived AZs 

 

 
Source: Authors own elaboration 
 
Integration of Landsat 8 and ASTER Mapping Results 

LC8 includes two broad SWIR bands (band 6 and band 7) with approximate 
bandwidths of 0.08 µm and 0.18µm, respectively (Table 4), which limits detailed 
mineral discrimination. In contrast, AST acquires data in six narrower SWIR bands 
(bands 4 to band 9) spanning approximately 1.60 - 2.43µm, with individual bandwidths 
of about 0.04 - 0.10µm (Table 4), therefore, the results demonstrate that AST data 
provide superior capabilities for hydrothermal mineral prospecting compared to LC8 
data (Figure 20). 
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Table 4. Quantitative Comparative between LC8 and AST for HA Mapping Results 
Parameter Landsat 8 ASTER Overlap 
Number of alteration 
zones 23 15 11 

Total alteration area 
(km²) 53.22 20.78  

Overlap area (km²)   9.25 
Percentage of 
combined area (%) 17.4 44.5  

Mapping scale 
suitability Regional mapping Detailed targeting High- probable 

zones 
Data availability Free, frequent Limited  
SWIR bands 2 bands 6 bands  

SWIR bandwidths 0.08 µm and 
0.18µm 

From 0.04 to 
0.10µm  

Source: Authors own elaboration, bands specifications from USGS and NASA documentation 
 

Quantitative comparison indicates that LC8 delineated 23 AZs covering 
approximately 53.22 km², whereas AST identified 15 more spatially restricted zones 
covering about 20.78 km². Spatial intersection analysis reveals 11 overlapping zones 
with a total area of 9.25 km², corresponding to approximately 44.5 % of the AST-
derived alteration area and 17.4 % of the LC8-derived area. These intersected zones 
served as the most prospective areas (Figure 20b). 

 
Figure 20. AZs Maps (a) probable AZs related to Mineralization delineated from LC8 
and AST Data; (b) The AZs related to Mineralization delineated from the Spatial 
Intersection 
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Source: Authors own elaboration 
 
 
Discussion 

 
The spectral characteristics of HA zones were investigated using integrated LC8 

OLI and AST datasets, applying BR analysis, the Crosta technique, supervised 
classification, mineral indices, and the SAM (SAM) classifier. The integration of 
these complementary approaches within a GIS framework enabled robust delineation 
of the most prospective HA zones across the study area. 

Overall, the results a quantitative comparison between LC8 and AST datasets 
(Table 4) indicates that AST-derived AZs overlap approximately 44.5 % of the AST 
area and 17.4 % of the Landsat area, highlighting the broader reconnaissance 
capability of Landsat and the more selective mineral discrimination achieved using 
AST enables the separation of diagnostic absorption minerals such as muscovite, 
kaolinite, alunite, chlorite, and epidote, resulting in more precise mapping of phyllic, 
argillic, and propylitic AZs (Figure 19). Accordingly, AST represents a valuable 
tool for the early stages of mineral exploration, offering a rapid, cost-effective, and 
reliable approach for identifying prospective zones associated with HA minerals. 

Structurally, the mapped AZs which associated with dominant NNE-trending 
lineaments, fault systems, and shear zones that correspond with regional structural 
of the ANS. These structures, formed during late Neoproterozoic tectonic events, 
and recognized for their role in controlling hydrothermal fluid flow. Therefore, AZs 
that follow these NNE-trending structural were regarded as most probable zones. 

Given logistical constraints, limited accessibility in the rugged terrain of the 
RSHs and the lack of available published geological data in the study area, the 
interpretation and accuracy assessment of this study relies on the spectral 
characteristics of satellite imagery, in the absence of field-based validation. Although 
Landsat-8 and AST data are widely recognized and well documented for HA 
mapping, future ground verification would substantially improve the reliability of 
the results. Integrating remote sensing outputs with geophysical data like (magnetic 
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and radiometric surveys) together with structure and geochemical analyses, would 
enhance confidence in delineating HA zones and assessing mineralization potential 
in the study area. 

Finally, the differences observed among the applied image processing techniques 
underscore the importance of using complementary approaches. BR methods emphasize 
specific spectral contrasts like ferrous oxide, ferric oxide and clay/hydroxyl-bearing 
(Figure 6a), mineral indices target diagnostic absorption features for muscovite, 
alunite and kaolinite indices for mapping the altered zones (Figure 14), and SAM 
classification relies on spectral similarity to reference libraries (Figure 15), to 
delineating phyllic, argillic, and propylitic zones (Figure 14). Consequently, each 
method highlights different aspects of HA, and discrepancies among results are 
expected. However, their integration within a GIS framework provides a more 
probable and reliable interpretation than dependence on single technique. 
 
 
Conclusions 
 

This study reveals the effective of the integrated LC8 and AST data for HA 
mapping around in the RSHs, NE Sudan. 

Exploration targets were classified based on the correspond closely with 
regional structural controls on mineralization within the study area, Gebeit Terrane 
within the ANS. The results highlight NNE-trending structures as high-priority 
exploration targets (Figure 19), representing the most prospective zones, whereas 
the remaining anomalies are considered secondary targets suitable for regional-scale 
reconnaissance. 

Quantitative analysis shows that AST derived AZs overlap approximately 44.5 
% of the AST area and 17.4 % of the LC8 area, defining high-confidence targets 
where both sensors agree (Figure 20). These intersected zones represent the most 
prospective areas for pre-filed exploration stage, confirming that combined use of 
LC8 and AST offers a robust, cost-effective workflow for mineral exploration in 
arid and inaccessible. 

Future research should focus on integrating alteration mapping with hyperspectral 
satellite data which offers spectrally narrower bands and very high spatial resolution, 
together with high-resolution structural data to enable detailed analysis of structure-
controlled mineralization. Expanding this methodology through field sampling, and 
integration with geophysical datasets, including spectroradiometer measurements and 
magnetic, to enhance resulting accuracy. 
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Abbreviations 
 
Abbreviations used in this paper include: 
OLI Operational Land Imager 
Landsat 8 LC8 
ASTER AST 
Red Sea Hills RSHs 
ANS Arabian Nubian Shield 
VNIR Visible / Near Infrared 
SWIR Shortwave Infrared 
TIR Thermal Infrared 
TIRS Thermal Infrared Sensor 
USGS United State Geological Survey 
UTM Universal Transverse Mercator 
Band Ratio BR 
Hydrothermal 
Alteration 

HA 

Alteration Zones AZs 
WGS World Geodetic System 
ENVI Environment for Visualizing Images 
FLAASH Fast Line of sight Atmospheric Analysis of Spectral Hypercube 
MNF Minimum Noise Fraction 
FOPCS Feature Oriented Principal Component Selection 
PCA Principal Component Analysis 
DN Digital Number 
ROI Regions Of Interest 
FCC False Color Composite 
NNE North Northeast 
SSW South Southwest 
SAM Spectral Angle Mapper 

 


