
Athens Journal of Technology & Engineering 2022, 9: 1-17

https://doi.org/10.30958/ajte.X-Y-Z

1

Didactic Connection between Spreadsheet and Teaching

Programming

By Gábor Törley
*
, László Zsakó

±
 & Péter Bernát

When we talk about problem-solving skills, then, generally, programming

comes to our minds as an activity that can develop algorithmic thinking and

abstraction. Regarding the spreadsheet, the software application area could be

our first, and mathematics could be our second thought. When spreadsheets and

programming are mentioned together, programming of macros is in focus,

which is in fact programming. In this paper, we want to focus on how these two

areas impact each other, and we want to emphasize that the spreadsheet is an

efficient tool to develop algorithmic thinking. Moreover, there is more

“crosstalk” between these two tools. This paper will show through examples

that there is a two-way connection between spreadsheet and programming; that

is why it can be useful to build the concepts of these two topics mutually on each

other.

Keywords: spreadsheet, programming, problem solving, algorithmic thinking,

teaching methodologies

Introduction

Usually, spreadsheet teaching is not classified as a problem-solving tool. For

example, according to the Curriculum Framework of the National Core Curriculum

(NAT) 2012, the topic “Problem-solving with Information Technology (IT) tools”

deals with only programming and algorithms (NAT 2012). Spreadsheets are part

of the topic “Using application systems”, and the goal of spreadsheets is retrieving

information.

The new Curriculum Framework 2020 (NAT 2020) adopts a different and

more suitable approach according to which spreadsheets are a new topic in the

field of “Developing problem-solving skills”. With this change of approach,

teaching methods developed earlier by the Faculty of Informatics of Eötvös

Loránd University, are followed (Zsakó 2015a, 2015b). In our work, we will show

that the new Curriculum Framework has the right approach.

In our paper we will go through the key concepts of programming and we will

demonstrate how these concepts can be taught by spreadsheet. We will focus, in

particular, on how to present and teach programming theorems in spreadsheets.

For this reason, we will define the concept of programming theorems after the

literature review.

*
Senior Lecturer, Faculty of Informatics, ELTE Eötvös Loránd University, Hungary.

±
Associate Professor, Faculty of Informatics, ELTE Eötvös Loránd University, Hungary.

Senior Lecturer, Faculty of Informatics, ELTE Eötvös Loránd University, Hungary.

Vol. X, No. Y Törley et al.: Didactic Connection between Spreadsheet…

2

Literature Review

The spreadsheet teaching field includes basic programming concepts (Tort

2010), like data types, operations, variables, and functions. Tort also suggests

adding procedures, scopes of variables, data tables, sorting, etc. because a

spreadsheet can be considered as a program and building a spreadsheet is partly

programming. If we use a model of a spreadsheet explicitly, then we can help

learners in the process of abstraction, which is a very important part of

programming.

According to Szalayné Tahy (2016), a table spreadsheet can be considered as

a program with data and pre-defined algorithms. Although students can see a

table/spreadsheet on their screens, they need to understand the “program”, which

consists of their solutions implemented by functions.

Csernoch and Bíró (2015) claim that spreadsheet software can be used as a

problem-solving tool. Their method, called Sprego, “is a deep approach

metacognitive problem-solving environment, which has borrowed and combined

proven methods from high level programming languages. The three milestones of

Sprego are

 using as few and as simple general-purpose functions as possible,

 building multilevel formulas,

 building array formulas.” (Csernoch and Bíró 2015 p. 27)

This method can develop students’ computational thinking and algorithmic

skills. Teaching spreadsheet has an important role in Information and

Communications Technology (ICT) education because students learn several

aspects of computer science and develop skills connected to this field, for

example, handling data structures, database management, programming principles,

logical and computational thinking, and algorithmic skills. Sprego also promotes

schema construction through authentic problem-solving and algorithm construction

(Csapó et al. 2020).

Many fundamental programming concepts have their equivalents in

spreadsheet. Kankuzi et al. (2017) propose that before an introductory

programming course, students should learn spreadsheet programming, where the

fundaments of programming are indirectly introduced to them through problem

solving by using spreadsheet.

According to Warren (2004), if we use spreadsheet before teaching a

programming language, then it takes less time to get to more complicated

algorithms.

Programming Theorems/Patterns of Algorithms

Programming tasks can be categorized into groups according to their types,

which is useful because for each group we can create an algorithm rule/schema

Athens Journal of Technology & Engineering XY

3

that solves all the tasks in that specific group. These task types are called

programming theorems because their solutions are justifiably the correct solutions.

Essentially, programming theorems/patterns of algorithms are abstract

specifications and algorithms that we want to use as schemas in order to solve a

programming task. The aim of specification is to give the task in a formalized way

(it can be an “interface” between the programmer and the customer). Specification

has four components: input, output, precondition and postcondition. Input is the

input data of the task; precondition gives information on the input (i.e., which

statements should be fulfilled by the input data); output is the result of the task;

and postcondition is statements used to get the result (how we reach the result-state

from the first input-state) (Harangozó et al. 1998).

We can recognize the suitable programming theorem from the task

description. Once we have done this, we can use the specific data of the general

task type, and in the general algorithm substitute them with the task-specific data.

Applying this method will lead us to the correct solution.

In these tasks we usually have to assign a certain result to one (or more) data

collection(s), which, for simplicity’s sake, we will handle as some sort of

sequences. In simple cases sequences can be illustrated as arrays (Szlávi et

al. 2019).

Programming theorems/patterns of algorithms are proven templates as a basis

on which we can build our solutions later. (This way development will be quicker

and safer.) We note here that our term “Patterns of algorithms” differs from the

usual definition (LMU n.d.). According to our wording, pattern refers to a task-

schema and not to a problem-solving strategy.

We can categorize programming theorems in three groups. We would like to

summarize the essence of these algorithms (Szlávi et al. 2019).

Basic Programming Theorems

 Sequential computing (sequence calculations): We have an input

sequence, and we have to calculate a single value from that. We will use

the same operation on every element of the sequence.

 Counting: We have an input sequence, and we have to count how many

of them have a given attribute.

 Decision: Let us determine if there is an item with a given attribute

among the elements of an input sequence.

 Selection (linear selection): We have an input sequence, and we have to

select an element which has a given attribute, assuming that at least one

such element exists in the input sequence.

 Search (linear search): We have an input sequence, and we have to

search for an element that has a given attribute, and we do not know

whether such an element exists in the sequence. (Search is the

construction of decision and selection.) Dijkstra calls this algorithm

“Linear search theorem” (Dijkstra 1976, p. 105).

 Maximum selection: We have to pick/find the greatest (or smallest)

value from the input sequence.

Vol. X, No. Y Törley et al.: Didactic Connection between Spreadsheet…

4

Complex Programming Theorems

 Copy (calculation with a function): We have an input sequence with N

elements, and we have to assign N other elements to these. The type of

assigned values can differ from the type of original values, but the count

(N) remains the same, as well as the order. In other words, we will use the

same operation on each of the elements of the sequence, but the output will

be a sequence.

 Multiple item selection: We have to list all elements from the input

sequence which have a common attribute A.

 Partitioning: We have to list all elements from an input sequence which

have a common attribute A, and then also list those ones not having

attribute A. So, we “assign” all the elements of the input to one of the

output sequences. (Of course, there can be more than two attributes.)

 Intersection: We have two sets as input (with elements of the same type),

and we have to list all elements that are part of both sets. (This is the

construction of multiple item selection and decision.)

 Union: We have two sets as input (with elements of the same type), and

we have to list all elements that are included at least in one of the sets.

(This is the construction of copy, multiple item selection and decision.)

Constructed Programming Theorems

 Conditional copy: We will calculate the same operation on each element

of the sequence which have the given attribute and another operation on

each element which does not have the given attribute. (This is the

construction of multiple item selection and copy.)

 Conditional summation: Sum of elements with a certain attribute. (This

is the construction of multiple item selection and summation.)

 Conditional maximum search: find the maximum of the elements that

have a certain attribute. (This is the construction of decision and maximum

selection.)

 There are at least K elements with the given attribute (This is the

construction of search and counting.)

Basic Programming Concepts in Spreadsheet

Variable and Data Type

Cells, one of the most important basic concepts of spreadsheets, are

comparable with variables, one of the most important basic concepts of

programming. Like variables, cells are named containers (they have a default

name, but can also be renamed) in which data can be written and from which the

same data can be retrieved. If the user enters the data, it corresponds to reading a

value from the user into a variable. If a formula enters the data, it corresponds to

Athens Journal of Technology & Engineering XY

5

storing the result of a calculation in a variable. However, unlike variables, cell

content is constantly visible, so no instruction for displaying output is required. It

is important to note that in spreadsheet it is not the cell that has a type, but the

value stored in it, as even values from different types can be written in the same

cell. However, data validation can be set to a cell to limit the type of data that can

be entered in it, which is like declaring the type of a variable.

An example of the specialty of spreadsheet’s variable concept is that we can

assign a name to separated ranges as well and we can use it as a parameter (see

Figure 1); we cannot do this in programming.

Figure 1. Separated Ranges as a Single Variable and as a Parameter in

Spreadsheet

The first column of Table 1 contains the “data types” of spreadsheet, while

the second one shows the construction of these types in programming from

primitive data types. “Data types” are enclosed in quotation marks in the first case

because the spreadsheet does not implement them as true data types. We add that

professional programming languages often include the appropriate composite data

types so that the programmer does not have to construct them.

Table 1. “Data Types” in Spreadsheet and Their Construction in Programming

“Data Type” in Spreadsheet Construction in Programming

Number integer, real

Currency integer, real + output formatting

Accounting integer, real + output formatting

Date
integer, real + output formatting or record

type (struct)

Time
integer, real + output formatting or record

type (struct)

Percentage integer, real + output formatting

Fraction record type (struct) + output formatting

Scientific integer, real + output formatting

Text string

Logical Boolean

Behind the scenes, in fact, spreadsheet deals with 4 data types: logical,

number, text and error (error data type is not the subject of our paper). All the

“data types” of spreadsheet are real numbers except text and logical. This means

Vol. X, No. Y Törley et al.: Didactic Connection between Spreadsheet…

6

that all numeric “data types” of spreadsheet are representations; more precisely,

they are output formatting (see Table 2).

Table 2. Representations of Spreadsheet’s Number Type

“Data Type” Displayed in Cell Stored Number

Number 123456.00 123456

Currency $123 456.00 123456

Accounting $123 456.00 123456

Date 01.03.2238 123456

Time 12:00:00 123456.5

Date and Time 01.03.2238 12:00 PM 123456.5

Percentage 75.00% 0.75

Fraction 2/3 0.66666667

Scientific 1.23E+05 123456

There is a great similarity between the spreadsheet’s cell format and

programming languages’ formatted output (i.e., decimal places, format numbers in

thousands, etc.).

Function and Data Type

Understanding spreadsheets requires a function-like way of thinking

(introduction to functional programming). Using parametrizing functions and

nested functions in spreadsheet can support the understanding of parametrizing

and parameter passing in conventional programming languages.

In order to form the correct type-concept, spreadsheet has an important role

because there are specific functions that can be interpreted only on specific types.

For example, SUM and AVERAGE functions can be interpreted only on numeric

data, and each arguments of the logical functions, such as AND or OR, must be

logical values. Students can understand that the type is not only a set but the

applicable operations as well. There is a great difference between digits as string

and numbers (difference between “23” and 23). Constant data show this difference

as well.

Array and Matrix

Although spreadsheet has a special variable concept (Szlávi et al. 2018), a

deeper understanding of functions can support students’ understanding of the

difference between scalar and sequence and what it means to travers a sequence.

In spreadsheet, a sequence can be stored in an array or in a matrix. The best tool

for comprehending the concept of indexing can be the INDEX function that

executes the indexing operation on a selected range.

A single cell is not suitable for storing complex types, such as a record, but

using several adjacent cells can be a solution.

Athens Journal of Technology & Engineering XY

7

Record

If we view a table in spreadsheet as a table in a database, then its rows can be

considered records, the fields of which are defined by the columns. That is, the

table can be considered an array of records, or even an array of objects, which can

lead to the concept of object-oriented programming.

Conditional and Loop

The IF function can help to understand the conditional control structure as

well as the logical (Boolean) type and operations (AND, OR functions).

Loop, as a language element, is not part of spreadsheets, but its concept can

be discovered on different levels. For example, if we perform the same operation

on all elements of a column in an adjacent column using a copied formula (for

example, calculating prices increased by some percentage), we are processing the

elements of the column just as a loop traverses an array. In addition, elements of

columns (or ranges) can be traversed using array formulas.

Deeper comprehension of lookup functions can lead to the concept of

conditional loops because if we look for something, then we can pose a question

whether we need to examine all of the elements of the sequence in order to give a

definite answer.

Programming Theorems in Spreadsheet

Programming theorems can be demonstrated in three different levels in

spreadsheet:

1. with the appropriate built-in functions, students can become familiar with

the concept of programming theorems;

2. using spreadsheet as an algorithm visualization tool, students can

understand how programming theorems work;

3. most programming theorems can be implemented using array formulas

based on the postconditions of their specifications.

In the following, we would like to present these three levels.

Understanding Programming Theorems Using Built-in Functions

Problems to solve with spreadsheet and with programming are often similar,

so it is no surprise that the spreadsheet has the functions that implement most of

the programming theorems. Table 3 summarizes the connections between

spreadsheets and patterns of algorithms.

Vol. X, No. Y Törley et al.: Didactic Connection between Spreadsheet…

8

Table 3. Connection Between Spreadsheet and Patterns of Algorithms

Patterns of Algorithms Built-in Functions in Spreadsheet

sequential computing

(conditional as well)

SUM, SUMIF, SUMIFS, AVERAGE, AVERAGEIF,

AVERAGEIFS, DSUM, DAVERAGE, CONCAT

counting COUNTIF, COUNTIFS, DCOUNT, DCOUNTA

decision IF(COUNTIF), IF(COUNTIFS)

selection
VLOOKUP, HLOOKUP, XLOOKUP, INDEX(MATCH),

DGET

search decision + selection

maximum selection MAX, MIN

copy (map)

there is not any special function, it can be implemented by

copying the reference/formula (Figure 6.) or by creating an

array formula

multiple item selection filter and advanced filter

conditional maximum MAXIFS, MINIFS, DMAX

K
th
 maximum LARGE, SMALL

Sort
SORT (sorting criteria exists but we do not know anything

about the method)

It should be noted that the selection programming theorem can only be

implemented in spreadsheet with crucial limitations. In the case of this

programming theorem, the attribute to be examined can be any logical condition.

On the contrary, lookup functions (except DGET) can only find an item equal to a

specified value in an arbitrary (unordered) range. Although the DGET function

can search using any logical condition, it only provides a solution if exactly one

element meets the condition.

We would like to highlight decision, selection and search algorithms,

showing how they can be implemented in spreadsheet. It can be presented that

VLOOKUP and MATCH functions implement only the selection algorithm

because they do not give any meaningful answer if the element which we looked

for does not exist. Decision algorithm should be rephrased: Does the specific

element or the element with the specific attribute exist? This way of thinking is

connected to the postcondition of decision algorithm. As we deduct linear search

algorithm from the construction of decision and selection algorithms, we will use

the same construction in spreadsheet. For example:

IF(COUNTIF()>0;VLOOKUP();“None”)

Algorithm Visualization of Programming Theorems

As mentioned above, spreadsheet has the functions with which most of the

programming theorems can be implemented. However, these functions hide the

actual calculations from the user. Spreadsheet can also support understanding an

algorithm step by step and in this way it can support understanding how an

algorithm, such as a programming theorem, works. In other words, spreadsheet

can visualize the input, the output and the state of the output variable at each step

of the algorithm. This means that spreadsheet can show us the whole state space

(i.e., input, output, local variables). As examples, we would like to present a

Athens Journal of Technology & Engineering XY

9

possible visualization of the following programming theorems: counting,

maximum selection, decision, conditional maximum search, and copy.

 The counting programming theorem stores the current number of elements

having a given attribute A in an auxiliary variable. It first sets the auxiliary

variable to 0, then uses a For loop to traverse the sequence, and if the current

element has attribute A, it increments the value of the auxiliary variable by 1.

In our example (see Figure 2), the sequence has 10 elements in an array, and

the attribute A is whether the element is greater than 5. Our visualization shows

the current value of the auxiliary variable in column Count using the formula

shown in Figure 2.

Figure 2. Visualization of Counting Programming Theorem

Figure 3 shows how to visualize the maximum selection programming

theorem. This algorithm uses a For loop and checks whether the current value of

the sequence (in our example: the array) is higher than the local maximum. If yes,

then we change the value of variable MaxVal to the current value of the array. In

the first step, the local maximum is the first element of the array and that is why

we start the loop counter from 2.

Figure 3. Visualization of Maximum Selection Programming Theorem

The decision algorithm checks the elements of the array until attribute A

becomes true for the current element. In our example attribute A is that the value is

even. Since we do not need to always check all the elements of the array, there is a

while loop in the algorithm. In the while loop, we check whether the current

Vol. X, No. Y Törley et al.: Didactic Connection between Spreadsheet…

10

element has attribute A and then we increment variable i, which means we go to

the next element. If there are elements to be checked and the current element did

not have attribute A, we go into the loop, otherwise we exit from the loop.

The visualization in spreadsheet in Figure 4 shows well that as soon as the

current element has Attribute A, the variable Exists changes from false to true and

after that it will not change back to false (if there is not any element with attribute

A then Exists will remain false). According to the algorithm, however, if Exists is

true then there is no need to check further. To emphasize this, we can easily create

a conditional formatting that darkens (or even hides) the cells belonging to the

skipped steps. In our example, conditional formatting was applied to range

D3:D12 with rule “=D2”.

Figure 4. Visualization of Decision Programming Theorem

The conditional maximum search programming theorem searches for the

largest item in the series that satisfies the specified condition. Of course, it is not

certain that there is an element in the series that satisfies this condition, which is

why the output will also contain a logical value (variable Exists) that will be true if

and only if the condition was true for at least one element.

This programming theorem is based on the maximum selection programming

theorem described above. Now, however, it is not certain that the first element can

be considered the maximum so far; instead, minus infinity will be the initial value

of the conditional maximum (variable CMax). Furthermore, the current maximum

value is substituted with a larger element only if that larger element satisfies the

condition. At the end, the output logical value is set to true if and only if the value

of the conditional maximum differs from minus infinity (see Figure 5).

Athens Journal of Technology & Engineering XY

11

Figure 5. Visualization of Conditional Maximum Search Programming Theorem

There is not any function that can directly implement the copy (map)

algorithm. If we execute the same operation on the elements of the input sequence,

the output will be a sequence. The “copying formula” (actually copying reference)

feature of the spreadsheet shows that during the copy algorithm we “copy” the

formula so we “copy” the operation as well. This way we can visualize the copy

programming theorem (see Figure 6).

Figure 6. Visualization of Copy Programming Theorem

Vol. X, No. Y Törley et al.: Didactic Connection between Spreadsheet…

12

Implementation of Programming Theorems Based on Their Postconditions

In the case of advanced spreadsheets, array formulas can map all the patterns

of algorithms (programming theorems), and there can be a connection among

array formulas and postconditions of programming theorems.

To understand the postcondition of some programming theorems, spreadsheet

can be a good support. We need to use array formulas. In many cases, the

implemented solution by spreadsheet is obvious: for example, summation,

counting, conditional summation, copy, and conditional copy. For instance, the

postcondition of counting looks like this:

 ∑

Where A is the attribute function, N is the size of the sequence (in this case:

array). This means if the given array-element has attribute A then we add 1 to

Count. In spreadsheet, this formula can be implemented literally with the array

formula. The Greek letter great sigma means that we add more elements to each

other and the condition below that decides at which elements we should add 1 to

Count. The operation of great sigma will implement the SUM function, and the

operation of the conditional will implement the IF function. That is why the

following spreadsheet formula will implement the postcondition of count

algorithm correctly:

{=SUM(IF(A(array);1;0}

The SUM function will sum an array with elements 0 and 1 (the output of IF

function) and those elements will be 1 that has A attribute (in other words: where

the value of A function is true).

In our previous work (Szlávi, Törley & Zsakó, 2019), we have proven that all

the programming theorems can be deduced to the sequential computing theorem.

We have claimed that the decision algorithm deduced to sequential computing

gives the correct solution based upon a Boolean array where the i
th
 element of the

array is true if the i
th
 element of the input array has A attribute. Decision

algorithms have two variants: the first one checks if there is an element in the input

array that has attribute A, while the second one checks if every element in the

input array has attribute A. It can be proven easily that the following array

formulas implement the decision algorithm:

 existing element with A attribute: {=OR(A(array_element))}

 every element with A attribute: {=AND(A(array_element))}

We note here that we could implement this theorem with “normal” (i.e. not

array) formulas (for example COUNTIF, COUNTIFS functions) but this way of

Athens Journal of Technology & Engineering XY

13

thinking would not lead us to an efficient algorithm and we could not connect it to

the postcondition.

Array formulas could help to understand the combination/construction of

programming theorems. A good example of this is the conditional maximum

search algorithm that is the construction of decision and maximum search. We

will combine the postcondition of these algorithms, which means if an element

exists that has attribute A in the array then we calculate the maximum of these

elements:

{=IF(OR(A(array_element));

MAX(IF(A(array_element);array_element; “”));“NONE”)}

The connection between algorithm patterns’ postconditions and array

formulas can be seen in Table 4.

Table 4. The Connection of Algorithm Patterns’ Postcondition and Array Formulas

Pattern of Algorithm and Postcondition Array Formula Implementation

Summation (sequential computing)

∑

{=SUM(array)}

Counting

∑

 {=SUM(IF(A(array);1;0))}

Decision (exists)

exist := i[1..N]: A(Arrayi)
{=OR(A(array)}

Decision (all)

all := i[1..N]: A(Arrayi)
{=AND(A(array))}

Conditional sum

∑

 {=SUM(IF(A(array); array;0))}

Conditional maximum

exist := i [1..N]: A(Arrayi) and exist à

MaxVal =

{=IF(OR(A(array));

MAX(IF(A(array); array;

“”));“NONE”)}

Copy

i[1..N]: F(Arrayi)
{=F(array)}

Conditional copy

i[1..N]: A(Arrayi) is true: F(Arrayi) else

Arrayi

{=IF(A(array);F(array); array)}

Multiple item selection

 ∑

and

 []

{=IF(A(array); array; “”}

Vol. X, No. Y Törley et al.: Didactic Connection between Spreadsheet…

14

We can see a connection between the formulas of postconditions and the

formulas of spreadsheet. This can be seen on Table 5.

Table 5. The Connection between Formulas in Postcondition and Formulas in

Spreadsheet
Formula in Postcondition Formula in Spreadsheet

∑

 SUM(array)

 MAX(array)

F(Arrayi) F(array)

A(Arrayi) IF(A(array);array; “”)

i[1..N]: A(Arrayi) OR(A(array)

i[1..N]: A(Arrayi) AND(A(array)

Table 5 shows that we have “building blocks” and by combining these

“blocks” a more complex postcondition can be built. This combination shows how

programming theorems can be constructed.

We should take a note on maximum selection and multiple item selection

programming theorems. Maximum selection cannot be implemented with an array

formula because we cannot compare and refer to the elements of the array in the

memory (like we showed in Figure 3). CMax can be implemented with an array

formula because IF function can select those array elements for MAX function

which have A attribute.

The result of multiple item selection is an array (which is Y in the

postcondition). Count will be the number of those elements which have A attribute

(like at count programming theorem) and it will be the number of elements of the

output array in Figure 8. In spreadsheet, we do not need to output the number of

the output array.

The implementation of some programming theorems with scalar output using

array formulas, based on the postconditions of their specifications can be seen in

Figure 7.

Figure 7. Implementation of Summation, Counting, Decision (in Two Variants),

Conditional Summation and Conditional Maximum Search Programming Theorems

Athens Journal of Technology & Engineering XY

15

Similarly, Figure 8 shows the implementation of some programming

theorems with array output. Due to the particularity of spreadsheet, the

continuance of array cannot be kept at multiple item selection algorithm.

Figure 8. Implementation of Copy, Conditional Copy, and Multiple Item Selection

Programming Theorems

Summary of the Three Levels through an Example

As stated earlier, programming theorems can be demonstrated at three

different levels in spreadsheet. The first one is about the comprehension and usage

of programming theorems using the proper built-in functions. The second one

visualizes the algorithms of the programming theorems using only basic operators

and functions. In the third level we can implement most of the programming

theorems using array formulas, according to their specifications, or more precisely,

postconditions. Consequently, all levels can help learning programming theorems

from a different aspect.

For comparison, Figure 9 shows the appearance of the counting programming

theorem at the mentioned three levels.

Vol. X, No. Y Törley et al.: Didactic Connection between Spreadsheet…

16

Figure 9. Appearance of the Counting Programming Theorem at the Three Levels

(The Solution Has a Thick outside Border in Each Level)

Conclusions

Our paper showed why the spreadsheet (except table formatting and graphs)

is part of computational thinking (together with algorithm and programming)

rather than digital literacy. Spreadsheets and algorithms both involve problem-

solving (skills).

We can find a great similarity between the topics (data, patterns and algorithms)

of the two areas and that is why they can support each other when teaching

students to learn and understand key concepts.

In the classical order of IT education, students learn spreadsheet before

programming. That is why programming knowledge could be built upon

spreadsheet (NAT 2012, NAT 2020, Szalayné Tahy 2016). In Hungary, array

formulas are taught only in talent development in secondary schools (Molnár

2014), that is why they will not be the part of the regular teaching order);

nevertheless our article intended to show that they could be essential tools in

programming education.

Athens Journal of Technology & Engineering XY

17

References

Csapó G, Csernoch M, Abari K (2020) Sprego: case study on the effectiveness of teaching

spreadsheet management with schema construction. Education and Information

Technologies 25(Nov): 1585–1605.

Csernoch M, Biró P (2015) Sprego programming. Sprego Programming, Spreadsheets in

Education (eJSiE) 8(1): Article 4.

Dijkstra EW (1976) A discipline of programming. Englewood Cliffs, New Jersey:

Prentice-Hall, Inc.

Harangozó É, Szlávi P, Zsakó L (1998) Joining programming theorems a practical

approach to program building. In Annales Universitatis Scientiarum Budapestinensis.

Sectio Computatorica. Budapest, Hungary.

Kankuzi B, Isong B, Letlonkane L (2017) Using the spreadsheet paradigm to introduce

fundamental concepts of programming to novices. In Proceedings of SACLA’17. July

3–5, 2017, Magaliesburg, South Africa.

Loyola Marymount University – LMU (n.d.) Definition of “algorithmic patterns”.

Available at: https://cs.lmu.edu/~ray/notes/algpatterns/.

Molnár K (2014) Tehetésggondozás az informatikában – Táblázatkezelés. (Talent

development in informatics – Spreadsheet). ELTE Faculty of Informatics. Available

at: http://tehetseg.inf.elte.hu/tananyagok/tablazatkez/index.html.

NAT (2012) National core curriculum framework for informatics in Hungary 2012.

Available at: https://kerettanterv.oh.gov.hu/05_melleklet_5-12/5.2.21_informat_5-

10.doc.

NAT (2020) National core curriculum framework in Hungary 2020. Available at: https://

www.okta tas.hu/kozneveles/kerettantervek/2020_nat.

Szalayné Tahy Z (2016) How to teach programming indirectly – Using spreadsheet

application. Acta Didactica Napocensia 9(1): 15–22.

Szlávi P, Törley G, Zsakó L (2018) The most difficult notion of programming: the

variable. In E Sałata, A Buda (eds.), Education - Technology - Computer Science in

Building Better Future, 108–118. Radom, Poland: Wydawnictwo Uniwersytetu

Technologiczno-Humanistycznego w Radomiu.

Szlávi P, Zsakó L, Törley G (2019). Programming theorems have the same origin.

Central-European Journal of New Technologies in Research, Education and Practice

1(1): 1–12.

Tort F (2010) Teaching spreadsheets: curriculum design principles. ArXiv, abs/1009.

2787.

Warren P (2004) Learning to program: spreadsheets, scripting and HCI. In Proceedings of

the Sixth Australasian Conference on Computing Education – volume 30, 327–333.

Darlinghurst, Australia.

Zsakó L (2015a) Informatika Nemzeti Alaptanterv 2020. (National core curriculum in

informatics 2020). In P Szlávi, L Zsakó (eds.), INFODIDACT 2015. (Zamárdi,

Magyarország, 11.26.2015.-11.27.2015.) Budapest: Webdidaktika Alapítvány, Paper

1.

Zsakó L (2015b) Informatikai tantervelmélet? Diszciplínák tanítása – a tanítás diszciplínái

1. Tanulmányok a tudós tanár-képzés műhelyeiből. (Curriculum theory in

informatics? Teaching of disciplines – Disciplines of teaching volume 1. Essays from

the workshop of scientific teacher training). In ELTE Eötvös Kiadó, 92–111.

Budapest, Hungary.

https://cs.lmu.edu/~ray/notes/algpatterns/
https://kerettanterv.oh.gov.hu/05_melleklet_5-12/5.2.21_informat_5-10.doc
https://kerettanterv.oh.gov.hu/05_melleklet_5-12/5.2.21_informat_5-10.doc

