
Athens Journal of Technology and Engineering - Volume 6, Issue 4 – Pages 223-238

https://doi.org/10.30958/ajte.6-4-2 doi=10.30958/ajte.6-4-2

Using an Extended Attack Defense Graph Model to

Estimate the Risk of a Successful Attack on an IT

Infrastructure

By Christoph Karg
*
 & Till Hänisch

†

Nowadays, securing the IT infrastructure is an ongoing task in every company and

organization. For small and medium-sized enterprises, this task is challenging because

of its complexity and the related costs. Especially the risk assessment of threats and the

choice of appropriate countermeasures is hard to handle by this kind of enterprises.

Using the example of a ransomware attack, this paper describes how to use a method for

risk assessment on the basis of attack defence graphs and Monte Carlo simulations. The

details of the simulation algorithm are explained and formal aspects are considered.

Keywords: IT security, attack defense graph, risk assessment, threat modeling.

Introduction

In a commercial environment, the goal of each security measure is the

protection of the company’s or organization’s assets. In the context of information

security, the measures focus on computer systems and the data stored on them.

Usually, the financial budget to be spent on security measures is limited. As a

consequence, not all of the available measures can be applied because of monetary

restrictions. Hence, a choice must be made on how much money to spend on

which security measure in order to use the financial resources in an optimal

manner.

The selection of the measures to secure a company’s IT infrastructure is

usually based on best practices. In the case of office IT environments, many of the

choices are based on the experience which was gathered in the last decades. In the

case of industrial production environments, the situation is quite different, since

the process of digitalization just begins to find its way into these environments.

According to IT security experts, there is the need of a quantitative assessment of a

security measure with respect to the environment it shall be applied to (Blakley et

al. 2002, Cremonini and Martini 2005). This kind of assessment may assist

decision makers in choosing and prioritizing appropriate security measures.

This paper describes an approach to assess the effectiveness of security

measures on the basis of Monte Carlo simulations. The approach builds on the

well-known model of attack defense graphs. An attack defense graph is a directed

acyclic graph whose nodes represent threats which arise from existing

vulnerabilities and countermeasures to mitigate the respective threats. The nodes

are grouped in compositions (and) or alternatives (or) in order to specify the

dependencies. Each sink of the graph represents an attack which may be the result

*
Professor, Aalen University of Applied Sciences, Germany.

†
Professor, DHBW Heidenheim, Germany.

Vol. 6, No. 4 Karg & Hänisch: Using an Extended Attack Defense Graph Model…

224

of successfully exploiting the vulnerabilities which are located on the paths

towards the sink. The attack may be prevented by successfully applying the

counter measures which lie on the paths towards the sink.

In order to estimate the risk of a successful attack, the model is extended with

additional information. In particular, both a capability and a difficulty value are

assigned to each node representing a threat or a countermeasure. The capability of

a threat or a countermeasure describes the skill level of an attacker to successfully

implement the threat or the skill level of a defender to successfully deploy a

countermeasure, respectively. It is assumed that the capability value is independent

of the environment to be analyzed. The difficulty value of a node measures the

difficulty of implementing a threat or of deploying a countermeasure in a given

environment, respectively. To enable Monte Carlo simulation techniques,

probabilities are derived from the capability and the difficulty values.

To answer questions such as “How does the usage of security measure A

influence the risk?” or “Is security measure A better than security measure B with

respect to the mitigation of the risk?“, several Monte Carlo simulations are

performed and analyzed. The simulation results can help the decision makers to

select these countermeasures which fit the best to their IT environment. Another

application of the approach is the computation of an cost-optimal selection of

security measures which minimize the risk of a successful attack. The use case of a

ransomware attack is used in order to illustrate the application of the model.

The paper is organized as follows. The section Related Work contains a

summary of the papers which were relevant for this work. The section Findings/

Results contains our contributions to the topic. At first, the model of attack defense

graphs is introduced briefly. Then the model is applied to the use case of a

ransomware attack. After describing the algorithm behind the simulation system,

the use case is analyzed. Furthermore, formal aspects of the model are presented

and insights into the implementation are provided. The paper closes with the

section Conclusion.

Related Work

Analyzing the safety of a technological system with the mathematical model

of graphs is a well-known and acknowledged methodology in systems engineering.

The roots go back in the 1960s where Watson and Mears at Bell Labs developed a

tree-based technique to analyze the Minuteman Launch Control System. Hassl

from Boeing recognized the potential of this approach and promoted it as a

significant system safety analysis tool. The tool became popular as fault tree

analysis (FTA) in the aerospace industry and was adopted from other industries

such as the nuclear power industry and the robotics industry. In 1981, the

U.S. Regularity Commission published a handbook on the application of the fault

tree analysis and its mathematical foundations (Vesely et al 1981). Over the last

six decades, fault tree analysis was developed further by a worldwide scientific

community. More details on the history of the fault tree analysis can be found in

Athens Journal of Technology & Engineering December 2019

225

(Ericson, 1999). An approach to utilize attack-fault trees for quantitative analysis

in the area of cyber physical systems is given in (Kumar and Stoelinga 2017).

In the year 1999, Bruce Schneier introduced the concept of attack trees as a

(Schneier 1999a, 1999b). According to Schneier, most people do not have a

detailed understanding in computer security. Especially, for decision makers in

companies and organizations it is hard to figure out the consequences of a cyber

security threat. Attack trees are a formal method to describe attacks on computer

systems in a manner which is understandable for non-experts. Schneier proposed

to assign attributes to the nodes in order to enrich the attack tree with additional

information. Examples of such attributes are the success possibility of the attack

represented by an node, the equipment needed to perform the attack, or the costs of

the attack to be paid by the threat agent. Schneier’s model of attack trees is a

simplistic one and lacks the concepts of countermeasure nodes and success

probabilities.

Schneier’s concept influenced the work of many researchers on the field of

computer security. For example, Mauw and Oostdijk (2005) studied formal

aspects of attack trees and provided a denotional semantics. To do this, they

formalized the notion of an attack tree and studied transformations on attack trees

and their respective consequences (Mauw & Oostdijk, 2005). Kordy et al. (2014)

extended the model to so-called attack defense trees by adding countermeasures to

the tree (Kordy et al. 2014). The idea behind their approach is to model a game

between an attacker and a defender of a computer system. On the one hand, the

attacker has the goal to successfully realize the threat by applying the steps

represented by the attack nodes. On the other hand, the defender tries to prevent

the attacker from being successful by applying the countermeasures described in

the defense nodes. The authors gave a formal representation of the attack defense

tree model and prove several semantic aspects of the model.

Edge et al. (2006) used attack and protections trees to analyze attacks against

computer networks (Edge et al. 2006). They created the concept of threat logic

trees. These are trees where metrics are associated to the leaf nodes of the tree. The

metrics are probability of success, impact to the system, the cost to attack, and risk.

The metrics are used to analyze the tree and to estimate the risk of a successful

attack. They use their model to analyze a distributed denial-of-service attack to the

servers of Homeland Security. In contrast to the above approaches, the modelling

is split in two trees: the attack tree and the protection tree.

The usage of attack defense trees in threat modelling and risk assessment is a

widely recognized methodology in information technology. For example, Fraile et

al (2016) used attack defense trees to analyze the security of automated teller

machines (ATM) (Fraile et al. 2016). Based on their practical work, the authors

attest attack defense trees a high potential to produce good results in risk

assessment.

The quality of the modelling with attack defense trees is strongly related to the

experience of the persons which are involved in the analysis process. Experts on

the field of cyber security apply methodologies from risk assessment such as the

OWASP risk rating methodology (OWASP 2019) or the CORAS approach (Lund

et al. 2011). Another useful tool is the common vulnerability scoring system

Vol. 6, No. 4 Karg & Hänisch: Using an Extended Attack Defense Graph Model…

226

(CVSS) which is a worldwide accepted standard to describe the characteristics of

vulnerability (Forum of Incident Response and Security Teams 2019). CVSS is

used to classify known vulnerabilities in a standardized way. The findings are

published in publicly available databases such as the U.S. National Vulnerability

Database
1
.

Hänisch and Karg (2019) introduced a method for cyber security risk

assessment on the basis of attack defense graphs and Monte Carlo simulations

(Hänisch and Karg 2019). Their goal was to make the importance of specific

measures transparent to decision makers and to support security specialists without

requiring the effort of a complete risk analysis.

Findings & Results

The Model

The model to be used in following is a combination of attack defense graphs

and Monte Carlo simulations. For a detailed introduction to the model, we refer to

(Hänisch and Karg 2019).

In this model, attack defense graphs are used to analyze the risk of a threat.

Such a graph is a directed acyclic graph. The nodes of the graph consist of threats,

countermeasures, or selections of them. A selection can be either a composition

(and) or an alternative (or). The root of the graph represents the main threat to be

analyzed. The leafs of the graph are the atomic actions to be performed by the

attacker and the defender, respectively. Each leaf is assessed with two values, the

capability and the difficulty. The meaning of the values is as follows:

• The capability measures the fundamental complexity of successfully

applying the threat or the countermeasure. The value is integral and ranges

from (simple) to (very complex).

• The difficulty rates the environment the system is located and the

respective effects on implementing the threats and countermeasures. The

value is integral and ranges from (simple) to (very complex).

The success rate of a threat or a countermeasure is derived by its capability

and difficulty assessment according to (Table 1). In the following, we refer to

the contents of this table as the risk assessment model.

1
Webpage: https://nvd.nist.gov

https://nvd.nist.gov/

Athens Journal of Technology & Engineering December 2019

227

Table 1. Risk Assessment Lookup Table

 Figure 1 provides a chart of the success rates of the capabilities with respect

to the difficulties.

Figure 1. Risk Assessment Chart

Use Case: Ransomware Attack

In the following, the attack defense graph model is used to analyze the threat

of a ransomware attack. The respective graph is displayed in Figure 2.

The root (N0001) of the graph represents the risk of a successful ransomware

attack. An assumption in this use case is that the attacker is not able to get

physical access to the company site. Hence, he cannot place malicious USB

sticks or hack the company’s computers directly.

Vol. 6, No. 4 Karg & Hänisch: Using an Extended Attack Defense Graph Model…

228

Figure 2. An Attack Defense Graph modeling the Threat of a Ransomware Attack

and the Respective Countermeasures.

Without direct access, the attacker needs to the malware via the internet. He

has two alternatives: sending a spam email which contains the malware as an

attachment or performing a drive-by attack where the victim downloads the

malware from a well-prepared web page. This alternative is modeled with the

nodes N0002, N0005, and N0012.

Independently of the attack path, the attacker needs to choose a ransomware

malware which is feasible for a successful attack (node N0003). This can be done

quite easily by searching the internet or the darknet. A countermeasure is the

deployment of an anti-malware toolkit within the company’s IT infrastructure

(node N0004). The challenge is to keep this toolkit up to date in order to detect the

latest malware.

The next step of the attack path is the creation of an attachment containing the

malware (node N0007). Usually, this is a PDF or a Microsoft Office document.

From the defender’s point of view, this cannot be prevented. Finally, the spam

email needs to be sent (node N0008). The attacker can choose a service offered in

the darknet or can use a public email service provider. The defender can act

against this threat by using a spam filter (node N0010) or improving the awareness

of the employees (node N0011).

After choosing the malware, the attack path continues with the setup of a

website which is used to distribute the malware (node N0014). In the internet,

there exist various hosting platforms for this purpose. It is not difficult to create a

well-designed website. Finally, the attacker needs to send the link to the website

via email (node N0015). The defender can take care on this threat by using a spam

filter (node N0017) or improving the awareness of its employees (node N0018). In

Athens Journal of Technology & Engineering December 2019

229

contrast to the previous attack path, we assume that for a spam filter it is more

difficult to detect malicious links in an email than to detect bad attachments. This

results in an higher capability value of node N0017.

Monte Carlo Simulation

After modeling the use case, the resulting attack defense graph is analyzed by

performing a Monte Carlo simulation. The algorithm behind this simulation is

depicted in Figure 3.

In the first step of the algorithm, the success rates of the leafs are initialized

with the values of the risk assessment model. Then, the parameters of the

simulation are initialized. All in all simulation steps are

performed. The number of successful simulation steps is stored in the variable

cntr.

A simulation step is computed by a recursive procedure which performs a

depth-first walk through the attack defense graph beginning at the root node. The

steps of the computation depend of the type of visited node.

If the visited node is a countermeasure node, then the procedure chooses the

success rate depending on the countermeasure’s capability and the difficulty (see

(Table 1)) and determines its success by a random trial, this is, a Bernoulli

experiment with success probability .

If the visited node is a threat node, there are two cases:

• The node is a leaf: In this case, the procedure guesses the result of the

threat uniformly at random according to its capability and difficulty.

• The node has a child threat: In this case, the procedure computes the result

of the child threat recursively and stores it as the result of the node.

If a countermeasure is assigned to the threat node, then the procedure

furthermore computes the result recursively and sets the result of the node to

. This is, if the countermeasure is successful, then it prevents

the success of the threat.

If the node is a composition (and) or an alternative (or) of threats or

countermeasures, then the procedure recursively computes the result of the node’s

children and then sets the value of the node as the logical and or the logical or of

its children, respectively.

In the case of a successful attack, the variable cntr is increased. As the result,

the algorithm returns the ratio of successful attacks with respect to the total

number of simulations, this is, the fraction .

Vol. 6, No. 4 Karg & Hänisch: Using an Extended Attack Defense Graph Model…

230

Figure 3. Simulation Approach

Analysis of the use Case

The analysis of the use case starts with two basic simulations. The first

simulation runs on a variant of the attack defense graph where all countermeasures

are disabled (see Figure 4). According to the simulation, the success rate of threat

without countermeasures is approximately 95.432%. The success rate is too high

to be neglected.

Athens Journal of Technology & Engineering December 2019

231

Figure 4. The Simulation of the use Case without Countermeasures Delivers a

Success Rate of 95.432%.

The second simulation runs on the graph with all countermeasures enabled

(Figure 5). The result is that the countermeasures reduce the success rate to 2.3%.

Interpretation: the risk of a ransomware attack can be effectively minimized by

applying all countermeasures.

Table 2. Sensitivity Analysis of the Usage of an anti-Malware Toolkit (node

N0004)

Vol. 6, No. 4 Karg & Hänisch: Using an Extended Attack Defense Graph Model…

232

Figure 5. Applying the Countermeasures Lowers the Success Rate to 2.3%.

The usage of an anti-malware toolkit (node N0004) is a central

countermeasure in the sense that it influences both attack paths. Hence, it is

important to analyze the consequences of a wrong assessment of this node. This is

done by changing both the capability and the difficulty of the node and performing

another Monte Carlo simulation on the modified attack defense graph. The result

is displayed in [tab: anti-malware-sensitivity]. The simulation shows that in the

worst case the success rate of the ransomware attack is seven times higher

(capability 6, difficulty 6) than in the initial assessment.

From an economic point of view, the deployment of IT security mechanisms

results in costs such as license fees or working time of the IT department. A

legitimate question is which of the counter measures can be omitted without

significantly increasing the risk of a successful attack. These kind of questions can

be answered by modifying the attack defense graph. In the use case of the

ransomware attack, the implementation of the countermeasures (nodes N0011 and

N0018) might cost a non-negligible amount of money. What happens if these

countermeasures are omitted? Changing the attack defense graph and performing a

Monte Carlo simulation shows that this results in a success rate of .

Formal Aspects

A fundamental assumption of the model is the independence of the leaf

nodes. Using this assumption and a pocket full of mathematics, several facts

can be derived which help to understand the behaviour of the model. These

facts help to find errors in the implementation of the simulation system.

Athens Journal of Technology & Engineering December 2019

233

In the following and denote the event that the threat or the threat

 is successful, respectively. The events , , and are defined analogously

with respect to countermeasures.

Fact 1. If and are independent, then

and

The first equation represents a composition of threats, the second one

represents an alternative of threats. The fact applies to countermeasures too and

can be extended to any number of independent events.

Figure 6. Two ways to apply Countermeasures to a Composition of Threats

A common situation during the modeling phase of a threat assessment is

choice of preventing two threats together with one single countermeasure or with

one countermeasure per threat (see (Figure 6)). The following two facts model

the situation in the case of a composition (and) of two threats. Fact 2 addresses

the first case ((Figure 6) a), fact 3 addresses the second case ((Figure 6) b).

Fact 2. If the events , and are independent, then

Fact 3. If the events , , and are independent, then

If , then the following inequality can be derived

from fact 2 and fact 3:

Vol. 6, No. 4 Karg & Hänisch: Using an Extended Attack Defense Graph Model…

234

This inequality can be interpreted as follows: in the case of a composition of

two threats, it is better to mitigate the risk of each threat with a separate

countermeasure than to handle both threats together with one single

countermeasure.

The next two facts consider the two cases in the case of an alternative (or).

Fact 4 addresses the usage of one countermeasure for both threats, fact 5

addresses the treatment of each threat with one separate countermeasure.

Fact 4. If the events , and are independent, then

Fact 5. If the events , , and are independent, then

If , then the following inequality can be derived

from fact 4 and fact 5:

This inequality can be interpreted as follows: in the case of an alternative of

two threats, it is better to handle both threats together with one single

countermeasure than to mitigate the risk of each threat with a separate

countermeasure.

Implementation Aspects

This section provides some details on the lessons learned from the

implementation of the simulation system.

Rapid Prototyping with Python

The first step in the implementation process was a rapid prototyping approach

with Python
2
. The application was designed in an object oriented fashion. As

expected, the development was done in short period of time.

While working with Python, we benefited from the simplicity of this

programming language. Especially the dynamic typing of the variables during run-

time and the required formatting of the code with indentations supported to make a

good progress. Another advantage are the built-in data structures such as lists and

dictionaries which simplify the implementation of common algorithms such as

graph algorithms.

The Python ecosystem consists of lots of additional packages which can be

installed easily with the Package Installer for Python (PIP). Two of these packages

2
Webpage: https://www.python.org

https://www.python.org/

Athens Journal of Technology & Engineering December 2019

235

turned out to be very useful in our software protect and are described briefly in the

following.

In the development of the simulation system the possibility of cloning an

attack defense graph was needed. This is, an exact copy of the graph had to be

created which is in a different memory location than the original one. Thy Python

module copy
3
 provides with the command deepcopy() exactly the required

functionality. The command recursively creates a copy of an object and all the

objects it does contain.

In order to simulate an attack defense graph with different node assessments,

it is necessary to iterate through a given range of capability or difficulty values.

For example, in the above use case, the impact of an anti-malware toolkit (node

N0004) was analyzed by simulating the attack defense graph for each of the

capability difficulty pairs from in the set . Programming in

Python, this can be done easily by using the module itertools
4
 which provides

building blocks for iterators based on a given set of values. This module helped a

lot in creating different simulation scenarios.

After the prototype of the simulation system was completed, it was used to

analyze several use cases. While working with the software, several drawbacks of

the Python language did arise. At first, since Python is an interpreted programming

language, many errors in the code pop up during the execution of the program.

Furthermore, the execution of the interpreted code is slow compared to the code of

a compiled programming language such as C++ or Java.

Another disadvantage is the Python global interpreter lock (GIL), which

controls the execution of threads in such a way that only one thread is executed at

a point of time. As a consequence, implementing a multi-threaded simulation

approach does not improve the performance of the simulation system, since at a

time only one thread can be executed. The power of a multi core CPU is not

maxed out because only one core is used. A solution is the implementation of a

multi process approach with interprocess communication which is more complex

compared to multithreading. For more details, we refer to (Gorelick and Ozsvald,

2014).

Besides of its drawbacks, rapid prototyping with Python was the right

decision, because the simulation tool could be put into work within a very short

period of time. It provided a lot of knowledge which turned out be useful in further

progress of this project.

Re-Implementation with Java

The major drawback of the Python implementation was its mediocre

performance and the restricted support of multithreading. Hence, we decided to do

a re-implementation with the programming language Java
5
. Java was chosen

because of its platform independence and the large availability of third party

3
Webpage: https://docs.python.org/3/library/copy.html.

4
Webpage: https://docs.python.org/3/library/itertools.html.

5
Webpage: https://www.oracle.com/technetwork/java/index.html.

https://docs.python.org/3/library/copy.html
https://docs.python.org/3/library/itertools.html
https://www.oracle.com/technetwork/java/index.html

Vol. 6, No. 4 Karg & Hänisch: Using an Extended Attack Defense Graph Model…

236

software packages. The re-implementation started with Java 8. Later, we switched

to Java 11, the current version with long term support.

The project was designed as a multi-module architecture which made use of

the Java Platform Module System (JPMS) which was introducted in Java 9.

Simply spoken, JPMS enables the separation of the code into several modules.

Each module must have an unique name and must specify the dependencies on

other modules. In particular, it must be specified which elements of the module are

accessible. The benefit of this approach is an increase of reliability of the software

and a better encapsulation of the software packages. The interested reader finds

more information on Java modules in chapter 12 of (Flanagan and Evans 2018).

Since the Java SE Development Kit does not include a build tool which

automatically takes care of module dependencies, Maven
6
 was chosen as the

software management and build toolkit. The layout of the project was a multi-

module one. For each module, a project object model (POM) had to be created.

The POM includes, among other things, the dependencies of the module and the

instructions to build and package the module. The format of a POM file is XML.

The re-implementation with Java resulted in a software with improved

running times and proper multithreading support. Compared to Python, the

development in Java was more time-consuming. Since Java did not provide

modules with the functionality of Python’s copy and itertools modules, additional

work had to be spent on implementing these features.

Conclusion

This paper describes the application of a risk assessment model to the use case

of a threat induced by ransomware attack. The model is based on attack defense

graphs and Monte Carlo simulations. The model was successfully implemented

with Java. The analysis of the ransomware use case demonstrated how to apply the

model to practical problems arising in the area of cyber security risk assessment.

The use case shows how the model can help security specialists to find out

appropriate countermeasures to mitigate common threats on computer systems.

The effort of applying this model is moderate compared to other risk assessment

methods. As a consequence, the model is appealing to small and medium-sized

enterprises which can use the model for decision-making on it security solutions

with moderate costs.

6
Webpage: https://maven.apache.org.

https://maven.apache.org/

Athens Journal of Technology & Engineering December 2019

237

References

Blakley B, McDermott E, Geer D (2002) Information Security is Information Risk

Management. Proceedings of the 2001 Workshop on New Security Paradigms.

Cremonini M, Martini P (2005) Evaluating Information Security Investments from

Attackers Perspective: the Return-On-Attack (ROA). In 4
th
 Workshop on the

Economics on Information Security.
Edge KS, Dalton GC, Raines RA, Mills RF (2006) Using Attack and Protection Trees to

Analyze Threats and Defenses to Homeland Security. Military Communications

Conference, Milcom 2006, IEEE.

Ericson CA (1999) Fault Tree Analysis - a History. In 17
th
 International System Safety

Conference.

Flanagan D, Evans B (2018) Java in a Nutshell (7
th
 ed.). O’Reilly Media, Inc.

Forum of Incident Response and Security Teams (Ed.). (2019). Common Vulnerability

Scoring System v3.1: Specification Document. Retrieved from https://bit.ly/2m8c Ssz.

Fraile M, Ford M, Gadyatskaya O, Kumar R, Stoelinga M, Trujillo-Rasua R (2016) Using

Attack-Defense Trees to Analyze Threats and Countermeasures in an atm: A Case

Study. In The Practice of Enterprise Modeling, Poem 2016: 326–334. Springer.

Gorelick M, Ozsvald I (2014) High Performance Python. California: O’Reilly.

Hänisch T, Karg C (2019) Using Monte Carlo Simulation to Estimate the success of it

Security Measures in Industry 4.0 Environments. Presented at 15
th
 Annual

International Conference on Information Technology & Computer Science, 20-23

May 2019, Athens, Greece.

Kordy B, Mauw S, Radomirović S, Schweitzer P (2014) Attack–Defense Trees. Journal

of Logic and Computation 24(1): 55–87.

Kumar R, Stoelinga M (2017) Quantitative Security and Safety Analysis with Attack-

Fault Trees. 18
th
 International Symposium on High Assurance Systems Engineering,

IEEE.

Lund MS, Solhaug B, Stølen K (2011). Model-Driven Risk Analysis: The CORAS

Approach. Berlin, Heidelberg: Springer.

Mauw S, Oostdijk M (2006) Foundations of Attack Trees. In: Won D.H., Kim S. (eds)

Information Security and Cryptology - ICISC 2005. ICISC 2005. Lecture Notes in

Computer Science, vol 3935. Berlin, Heidelberg: Springer.

OWASP (Ed.). (2019, June 27). OWASP Risk Rating Methodology. Retrieved from

https://bit.ly/1BJAUe8 [Accessed 13 July 2019].

Schneier B (1999a). Attack Trees. Dr. Dobb’s Journal of Software Tools 24(12): 21–29.

Schneier B (1999b) Attack Trees. Retrieved from https://bit.ly/2IcpbcC

Vesely W E, Goldberg FF, Roberts NH, Haasl DF (1981). Fault tree handbook (No.

NUREG-0492). U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory

Research, Division of Systems; Reliability Research.

https://bit.ly/

Vol. 6, No. 4 Karg & Hänisch: Using an Extended Attack Defense Graph Model…

238

