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In this work a couple of three-dimensional problems in the domain of linear 
elastic Fracture Mechanics are examined. These are problems of solid bodies 
(they could be steel bolds or rivets) with a surface crack singularity (V-notch). 
They are reduced to Laplace equation problems by considering a Lamé potential. 
The boundary singularity is numerically treated as per the singular function 
boundary integral method (SFBIM), which in the literature is known as one of 
the so-called Trefftz methods. Thus, the general solution of the governing 
equation, in the vicinity of the surface crack, is expressed as an asymptotic 
expansion, the coefficients of which are approximated by polynomials. The 
remaining numerical steps are followed according to this method with which 
very fast convergence and very high accuracy are observed. In fact, the CPU 
time and the numerical error recorded with this numerical technique are 
significantly smaller than those achieved with the finite element method (FEM) 
which was also used to solve the same problems. The calculated value of Mode 
III Fracture Mechanics parameter (FMP) indicates that there is no danger of 
crack propagation. Thus, the extension of the method to this category of 
problems is considered as a novel application of this algorithm in Fracture 
Mechanics.  
 
Keywords: Mode III Fracture Mechanics parameter, crack singularity, 
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Introduction 
 

Force formulation in linear elasticity problems is not an easy task. Our attempt 
to overcome difficulties encountered in this category of engineering problems is a 
great challenge when we have to tackle three-dimensional problems. Such 
problems are treated by professionals and researchers in the fields of engineering, 
such as the construction industry, mechanical engineering, car industry and 
aerospace engineering. Their number is continuously growing due to the needs for 
new complicated structures, such as construction trusses, geodesic domes and 
tensegrity structures, mechanisms (made of metal alloys) used in robotics and 
biomedical engineering, vehicles and aircrafts with sensitive and complicated 
mechanical connections and many others. Thus, most engineering problems in the 
domain of Solid Mechanics are three-dimensional problems which lead the 
designers and researchers to the implementation of approaches which exhaust the 
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limits of computational resources. Also, in trying to solve particular problems in 
the fields of theoretical or applied Mechanics, exhibiting specific boundary 
singularities, engineers have to overcome several obstacles. Such problems are the 
elliptic equation problems of fracture Mechanics with boundary discontinuities or 
crack singularities.   

In some model problems of linear elasticity, in the three-dimensional space, 
the governing equation is the so-called Beltrami-Michel equation of a three-
variable function, which is known as “stress invariant” and is a function of the 
body forces each one acting along x, y or z axis: 
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where v is the Poisson ratio, σij are the stresses, Q1 is the first stress invariant and 
f1, f2 and f3 are body forces. In some problems body forces are constant and thus 
the above equation is deduced to the following form:  
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Thus, according to the compatibility condition, the governing equation is 
∆(Q1) = 0. But it is well known that complexities appear when there are boundary 
singularities which form a particular type of problems. 

In engineering mechanics, this type of problems is of great importance 
because boundary singularities affect seriously the regularity of the solutions, 
leading to convergence irregularities and low accuracy which is dispersed in all the 
domain of the problem. During the last decade of the 20th century several 
techniques have been developed (e.g., Aliabadi and Rooke 1991, Li 1998) aiming 
to efficiently and effectively tackle this category of problems. In many applications 
it is important to know in advance the values of the coefficients of all the leading 
terms appearing in the local solution, which is expressed in series form (Costabel 
et al. 2003, Szabo and Yosibash 1996) because they are related to other important 
parameters found in Fracture Mechanics (Aliabadi and Rooke 1991), such as the 
Mode III FMP. Obviously, knowledge of the values of these parameters enables 
the designers and engineers to decide about the appropriate materials and 
dimensions to use according to the anticipated loading and thermal conditions of 
the structure. In addition, it is also important to have a good knowledge of the type 
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of boundary singularities, in order to tackle them in the most appropriate way 
(Fung 1977). In two-dimensional elliptic boundary value problems sometimes 
appear two types of boundary singularities (Figure 1). The first type is a 
discontinuity in the boundary conditions (an abrupt change in the boundary 
conditions around a point) mainly caused by a crack. The second type is a re-
entrant corner. 

                                                                    
Figure 1. Two Types of Planar Singularities 
     Discontinuous BCs (cracks)                              Re-entrant corners 
                                                               r 
                              
                                ∆u = 0                                u = 0 
             θ                                 ∆u = 0 
 
                      u = 0            O          ∂u/∂n = 0                                  u = 0    
                O 
                                             θ 
                                                                                                                                     r 
 
                                
 
 

The local solution, in the neighborhood of the singularity of a two-
dimensional problem, is expressed in the form of an asymptotic expansion in 
terms of the singular coefficients aj which are the primary unknowns: 
 

                                           ( )θµ
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j Urau j∑

∞

=

=                                           (3)  

                                        
where Uj(θ) is the singular function and μj are the eigen-values of the problem. 

A large number of numerical techniques, which appear in the literature, are 
based on post-processing of the numerical solution, such as the p-hp Finite 
Element Method or other finite element schemes (Seshaiyer and Suri 1998, 
Stephan and Whiteman 1988, Brannick et al. 2008, Brenner 1999, Brenner and 
Scott 1994) the accuracy and convergence rate of which are not adequate enough. 
However, the general idea of these methods is that the boundary singularity is 
considered in the design of the finite element grid by employing an appropriate 
refinement and the values of the coefficients of the local solution are extracted by 
implementing post-processing, something which is not required with boundary 
element methods. The latter were initially developed to tackle planar problems and 
they do not require complicated grids. Also, they are applied on the boundary of 
the domain (Karageorghis 1992, Katsikadelis 1991). 

The so-called Trefftz methods (Bernal and Kindelan 2010, Li et al. 2007, Li et 
al. 2008) belong to this type of mesh-less numerical techniques and are based on 
local solutions (e.g., equation (3)) or basis functions which satisfy the governing 
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equations and thus allow collocation to be conducted only on the boundary. These 
are the main characteristics of this category of methods which make them more 
appropriate than the post-processing methods. In Li et al. (2008) it is explained 
that the main advantages of the Trefftz methods over the FEM and finite difference 
methods, include their flexibility in representing the boundary singularities and 
irregular geometry of the problem domains, ease of data input and pre-processing, 
high accuracy of the numerical solution and efficient computation. In the same 
reference it is mentioned that especially for the collocation Trefftz method (CTM) 
it has been shown that it is a more accurate numerical technique compared with 
other numerical methods (including the post-processing methods) not only for the 
global solution but also for the leading coefficients of the local solution expansion, 
something which is important in problems of Fracture Mechanics. 

The singular function boundary integral method (SFBIM) is a Trefftz method 
and is used in the present work. Its fundamental characteristic is that the solution is 
approximated by the leading terms of the local asymptotic series around the 
boundary singularity. It has been developed by G. Georgiou and co-workers and 
has been used in many studies to tackle planar harmonic and biharmonic equation 
problems and three-dimensional Laplace equation problems in the fields of 
theoretical and fracture Mechanics, fluid flow, etc. (Christodoulou et al. 2012a, b, 
Elliotis et al. 2010, Elliotis et al. 2002, Elliotis et al. 2005a, b, Elliotis et al. 2006, 
Elliotis et al. 2007, Elliotis et al. 2014, Elliotis 2016, Elliotis 2019, Georgiou et al. 
1996, Xenophontos et al. 2006). It exhibits exponential convergence, a feature 
which was observed in all previous applications of the method. Its application in 
three-dimensional problems (Christodoulou et al. 2012b, Elliotis et al. 2010, 
Elliotis 2016), has given much encouragement to extend the method to other three-
dimensional Laplacian problems of perfectly elastic solid bodies with a crack 
singularity. Also, in the last five or six years, researchers have worked on problems 
of Fracture Mechanics with crack singularities and have obtained interesting 
results (Yosibash and Mittelman 2016, Schapira and Yosibash 2020, Omer and 
Yosibash 2019, Yosibash and Schapira 2021, Chaumont-Frelet and Nicaise 2018, 
Dauge and Nicaise 2017, Woo and Kim 2018). Following the same research 
interests, in the present work, we also examine the behavior of solid bodies when 
they develop a specific failure mode of Fracture Mechanics. 

It is well known that in Fracture Mechanics there are three failure Modes 
(Aliabadi and Rooke 1991): Mode I (opening Mode), Mode II (in-plane shear 
Mode) and Mode III (out-of-plane shear Mode) which is the failure type examined 
in the current research (Figure 2). There is a very rich literature around these failure 
Modes in which the stress intensity factors play an important role in engineering 
analysis and calculations for the design of structures. In the present study we are 
interested in Failure Mode III.  
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Figure 2. The Three Types of Failure Modes in Fracture Mechanics 

 
 
 The rest of the article is organized as follows: in the next section a general 3-

D Laplace equation problem of a solid body made of steel, with a crack singularity 
and a specific 3-D model problem of a steel rivet with a surface V-notch 
(singularity) are presented. Then, the general form of the local solution is given 
and the three-dimensional version of the SFBIM formulation, for the general and 
specific model problems, is presented. Numerical results are presented and 
discussed afterwards. Finally, in the last section, the conclusions are summarized. 

 The goal of this article is to present the extension of the SFBIM in Fracture 
Mechanics to efficiently solve the two problems of solid bodies, with a surface 
crack singularity (V-notch), exhibiting a failure Mode III. Also, the objective of 
the present study is to prove that, for the specific two problems, this method is 
much faster (i.e., it requires much smaller CPU time) and is much more accurate 
than the finite element method (FEM) which is still widely used by engineers and 
researchers by employing commercial packages. The novelty in the present study 
is that the SFBIM is extended in 3-D problems of Fracture Mechanics, exhibiting 
great advantages over the FEM. This encourages a further extension in this field of 
Mechanics.     
 
 
General and Specific Model Problems 
 
General Model Problem 
 

 In Figure 3 a general 3-D model problem of a solid body is presented. It has a 
straight-edge crack-singularity which is created by the intersection of two flat 
boundary parts SA and SB. In fact, this singularity is a straight line parallel to the Ζ-
axis and at a distance dc from this axis. The value of dc can be varied. Both 
boundaries SA and SB form an angle φA with the XZ plane (i.e., SB is symmetric to 
SA with respect to the XZ plane). The external angle ωd (as shown in Figure 3), 
between these two boundary parts, takes values in a certain range of values 
[0.0002π, 1.9998π]. Both ωd and φA are measured in a local polar coordinate 
system (r, θ), with center Od on boundary part SD or Kd on SE. Any other center of 
a local polar coordinate system, on a cross-section parallel to SD and SE, lies on the 
straight-edge crack-singularity. Flat boundaries SD and SE, on each one of the two 
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ends of the solid body, are vertical to both the Z-axis and the edge singularity and 
located at a distance L between them. The domain of the problem is also bounded 
by a boundary part SC. It forms the cylindrical shape of the solid of the problem 
which has a cross-section with a circumference represented by the equation of an 
ellipse (Figure 3). Certainly, it retains a constant shape along Z-axis. 
 
Figure 3. Schematic Illustration of the Domain of the General Model Problem 
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 In Figure 3 the fundamental parameters ψ and R[ψ(θ)], employed in this 

problem, for the cylindrical co-ordinates, are defined as follows: 
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where a and b are the dimensions of the two axis of the elliptic cross-section.  
 

 Τhe material of this solid body is isotropic homogeneous and obeys to 
Hooke’s law. Also, there are no body forces. Thus, there is a scalar function 
Φg(r,θ,z), known as Lamé strain potential function, which reduces the linear 
elasticity equations to the Laplace operator and is always independent of the values 
of Young’s modulus E and the Poisson ratio ν of the material (Fung 1977). Also, 
as per Fung (1977), the potential function generates the field of stresses (stress 
tensor). According to the same reference, which is one of the known classical 
books about theoretical Mechanics, stresses σrr, σθθ, σzz, σrθ, σθz and σzr and 
displacements ξr, ξθ and ξz are expressed in cylindrical coordinates in terms of 
function Φg(r,θ,z) as follows (with G being the shear modulus and defined as 

)1(2
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The mathematical conditions can be derived from the physical conditions of 

the problem. Thus, the mathematical problem is expressed as follows: Find 
Φg(r,θ,z) such that  
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Lamé potential Φg(r,θ,z) is not known for this general model problem with 

boundary singularity. The expressions of functions fg(θ,z) and ξ(r,θ) are as follows: 
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Specific Model Problem of a Steel Rivet with a Surface V-notch 

 
 The general model problem discussed in the previous subsection is now 

specialized into a model problem of a solid body schematically illustrated in 
Figure 4. As a special case of the more general problem of the previous sub-
section, the values of a and b (Figure 3) are now equal to each other and each point 
of the circumference of any circular cross section, on cylindrical boundary SC, is at 
equal distance from the z-axis. The solid body of this particular model problem is a 
metal rivet with a circular cross section of radius R=1cm, which connects three 
steel members of a structure to create a joint. Its middle part has a length L=2 cm 
and is transmitting an eccentric load which comes from the middle element. Thus, 
its cylindrical surface is subjected to a distributed load q(θ,z) which is acting along 
the radial direction and is expressed in MPa (a common unit of pressure). 
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Figure 4. Schematic Illustration of the 3-D Image and Layout of Joint (Specific 
Model Problem of a Steel Rivet with a V-notch) 
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 There is a crack on this solid body, represented by a V-notch which can 
propagate under certain stress and strain concentration states and in general has its 
vertex on a line parallel to the axis of the cylinder (z-axis) at a distance dc. In the 
current work it is investigated whether the applied loading activates crack 
propagation. As we will see, after several numerical experiments, distance dc is 
finally taken equal to zero. This choice is made in order to study the worst case of 
crack formation of Mode III in the steel rivet of this specific problem. Engineering 
experience indicates that under certain loading conditions further crack propagation, 
in this particular case, most probably leads the material to a failure (Aliabadi and 
Rooke 1991), something which will be also examined in the present study together 
with other material properties. Together with the distributed load there is a 
displacement ξ(r,θ) which takes place along the z-axis on each one of the cross 
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sections at positions K and O (Figure 4). The self-weight of the body is negligible 
compared with other loads and is ignored. Therefore, there are no body forces. 

 According to the description of the physical problem given above, the 
principal physical boundary conditions are as follows: 
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where the stresses σrr, σθθ and σzz and the displacements ξθ and ξz can be easily 
deduced from Φs(r,θ,z) which is known for this problem (Fung 1977) and is 
expressed in cylindrical coordinates. Considering boundary conditions (10) the 
problem is specialized as follows:  Find Φs such that 
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where ζ(r,θ) =2Gξ(r,θ). Also, for dc≠0 functions fs(θ,z), ζ(r,θ), Φs(r,θ,z) and q(θ,z) 
have the following mathematical expressions:    
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Note that all values of boundary conditions are dimensional: distributed loads 
are expressed in N/cm2 and lengths in cm and can be easily converted into MPa 
and m respectively, which are common units in most engineering problems. As 
already mentioned, when parameter dc is taken equal to zero it is ωd=ω and rc(θ)= 
R=1 cm and on any cross-section angle θ is measured from an axis parallel to the 
x-axis (Figure 5). Then for this specific case the above expressions take the 
following form (they can be also expressed in the Cartesian coordinate system but 
here they are expressed in the cylindrical coordinate system centered at the z-axis 
as shown in Figure 5): 
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 Figure 5 depicts the mathematical form of this model problem and presents, 

mainly, its geometrical characteristics and the mathematical domain Ωs of the 
above problem. Angle ω presented in the figure has maximum and minimum values 
equal to 1.998π rads and 0.002π rads respectively. Note that for very small values, 
such as ω=0.002π rads, the solid body becomes a blade. Also, in Figure 5, the 
schematic illustration of the distribution of the resulting surface tractions q(r,θ) on 
boundary SC is presented. The distribution of surface traction at a cross section 
with z=1 cm, is also presented in the same figure. This external load distribution, 
which can be determined from the known solution, indicates that external loading 
on the solid body is not symmetric and causes bending to the central part of the 
rivet. Thus, apart from q(r,θ) additional stresses due to friction (shear stresses) and 
contact of the rivet with the middle steel member, appear on SC.    
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Figure 5. Specific Model Problem’s Domain with Schematic Illustration (not to 
Scale) 
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For this problem it is E=210GPa and ν=0.30. Also, the material of the solid 
body is a high-yield steel of type S700MC, suitable for cold forming structural 
load-bearing components, with a titanium content of 0.22% and yield strength 
(elastic limit) σy=620MPa. Beyond this limit, elastic-plastic deformation appears. 
 
 
A Boundary Integral Method in 3-D 
 
Formulation of the Method 
 

The solution Φ of the 3-D Laplace equation, is expressed in cylindrical 
coordinates and is defined in a domain with a boundary crack singularity along the 
z-axis or along a line parallel to this axis, as it is the case of the model problems 
which have been examined in the current study. It is written as follows (Costabel 
et al. 2003, Christodoulou et al. 2012b, Elliotis et al. 2010, Elliotis 2016): 
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In the present work, function Φ represents the Lamé strain potential function 

(Fung 1977) as has already been mentioned. The mixed boundary conditions on 
the boundary parts SA and SB, which share the boundary singularity, do not yield 
logarithmic terms in (21) because eigenvalues ακ are not integers and there are no 
“crossing points”. Although both the general and specific model problems in 
Figures 3 and 5, have mixed boundary conditions on boundaries SA and SB which 
share the singularity, it is known that for the isotropic materials in 3-D linear 
elasticity, which is the case of our problems, the local solution expansion in the 
vicinity of the singularity does not contain any logarithmic terms (Costabel et al. 
2003). 

In elliptic coordinates, as it is the case of the general model problem, the 
singular solution may be found by following the theory developed in Li et al. 2008. 
According to the same reference the elliptic coordinates fail to present the concave 
corners with θ<2π. Thus, we have to solicit the singular solution in cylindrical 
coordinates. Moreover, for the general model problem and as per Li et al. (2007) 
and Li et al. (2008), expression (21) is preferred for simplicity. Now, in (21) 
functions F(ak)(z) are polynomials of degree Np and with unknown coefficients ak,j 
and are expressed as follows: 

 

                                              ∑
+

=

−=
1N

1j

1j
j,k

)a(
p

k z)z(F α                                      (22)                 

 
The eigenfunctions φκ(θ,ακ) and the eigenvalues ακ in (21) are given by 

 
( ) ( ) ( )( ) ( ) ,2,1k)(2/1k2a,)(asina, AdkAkkk =−−=−= ϕωπϕθθϕ         (23) 

 
where ωd is shown in Figures 3 and 5. Also, for the specific model problem the 
first two functions F(ak)(z) are known and they are of the form (ak,j are known): 
 

                                   ( ) ( ) ,z21zF ka +=      for k=1 or 2.   (24) 
 
which means that Np=1. For the general model problem, polynomials F(ak)(z) are 
not known. 

With the SFBIM, the solution of the model problems analyzed is approximated 
by the leading Na terms of the local asymptotic expansion (21): 
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where the over-bar denotes an approximate quantity. In the above expansion, the 
inner function, denoted by Vk

(j), is the so-called singular function, in which N is an 
additional parameter, selected so that Np<2N+1, the latter being the result of the 
substitution of Φ, expressed by (25), into the governing equation (Elliotis 2016) 
and asking the expression to satisfy the 3-D Laplace equation. Also, parameter ck,i 

is defined as ( ) ( ))l(l/41c k
i

1l
i

i,k +Π−= = α . 
Following the standard procedure of the SFBIM for the 3-D case 

(Christodoulou et al. 2012b, Elliotis et al. 2010, Elliotis 2016), the governing 
equation is weighted by the singular functions Vk

(j), in the Galerkin sense, to give 
(Np+1)Na+Nλ discretized equations. Then, after applying Gauss divergence 
theorem and by considering that functions Vk

(j) satisfy exactly the boundary 
conditions along SA and SB and also by imposing the Dirichlet boundary condition 
on SC, by means of Lagrange multiplier μ(θ,z), we finally arrive at the following 
linear system of (Np+1)Na+Nλ discretized equations: 
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In applying the SFBIM for the general model problem, equation (27) takes the 

form: 
 
                                 ( ) λθ N,,2,1i,dSBz,pdSB i

S
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==Φ ∫∫∫∫                       (28) 

 
In (26) Lagrange multiplier μ(θ,z) is expanded in terms of bilinear basis 

functions Bi(θ,z): 

                 ( ) ( ) ( ) ( )z,Bz,,rz,
N

1i
i

i
n θµθθµ

λ

∑
=

=Φ∂= ,    with r=R on SC                       (29) 

 
As in previous applications of the method, the nodal values of μ are the 

additional unknowns. 
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System of Discretized Linear Equations in Block Form 
 
Integration is performed away from the boundary singularity OD which lies 

along the z-axis. This is an advantage for the procedure since the z-axis is a strong 
singularity. Furthermore, the system of discretized equations (26) and (27) or (28) 
is a system of linear equations in which Φ(r,θ,z) and μ(θ,z) are substituted by their 
expansions (25) and (29), respectively. 

The coefficients of the unknowns ak,j and μ(i) are represented by expressions 
with integrals which contain terms with Vk

(j) and Bi(θ,z) and their derivatives. The 
system takes the form: 
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                                    (30) 

 
where vector Χ contains the first set of unknowns ak,j and vector Λ contains the 
second set of  unknowns μ(i). Sub-matrix M0 and vector C0 contain zeros. System 
(30) is solved by using the Gauss elimination procedure. Obviously, the stiffness 
matrix is symmetric and it becomes singular or ill-conditioned (Xenophontos et al. 
2006) when (Νp+1)Na<Nλ in which case the method diverges. 
 
 
Numerical Results 

  
For the estimation of integrals (26), (27) and (28) for both the general and 

specific model problems, numerical integration takes place on all boundary parts, 
except from SA and SB. For example, the calculation of integrals on SC is performed 
by applying NE=Nz×Nθ boundary elements on this boundary part. Integration takes 
place on each element by using a 3×3 Gauss-Legendre quadrature rule. The 
boundary elements grid and the shape of basis functions are presented in Figure 6. 
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Figure 6. Grid of Boundary Elements and Shape of Basis Functions 
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Table 1 presents the converged values of the leading singular coefficients ak,j 

corresponding to the general model problem obtained with both the SFBIM and 
the FEM, for a specific value of dc (distance between the edge singularity and the 
z-axis as indicated in Figure 5) and for a specific value of small axis b (see the 
elliptic cross-section in Figure 3). Thus, as the value of the big axis a, on the elliptic 
cross-section, varies, different values of singular coefficients are obtained at 
convergence in using the SFBIM. It must be noted that with the method, 
convergence occurs for a specific combination of (Np+1)Na, in number, singular 
coefficients and of Nλ Lagrange multipliers. Also, the CPU time has been recorded 
for both the SFBIM and the FEM. One may easily observe that the SFBIM is 
much more accurate and much faster than the FEM. 
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Table 1. Converged Values of the Leading Singular Coefficients ak,j of the General 
Model Problem, Obtained with the SFBIM and the FEM for dc=0.6 cm and b=1.5 
cm 

 
 
L 
(cm) 

 
 

a/b 

 
 
ωd 

(rads) 

 
 

Leading singular  
coefficients ak,j 

 
          k               j 

 
 

SFBIM 
 
 

average CPU time  
per run = 0.6 sec 

 
 

FEM 
(with grid refinement) 

 
average CPU time  
per run= 22.7 sec 

 
 
 
 
 
 
 
 
0.1 

 
 
 
 

1.20 
 
 
 
 
: 

 
: 
 

3.00 
 
 

 
0.1998π 

: 
: 
 
 
: 

1.9998π 
 
: 
: 
 
: 

 
1.9998π 

1        1 
1        2 
2        1 
2              2 

           :               : 
           :               :  
          1              1 

1       2 
2       1 
2              2 

           :               : 
           :               : 
          1              1    

1       2  
2       1 
2              2 

1.0000000000000012 
2.0000000000000014 
1.0000000000000013 
1.9999999999999985 

: 
: 

1.0000000000000057 
1.9999999999999949 
1.0000000000000062 
2.0000000000000077 

: 
: 

1.0000000000000059 
2.0000000000000073 
1.0000000000000081 
 2.0000000000000064 

1.0004 
1.9997 
0.9995 
2.0003 

: 
: 

0.9996 
2.0002 
1.0004 
2.0002 

: 
: 

0.9997 
2.0001 
1.0003 
2.0001 

: 
: 
4.0 

: 
: 
 

3.00 

: 
: 
: 
: 

1.9998π 

          :                : 
          :                : 
          1              1 

1       2 
2       1 
2              2 

: 
: 

1.0000000000000069 
2.0000000000000057 
1.0000000000000074 
2.0000000000000087 

: 
: 

1.0003 
2.0002 
1.0001 
2.0001 

 
Table 2 contains the converged values of the leading singular coefficients ak,j 

corresponding to the specific model problem, for a radius R of the rivet equal to 1 
cm and for the case where the edge singularity coincides with the z-axis. These 
numerical results (converged values) were obtained by the SFBIM and for the 
“optimal” combination of the number of singular coefficients and Lagrange 
multipliers. Also, it is observed that the numerical error with the SFBIM is 
significantly less than the error which occurs in using the FEM. With Table 3 a 
comparison is made between the two methods for the values of the polynomial 
functions at z=1.0, regarding the specific model problem. Again, one may easily 
see how much faster and accurate is the SFBIM compared with the FEM employed 
together with grid refinement. 
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Table 2. Converged Values of the Leading Singular Coefficients ai,k, Regarding 
the Specific Model Problem, for R=1cm and for dc=0 cm, with the SFBIM and the 
FEM 

 
 
k 

 
 
j 

 
ak,j

(SFBIM)  
 

(for “optimal”  
combination 

(Np+1)Na=32; Nλ =16; 
Np=3; N=2) 

 
ak,j

(FEM) 

 

(with grid 
refinement) 

 
ak,j

(exact) 

 

 
error with 
the SFBIM 

 
| ak,j

(SFBIM) –
ak,j

(exact)| 
 

average 
CPU time  
per run = 
0.4 sec 

 

 
error with 
the FEM 

 
| ak,j

(FEM) –
ak,j

(exact)| 
 

average 
CPU time  
per run = 
17.2 sec 

1 1 1.0000000000000016 1.0003 1.0000 1.6×10-15 3×10-4 
1 2 2.0000000000000021 1.9999 2.0000 2.1×10-15 1×10-4 
2 1 1.0000000000000018 0.9997 1.0000 1.8×10-15 3×10-4 
2 2 2.0000000000000031 2.0002 2.0000 3.1×10-15 2×10-4 
       
       

 
Table 3. Comparison Between the Exact Solution and the Values Obtained by the 
SFBIM and the FEM, for R=1, dc=0 cm and z=1.0 cm, for the First Two Polynomial 
Functions F(ak) )(z) Regarding the Specific Model Problem 

 
k 
 

 
( )ka

SFBIMF  

 
( )ka

FEMF  
 
( )ka

exactF  
 

( ) ( )ka
exact

ak
SFBIM FF −  

 
( ) ( )ka

exact
ak

FEM FF −  

1 3.0000000000000037 3.0002 3.0000 3.7×10-15 2×10-4 
2 3.0000000000000049 2.9999 3.0000 4.9×10-15 1×10-4 
 

 The efficiency of the method is depicted in the graph shown in Figure 7 
where error is defined as 
 

( ) ( )
2or1k)z(F)z(F

1z

aa
k

kk =−=
=

ε                               (31) 

 
where .z=1 is the absolute value of the difference between the exact and the 
approximate values of F(ak)(z) at z=1, for dc=0 and ω=1.9998π rads. Graph 
indicates very high accuracy and fast convergence of the SFBIM. 
 



Vol. 9, No. 4 Elliotis: Numerical Estimation of a Mode III Fracture Mechanics… 
 

298 

Figure 7. Graph of Errors ε1 and ε2 for F(a1) (Lower Line) and F(a2) (Upper Line) at 
z=1 

 
 

Having the numerical approximations of the singular coefficients, for the 
specific problem, the approximate function Φs(r,θ,z) of the solution is now in 
complete form and the stresses at any point of the solid body (domain Ωs with dc=0 
and thus ωd=ω) at Figure 5, can be calculated from the following expressions in 
cylindrical coordinates (remember that eigen-values are ak=((2k-1)π)/(2ω)), in 
which index s is dropped: 
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Note that in considering the series expansion of the above stresses it is always 

σrr+σθθ+σzz=0 in all over domain Ω. This result is also deduced by adding stresses 
σrr, σθθ, σzz which are expressed in terms of the potential. Also, the shear stresses 
are given by 

 

     ( ) ( ) ( ) ( )[ ]∑
=

−− −+≈Φ∂∂=
2

1k
k

2a
kk

1
rr acosr1aaz21r k θσ θθ                     (35) 

    ( )[ ]∑
=

−− ≈Φ∂=
2

1k
k

1a
k

2
,z

1
z acosra2r k θσ θθ                                               (36) 

     ( )[ ]∑
=

−≈Φ∂=
2

1k
k

1a
k

2
r,zzr asinra2 k θσ                                                            (37) 

 



Athens Journal of Technology & Engineering December 2022 
 

299 

Table 4. Values of Stresses at Position z=2 cm, with dc=0 r=0.01 cm, at θ≈0 and 
θ≈ω 

Type of stress 
(MPa) θ → 0 θ →  ω 

σrr
 0 -26.68 

σθθ 0 26.68 
σzz

 0 0 
σrθ -32.58 0 
σrz

 0 0.11 
σθz 0.21 0 

 
Using the above expressions, the values for the stresses are obtained at z=2 

cm, for θ=0 and for θ=ω, respectively, very near to the edge-singularity (r=0.01 
cm) of problem’s domain Ωs. Position z=2 cm is chosen to have the greatest 
absolute values for all components of the stress tensor. These values are tabulated 
in Table 4. 

Note that according to the theory of fracture Mechanics the mean value of the 
only out of plane displacement ξz and the values of stresses σθz at θ≈0 and σrz at 
θ≈ω are important for us since they help to arrive at the conclusion that the crack 
of the specific model problem (Figure 5) is of Mode III. Then one needs to calculate 
the Mode III FMP which is denoted by KIII. Stresses σθz and σrz at θ≈0 and θ≈ω, 
respectively, are acting in the same direction but because |σθz|≠|σrz| there is a 
differential displacement between the two parts, on the left and on the right of the 
V-notch, along the length of the solid body. Thus, the crack is of Mode III. 
Parameter KIII is then calculated from (Aliabadi and Rooke 1991): 
 

                      





=

==→ 2,
20

2lim
zzrIII rK ω

θθσπ            MPa.m1/2                           (38) 

 
Table 5 presents the values of σθz in MPa and of KIII in MPa.m1/2, with respect 

to r, calculated at the position with z=2 cm and θ=ω/2 and rounded to the 3rd 
decimal digit, as it is the custom in engineering applications. Also, Figure 8 
depicts the behavior of KIII as r decreases. Since the material of the solid body of 
this problem is a high yield steel with a value of critical parameter KIII,c=50 
MPa.m1/2, then the largest of the values of KIII, which is obtained for the “nano-
dimension” r=10-7 cm (Table 5) indicates that there is no danger of crack 
propagation for the specific problem (i.e., KIII,max< KIII,c). 
 
Table 5. Values of the Stress Intensity Factor KIII for dc=0 and for Different Values 
of r at z=2 cm and θ=ω/2 

r 
(cm) 

σθz 
(MPa) 

Mode III FMP  
KIII

 

(MPa.m1/2) 
10-2 0.078 0.002 
10-3 0.570 0.005 
10-4 3.430 0.009 
10-5 19.657 0.016 
10-6 111.198 0.028 
10-7                626.230 (first yield) 0.049 
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Yielding (i.e., plastic deformation) does not take place anywhere in the material 
of the rivet, except from the area around the tip of the crack and within a cylindrical 
region of the material of radius r=10-5 cm, in which plastic deformations and plastic 
strains (Fung 1977) take place (stress state exceeds the elastic limit but is confined 
within the plastic region which is formed around the singularity). Consequently, 
the solid body does not fail under the stress state and stress concentration in the 
region of the straight-edge singularity. 
 
Figure 8. Graphical Representation of Mode III Fracture Mechanics Parameter 
KIII for dc=0 and at z=2 cm, θ=ω/2 

 
 
 
Conclusions 
 

In this study two 3-D model problems are tackled. These are problems of 
linear elasticity in fracture Mechanics which are reduced to elliptic boundary value 
problems with a Laplacian governing equation of a Lamé potential. The first 
problem is a general model problem of a cylindrical body with a cross section in 
the form of an ellipse which retains its shape along the z-axis. The second model 
problem is a specific problem of a steel rivet (it could be also a steel bolt), with a 
circular cross section, which connects three elements of a structure. Both problems 
have a surface V-notch with a vertex which is treated as a boundary singularity. 

The SFBIM, which is a Trefftz method, has been implemented in the current 
study and as in other previous applications of the method, very fast convergence 
and very high accuracy are achieved, in directly calculating the singular coefficients 
of the local solution expansion. Comparison between the results obtained for the 
values of the singular coefficients ak,j and the polynomial functions F(ak)(z), with 
the SFBIM and the FEM (with grid refinement), shows that the latter is not as 
efficient as the SFBIM. Indeed, the numerical results indicate that our method 
presents much greater accuracy and much smaller computational time (smaller 
CPU time on the same computing machine) in compare to the FEM. The greater 
accuracy achieved by the method, is demonstrated by comparing the results of the 
two methods which were obtained in solving both the above general model 
problem (in which the exact solution is not available) and the above specific model 

( ) cmrlog−

3
III 10K −×



Athens Journal of Technology & Engineering December 2022 
 

301 

problem with a known solution. In fact, for both model problems, in implementing 
the SFBIM the mean value of the numerical error, at convergence, in all runs, is of 
the order of 10-15, while for the FEM the corresponding error is about 10-4. 

Especially for the specific model problem, the results are also compared with 
the exact solution. Thus, the extension of this technique to both the general and the 
specific model problems is quite interesting, from the engineering point of view, 
since it constitutes a novel application of this specific methodology of applied 
mathematics in engineering. In particular, the capability of the method to tackle 
problems of Fracture Mechanics with crack discontinuities (boundary singularities) 
more efficiently and effectively in compare to the FEM with grid refinement, is 
demonstrated with the current study, something which encourages the 
implementation of its algorithm in subroutines of engineering packages to solve 
specific problems with boundary singularities, a domain in which other numerical 
schemes extract the values of the singular coefficients by post-processing the 
numerical solution. 

As a general remark we would say that the application of the SFBIM to solve 
the above model problems, encourages its extension to other engineering problems 
with boundary singularities of a different type and with more complicated geometry 
and boundary conditions. 
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