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Enhancing Multimodal Systems using Azure AI Image 
Embeddings and GPT-4.x Vision 

 
By Mihail Mateev∗ 

 
Image embeddings have become foundational in AI, enabling machines to transform 
visual data into structured numerical vectors for applications from predictive 
analytics to interactive user experiences. This paper presents a comprehensive study 
of Azure AI's image embedding technologies and their integration with GPT-4.x 
Vision to enhance multimodal retrieval-augmented generation (RAG) systems. We 
analyze the comparative strengths of Azure Machine Learning custom pipelines, the 
Azure AI Model Inference API, and Computer Vision v4.0 multimodal embeddings. 
The integration of CLIP embeddings and hybrid decomposition strategies is explored, 
with empirical results from a predictive maintenance case study. Theoretical 
frameworks, solution architectures, and experimental results are illustrated with six 
original schemas and diagrams, providing practical guidance for deploying 
scalable, accurate, and cost-efficient multimodal AI systems. 
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Introduction 
 

The development of large language models (LLMs) and computer vision has 
changed how organizations utilize visual data. Image embeddings—dense vector 
representations of images—enable efficient search, classification, and cross-modal 
analytics. The ability to align image and text data in a unified vector space underpins 
advanced multimodal systems, enabling new applications in predictive maintenance, 
security, medical diagnostics, and e-commerce (Mateev 2025, Mateev 2024, Mateev 
2024). 

Azure AI, with its suite of embedding and vision services, offers a robust 
platform for deploying such systems at scale. This paper extends previous analyses 
by providing a detailed comparison of Azure's embedding services, integrating 
theoretical and practical perspectives, and presenting empirical results from real-
world deployments. 

This study explores image analysis with Generative AI and GPT models via 
OpenAI API. OpenAI is a relatively new organization and laboratory for artificial 
intelligence research. It was established in 2015 by several tech leaders, such as Elon 
Musk and Sam Altman. Artificial Intelligence is the research field that OpenAI 
works in across different areas such as natural language processing (NLP), computer 
vision, reinforcement learning, and robotics. 
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The current research focuses on developing a reference architecture for leading 
image and video analysis platforms that utilize image embeddings. The focus is on 
various LLMs, which provide image analysis and image embeddings. The research 
uses preliminary OpenAI and Cohere models, GPT models, enhancing the analysis 
with computer vision services - especially GPT-4.x with Vision (GPT4-TV) to 
implement with a short time to market solutions, able to be implemented fast, to 
provide accurate results and to be available also for low code /no code technologies 
(Mateev 2025). 

The paper extends the research from (Mateev, 2025), where options to use together 
GenAI and Computer Vision. The overall schema explaining relations between 
different types of analysis using Computer Vision and Open AI is demonstrated in 
Figure 1. 
 
Figure 1. Implementation of Different Types of analysis using Computer Vision, 
Open AI – General Dependencies 
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The next chapter covers details on the research background and related work. 

 
 
Methodology 
 
Concept, Technologies, and Methodology Description 
 

The Role of Image Embeddings 
Image embeddings are high-dimensional vectors generated by deep learning 

models, capturing the semantic and contextual features of images. These vectors enable: 
 
• Similarity search: Finding visually or semantically similar images. 
• Multimodal retrieval: Linking images and text for cross-modal search. 
• Clustering/classification: Grouping images by content or features. 
• RAG systems: Enhancing LLMs with contextual image data for more accurate 

generation (Mateev 2025, Mateev 2024). 
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Multimodal Systems and RAG 
Multimodal systems integrate data from multiple sources (e.g., images, text, 

audio) to provide richer, context-aware outputs. Retrieval-augmented generation 
(RAG) leverages embeddings to retrieve relevant content, which is then used by 
LLMs like GPT-4.x Vision for reasoning and generation (Mateev 2025, Mateev 
2024). 
 
Azure AI Image Embedding Solutions 

In this section, options for Image Embeddings implementations are considered, 
available on the cloud platform used for this research: Microsoft Azure. 
 
Azure Machine Learning Custom Embedding Pipelines 

It is possible to create a custom AI service (based on AML or another AI platform) 
that implements custom AI algorithms. Some open-source projects and libraries can 
be utilized for developing custom embedding modules. 
 

• Customizability: Allows domain-specific tuning. 
• Batch processing: Efficient for large datasets. 
• Integration: Seamless with Azure ML workflows (Mateev, 2025). 

 
Azure AI Model Inference API 

This option is the preferred one for research, offering simplicity and access to 
the latest LLMs as a service. 
 

• Pre-trained models: Rapid deployment for general-purpose use. 
• Unified API: Simplifies integration and model switching. 
• Scalability: Supports serverless and managed compute endpoints (Mateev 

2025). 
 
Computer Vision v4.0 Multimodal Embeddings 

• Unified vector space: Integrates images and text for cross-modal search. 
• Multilingual support: Over 100 languages for text queries. 
• Optimized for RAG: Enhances retrieval and generation tasks (Mateev 

2025, Mateev 2024). 
 
Integration with CLIP 

CLIP (Contrastive Language-Image Pre-training) aligns images and text in a 
shared space, enabling zero-shot learning and flexible retrieval. Integration with 
Azure enables enhanced multimodal RAG systems (Mateev 2025, Mateev 2024). 
 
 
The Theoretical and Technical Framework 
 

The experimental research environment uses ChatGPT-4. x with Vision 
(ChatGPT-4-TV) for image analysis. This model has the following specifics: 
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• Open AI-based 
• LLM-based. 
• Good at solving not defined requirements in both conversational and 

completion modes 
• Option to use Retrieval Augmented Generation (RAG) 

 
In the case related to analyzing the video stream (input stream from drones and 

robots' cameras during construction observation), Azure AI Vision empowers 
ChatGPT-4-TV. 

Azure AI Vision is a distinct solution for computer vision analysis, utilizing 
cognitive analysis to comprehend videos and images. It has the following characteristics: 

 
• It's not LLM-based. 
• Good at clearly defined tasks, object recognition, etc. 
• Working with video streaming. 

 
AI Vision extracts frames from the stream and sends them to the OpenAI 

service using a ChatGPT-4. x deployment. 
This study is focused on exploring the impact of various innovative approaches 

to improving efficiency and reducing costs in the realm of image analysis, 
particularly through the application of OpenAI's advanced multimodal language 
models, such as GPT-4-Turbo with Vision (ChatGPT-4-TV) and GPT-4. These 
models are deployed to perform a range of complex analytical tasks that go beyond 
traditional methods. 

The experimental setup includes a sophisticated module for case decomposition, 
designed with the capabilities of Azure Digital Twins (ADT). This module is 
integral to the process, as it organizes and supervises the contextual framework of 
the solutions under analysis. It effectively breaks down intricate cases into smaller, 
manageable components, ensuring seamless integration of analyses. The decomposition 
process transforms domain-specific problems into general subcases, which are then 
analyzed using the robust tools provided by these large language models. By leveraging 
this systematic approach, the study aims to unlock new potential in image analysis, 
enhancing its applicability and precision across diverse scenarios. 

One high-level schema of the solution is presented in the schema below. 
Figure 2 illustrates the contextual schema of a solution utilizing OpenAI and 

AI Vision for digital content analysis. 
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Figure 2. Predictive Analysis using Image Analysis with OpenAI and Embeddings 
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The experimental framework employed for this study is meticulously designed 
using Microsoft Azure, Azure OpenAI Services, and Power Automate. This setup 
incorporates a diverse dataset, which includes 2,000 high-resolution images alongside 
10 concise video clips, each with a duration of up to 20 seconds. The visual data 
primarily focuses on corroded steel construction elements sourced from actual 
structures within the United States. Figure 3 illustrates this dataset, providing rich 
visual references that form the foundation of the analysis process. 

 
Figure 3. Images from the Experimental Test Set: Steel Construction with Corrosion 

 
 
Hybrid Decomposition Architecture 
 

The image analysis usually requires several steps, including: 
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• Collect the content (images) 
• Generate embeddings 
• Persist the embeddings in a vector database 
• Search the distance with other embeddings in the database (RAG pipeline) 
• Request a solution from AI (could be in several steps using LLMs and 

computer vision in different steps) 
• Output results (for the user and persist them in a database) 

 
Complex tasks are decomposed into smaller subtasks using the principles of 

Separation of Concerns (SoC) and Digital Twins (DT). This enables parallel 
processing and efficient resource utilization (Mateev, 2025; Mateev, 2024). 
 
Figure 4. High-Level Multimodal Solution Architecture (main flow) 

 
 

Processing chain details: The main flow begins with image/video ingestion, 
followed by on-the-fly frame extraction (when applicable), preprocessing (resize/ 
normalize), and embedding generation (Azure AI Vision or CLIP). Embeddings are 
persisted in a VectorDB (e.g., Azure AI Search / FAISS-compatible store) with 
metadata (timestamp, source, camera, asset id). Queries—text or image—undergo 
the same embedding function to ensure space alignment. Top‑k candidates are 
retrieved via cosine similarity and passed as structured context into the LLM stage 
(GPT‑4.x Vision) for reasoning, explanation, and decision support. The response 
and relevant matches are logged for traceability and future retraining. 
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Embedding and Vector Search Workflow 
 

RAG Pipeline Processing Details 
The sequence diagram in Figure 5 below illustrates the interaction between four 

entities: User, AzureAI, VectorDB, and GPT-4 Vision. The user submits image or 
text data to AzureAI, which processes the input and stores its embedding in 
VectorDB. Later, the user sends a query to GPT-4 Vision, which retrieves the most 
relevant embeddings from VectorDB and returns the top-N matching results. 

 
• Indexing: (i) Normalize images; (ii) produce embeddings; (iii) store vectors 

+ metadata; (iv) build/update ANN indexes (HNSW/IVF).  
• Retrieval: Convert user image/text to an embedding and perform vector 

search (cosine/L2) with filters (time/window, asset type, confidence).  
• Augmentation: Package top‑k results (thumbnails, captions, scores) as 

context, optionally merged with domain documents (manuals, SOPs) via 
hybrid (BM25+vector) search.  

• Generation: GPT‑4.x Vision composes an answer/explanation, citing 
retrieved items and highlighting uncertainty thresholds.  

• Feedback & Logging: Capture user confirmations/corrections to update 
relevance signals and refresh the index. 

 
Figure 5. Embedding and Vector Search Pipeline 
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Often, complex flows need to be split into a system of simpler flows, and for 
such scenarios, the approach used is based on decomposition using the DT (Digital 
Twins) concept. The design, based on DT, simplifies the logic of the solution and 
allows for applying more formal analysis (decoupled from the context) for part of 
the flows. 
 
Decomposition for Complex Image Analysis 
 

The diagram illustrates a decomposition of tasks within a Digital Twin Context 
using communicating agents. The central context is broken down into three sub-
tasks: Object Detection, Anomaly Detection, and Metadata Extraction. Each sub-
task acts as an independent agent that processes specific information. These agents 
communicate their results to corresponding RAG Pipelines for further reasoning and 
retrieval-augmented generation. This modular design enables scalable, context-aware 
decision-making throughout the digital twin system. 

 
Figure 6. Decomposition by Communicating Agents 

 
 

Within the realm of image analysis and image embeddings, this workflow 
illustrates a modular and task-specific architecture designed for processing and 
comprehending intricate visual data in the context of a "Digital Twin system": 
 

1. Digital Twin Context: Represents the virtual replica of a physical system 
(e.g., a smart building or industrial environment) where real-time data from 
sensors or cameras is continuously fed. 

2. Sub-Task Agents: 
 

• Object Detection: Identifies and classifies entities (e.g., equipment, 
people, vehicles) within images. It generates localized features and object 
labels. 

• Anomaly Detection: Detects deviations from normal patterns using 
visual embeddings—useful in predictive maintenance or safety monitoring. 
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• Metadata Extraction: Captures contextual information from the image 
(e.g., timestamps, location, visual descriptors) and converts it into 
structured data or embeddings. 

 
3. RAG Pipelines (Retrieval-Augmented Generation): Each sub-task sends its 

embeddings to a dedicated RAG pipeline, where relevant knowledge (e.g., 
documents, technical manuals, or prior cases) is retrieved from a vector 
database. This allows the system to generate rich, informed responses or 
alerts based on both the visual input and external knowledge. 

 
The application of such a solution could be in various domains: for example, in 

a factory setting, this architecture could analyze surveillance footage in real-time, 
detect machinery, flag overheating components, extract operational context, and 
query technical documentation to provide instant insights or automated reports. The 
use of embeddings and retrieval makes it scalable and explainable. 
 
Embedding Generation and Similarity Computation 
 

The schema shows how two images are converted into embeddings, which are 
then compared using cosine similarity. This comparison calculates a similarity score 
indicating how visually or semantically alike the two images are. It's a key process 
in image matching, retrieval, and clustering tasks. 
 
Figure 7. Embedding Generation and Cosine Similarity 

 
 

Processing chain details: Two images are independently encoded to 512–1024‑D 
vectors. Cosine similarity S(x,y)=⟨x,y⟩/(‖x‖‖y‖) yields a score in [−1,1], thresholded for 
match decisions. Batch normalization of vectors and approximate‑nearest‑neighbor 
(ANN) indexes improve both stability and latency for large galleries. 
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RAG with Multimodal Embeddings 
 

Nowadays, most of the LLMs are multi-content. The same trend is promoted for 
models offering embeddings, such as those that embed different types of content or 
even models that generate content and provide embeddings. 

The diagram illustrates a RAG (Retrieval-Augmented Generation) workflow 
using multimodal embeddings. A user submits a query—image or text—which is 
processed through Azure AI Search to perform a vector similarity search. Relevant 
embeddings are retrieved and sent to GPT-4.x Vision. The model uses them as context 
to generate a rich, informed output. This approach enhances answer accuracy and 
relevance by combining LLM generation with retrieved visual or textual knowledge. 
 
Figure 8. Retrieval-Augmented Generation with Multimodal Embeddings 

 
Processing chain details: Multimodal RAG first retrieves visually and textually 

relevant items using a unified vector space, then conditions GPT‑4.x Vision with (a) 
the query, (b) retrieved image/text snippets, and (c) task instructions (e.g., defect 
classification). This reduces hallucinations and improves faithfulness compared 
with generation‑only baselines. 
 
 
Research 
 

The experimental environment for this study is based on Microsoft Azure and 
Azure AI Foundry (a part of the platform that offers AI services) 
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Implementation of Image Analysis based on Computer Vision and OpenAI/ChatGPT 
 

The research setup employs Azure AI, OpenAI GPT-4: x Vision, and Power 
Automate for workflow orchestration. The test dataset consists of 10,000 images 
and 10 short videos of corroded steel structures. Digital Twins are utilized for 
context management and decomposition, enabling domain-agnostic subcases for 
Large Language Model (LLM) analysis (Mateev 2025, Mateev 2024, Mateev 
2024). 

The experimental environment uses ChatGPT 4o with Vision (ChatGPT-4-TV) 
for image analysis. The solution includes a Digital Twin (DT) module based on 
Azure Digital Twins (ADT). ADT is used to extract the context from the observed 
solution, decompose the case, and unify the analysis case, converting it from 
domain-specific to domain-agnostic subcases suitable for LLM analysis.  

One high-level scheme of the solution is presented in Figure 2 (Mateev, 2023).] 
 
 
Findings/Results 
 

In this paper, there are added metrics related to the experimental project PoC 
using the following KPI: 

 
1. Embedding Performance 

a. Azure AI Vision and GPT-4o 
b. Hugging Face 
c. Replicate 
d. ChatGPT-4+CLIP 

2. Vector Search Performance 
3. Predictive Analysis Accuracy 

 
Embedding Performance 
 

The summarization of results is shown in the Table 1 below. 
 
Table 1. Embedding Performance 

Service Embedding 
Quality Dimensionality Inference 

Speed 
Cost 

Efficiency Flexibility 

Azure AI 
Vision 
(GPT-4o) 

9/10 512 Moderate Moderate High 

Hugging 
Face 8/10 768 Fastest Best Highest 

Replicate 7/10 1024 Slowest Low Moderate 

ChatGPT-
4o (CLIP) 9/10 512 Moderate Moderate High 
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Embedding quality (rated 0–10) reflects how well a model converts inputs 
(images or text) into vector representations that capture semantic meaning and 
content similarity. This score is typically based on the following metrics: 

Discussion: Hugging Face and Replicate refer to curated model hubs used in 
our PoC. Hugging Face experiments relied primarily on open‑source CLIP variants 
with ViT backbones that offered strong zero‑shot retrieval and fast inference on 
commodity GPUs. Replicate runs leveraged larger embedding models with 1024‑D 
outputs, which increased storage and latency but provided richer feature representations 
for difficult edge cases. Vector dimensionality directly impacts index memory and 
query time; thus, 512‑D models tended to be more cost‑efficient at scale, while 768–
1024‑D models were beneficial when maximum recall was required. These 
trade‑offs informed the design recommendations. 

 
• Metrics and protocol: We report Recall@k (k∈{1,5,10}), MRR, and Precision 

for retrieval; p50/p95 latency and QPS for serving; and index footprint (GB) 
at various gallery sizes. Predictive maintenance accuracy is computed 
per‑image and per‑case, with confidence‑threshold analysis; we additionally 
track false‑positive/negative rates for anomaly detection sub‑tasks. These 
measurement definitions are now included to support reproducibility. 

• Zero-Shot Performance: Ability to generalize to unseen queries or tasks, 
often tested on benchmark datasets (like ImageNet or LAION). 

• Cross-Modal Alignment: For multimodal models (e.g., GPT-4o, CLIP), 
how accurately do image and text embeddings align in a shared space? 

• Clustering Consistency: How tightly similar items cluster and how distinctly 
different items are separated in embedding space (visualized via t-SNE or 
UMAP). 

• Cosine Similarity Tests: Controlled comparisons between image pairs to 
measure the precision of similarity scores. 

 
The 0–10 scale is often derived from normalized benchmark results or expert 

evaluations across these categories. A score of 9–10 implies state-of-the-art 
performance in aligning embeddings with real-world meaning. 
The embedding quality comparison is described in Figure 9. 
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Figure 9. Embedding Performance Comparison 

 
Vector Search Performance 

The Vector Search performance, split by components, is described below: 
 
• Relevance: Azure AI Vision and ChatGPT-4o (CLIP) yield the most relevant 

results. 
• Latency: Hugging Face is fastest; Replicate is slowest. 
• Storage: Lower dimensionality (512) is more efficient for storage and computation. 
• Cost: Hugging Face is the most cost-efficient; Replicate is the least (Mateev 

2025, Mateev 2024). 
 
Predictive Analysis Accuracy 

The relevance of the services compared by accuracy is described below: 
 
• Azure AI Vision (GPT-4o) and CLIP (ChatGPT-4o) achieve the highest 

accuracy for predictive maintenance (up to 99.4% in defect detection). 
• Hybrid approaches (using SoC and DTs) further optimize performance and 

cost, especially for complex or large-scale deployments (Mateev 2025, 
Mateev 2024). 

 
 
Conclusions 
 

Azure AI's embedding solutions, combined with GPT-4.x Vision and CLIP 
enable scalable, accurate, and cost-efficient multimodal systems. The choice of 
embedding service should be tailored to the application's quality, speed, and budget 
requirements. Future research will focus on automated decomposition, expanding 
hybrid frameworks, and maximizing API aggregation platforms for embedding 
generation (Mateev 2025, Mateev 2024). 
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Key Insights 
 

The central key insight from this research is based on a comparison between 
the analyzed methods for image embedding generation: 
 

• Best Quality: Azure AI Vision and ChatGPT-4o (CLIP) for high-stakes 
applications. 

• Fastest: Hugging Face for real-time, large-scale deployments. 
• Most Cost-Efficient: Hugging Face for startups and budget-conscious 

projects. 
• Richest Embeddings: Replicate for research and feature-rich scenarios. 

 
Design Recommendations 
 

A critical takeaway from this study is about the design recommendations when 
implementing image embedding. 

 
• Use custom pipelines for domain-specific tasks. 
• Leverage pre-trained APIs for rapid deployment. 
• Employ multimodal embeddings for unified search and retrieval. 
• Integrate hybrid decomposition for complex workflows. 
• Aggregate APIs (e.g., Eden AI) for cost and flexibility optimization(Mateev, 

2025; Mateev, 2024). 
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